

Gamma Ray Spectroscopy for JT-60SA Current status

M. Nocente^{1,2} for the implementation team

¹Department of Physics, University of Milano-Bicocca, Milan, Italy ²Institute for Plasma Science and Technology, National Research Council, Milan, Italy

Outline

- Scientific motivation and timeline
- Information on installation location available from QST
- Status of detector design so far and input required to make progress
- Status of signal simulations so far

Scientific motivation

- Runaway electron energies can be measured by detecting their bremsstrahlung emission in the MeV range
- JT-60SA can reach novel regimes of relevance for EP studies, predominantly relying on the 500 keV NBI
- Scenarios for the generation of alpha particles can be obtained in mixed D-3He plasmas (see later)
- Fast proton confinement can be studied by gamma-ray spectroscopy (p(d,γ)³He reaction)
 - Alpha particle generation and confinement can be studied using gamma-ray measurements
- Fast deuteron confinement can be studied using neutron spectroscopy (perhaps

 also with GRS, tbd)

 M. Nocente | GRS for JT-60SA: status| 2025/07/21 | Page 3

Timeline as of today

Physics program need: fast particle experiments (protons and alphas) using 500 keV NBI planned in OP3

Tentative project timeline as of today

2025-2026: full development

2027: delivery to JT-60SA and installation in ME2

2027-2028: Measurements in OP3

Information on installation location from QST

P-12 NES/GRS collimator & detector

Diagnostics	Neutron energy spectrometer (NES)	Gamma-ray spectrometer (GRS)	Neutron energy spectrometer (NES)
Target	N-NBI fast D ion	D-³He fusion α particle	N-NBI fast D ion
JA or EU	JA	EU	EU
Detector	CLYC-7 One option : use LHD's one	LaBr ₃ (Ce)	LaCl ₃ (Ce)
Characteristics	Well established Long time resolution of ~1 s		First try (AUG) in 2025- Short time resolution of < 1 ms
Desirable installation timing	M/E2	M/E2	≧M/E3

S. Sumida, Neutronics meeting 25th April 2025

NES/GRS collimator being developed by QST

Conceptual design in progress

- Interference ... OK
- · Neutronics design ... in progress
- · Mechanical design ... in progress

S. Sumida, Neutronics meeting 25th April 2025 and TCM-43

NES/GRS collimator tentative dimensions

Preliminary structure of collimator 4

S. Sumida, Neutronics meeting 25th April 2025

Detector design status

- Plasma centre to detector distance is about 7 m; for comparison, detectors in the JET neutron camera were at about 6 m.
 - 20 cm length available for full detector: need to shrink the detector from 3"x6" (ITER/JET large spectrometers) to 1.5"x1.5" (similar to JET neutron camera, 1"x1").
 - Suitable DAQ identified, tested in the lab and being tested at MAST-U (Teledyne model ADQ14DC-4C-VG-PXIE)
- PMT model Hamamatsu R9420-100-10-Y001 used at AUG can also be used at JT-60SA: ~10 cm length.
- Crystal + PMT length = 14 cm tentatively; 5 cm of extra space left for casing, cables etc.

Development of detector prototype (without C&M) with casing to check actual dimensions

3D printed case

Prototype fits the available space.

Little extra space left
(2 cm along lenght; 0.6 cm along diameter).

Prototype works well.

What we need to progress from this (questions shown at TCM-43; no answer yet)

- What is the estimated magnetic field at the position of the collimator house? Magnitude and direction? If standard mu-metal not enough to shield the PMT, then we must go for a smaller crystal or consider SiPM.
- How will the detectors be installed in the collimator house? Can the collimator house be opened from the top (e.g. if there is a lid on top)? Can it be opened from the back? Some other way?
- Where is the DAQ system going to be installed? Do we need long BNC and HV cables from the detector to the DAQ? How long?
- Can the C&M system be installed near the detectors? Or should it also be installed in the same place as the DAQ? In such case, do we need long optical fibers from the C&M to the collimator house? How long? The optical fiber path also has an impact on the detector arrangement in the collimator.
- There are two options for the diameters of the collimators. Will both be implemented or only one of them? If only one, which one?
- What is the expected cable route from the detectors to the DAQ?

Status of signal simulation

First simulation of the ~17 MeV gamma-ray intensity map made

/work/stholer/cmg/catalog/jetto/jet
/70000/feb0224/seq#1/ascot.h5
(E. Tholerus)
Scenario 5.1:
/work/stholer/cmg/catalog/jetto/jet/70005/
feb0224/seq#1/ascot.h5

(L. Garzotti)

- ASCOT simulation of the 500 keV DNNBI used
 With 10% ³He
- ~ 17 MeV γ -ray emission from d+³He \rightarrow ⁵Li + γ

Overall intensity comparable to JET 3-ion scenarios

R [m]

Optimized simulations of the α particle source have been recently made by R. Novara (master student) supervised by R. Coelho and myself.

Next steps:

- Use **optimized simulations** for improved γ-ray intensity map
- Evaluation of counting rate at the detector position

Conclusions

- Design of the gamma-ray detector for JT-60SA has progressed using the information available so far. Preliminary prototype of detector developed for dimensions check.
- It is now critical to have answers to the technical questions made at TCM 43 to progress further.
- First simulations of the gamma-ray intensity map have been made. Better simulations recently made. They will be used to evaluate the expected counting rate at the detector.