

Update Stray Radiation activities W7-X in support of WPSA

Hans Oosterbeek, Saul Garavaglia, Jakob Brunner, Heinrich Laqua, Mathias Stern,
Torsten Stange, Jonas Zimmermann

Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald, Germany

2025 WPSA Enhancement Projects Progress Meeting Meeting 1 of 3, Thursday, 10th July 2025, per VC

Recap: non-absorbed ECRH P [W] → Stray rad. p [Wm⁻²]

 $p_{
m stray}$

EUROfusion 2025: EC Stray detection system design and procurement

WPAS activities at W7-X 2025

Collect and evalute bolometer sensor data on W7-X OP2.3(1) I

(1) September 2024 – May 2025

Outstanding practical issues with IO proto-type tested in MISTRAL 2023⁽²⁾. *Not installed in-vessel OP2.3*

Alternative: single bolometer bodies inside and outside W7-X

Microwave bolometer inside AEM51

Microwave bolometer outside AET10

Microwave bolometer outside AEN40

Holder with 3 separated bodies: MISTRAL 2026

TC1

Coatings AIO₃/SiO₂ (87%/13%):

- 1. 150 µm (140 GHz)
- 2. 120 μm (170 GHz)
- 3. none ('cold bolometer')

'Standard' microwave bolometers used.

Under review: tune response using conduction term. Bonus: fixture

In FPGA obtain:

- TC1 TC3: stray rad. at 140 GHz
- TC2 TC3: stray rad. at 170 GHz,

while correcting for calibration

Recap: microwave bolometers

50

$$\frac{\Delta T}{\Delta t} = \underbrace{\frac{p \alpha S}{m c_v}}^{ ext{Absorbed power}}$$
 Heat capacity

15

20

t [s]

25

30

35

Including radiation¹:

$$\frac{\Delta T}{\Delta t} = \frac{p\alpha S - \sigma S\epsilon \left(T^4 - T_s^4\right)}{mc_v}$$

¹ N. Maassen et al., Microwave detector: design for ITER.

Technische Universiteit Eindhoven, 2014.

Exposure: $55 \ kWm^{-2}$

Heating rate: $\dot{H} = 7.5 \text{ K/s}$

Calibration this bolometer:

$$C = \frac{55}{7.5} \approx 7.3 \left[\frac{kW \cdot s}{m^2 \cdot K} \right]$$

$$p = 7.3\dot{H} [kWm^{-2}]$$

Recap: ECH window sensors¹

Heating rate
measured with
thermo-couple ~
4 mm inserted as
with bolometer

¹Conceptual design by ITER: S. Pak and R.J. Zubieta-Lupo.

Gratitude to Beate Kursinski and Jens Knauer for manufacture and integration at W7-X

Ports close to ECRH launchers

Ports away from ECRH launchers

EUROfusion Measurements 22.05.2025: AEM51, AET10, AEN40, AEM40

TO BE UPDATED

Plasma parameters for 20250522.047

• TO BE UPDATED

Stray rad. from bolometers AEM51 and AET10 for #47

• TO BE UPDATED

Stray radiation from ECH window sensor AEN40 for #47

• TO BE UPDATED

Exposure: $55 \ kWm^{-2}$

Response: $\dot{H} = 5.4 \text{ K/s}$

Calibration this bolometer:

$$C = \frac{55}{5.4} \approx 10 \left[\frac{kW \cdot s}{m^2 \cdot K} \right]$$

$$p = 10\dot{H} [kWm^{-2}]$$

Note:

Curve above is for DN100 sensor, while DN64 was used. But as local bolometer surface is similar: expect small error only.

Exit calibration of DN64 sensor in MISTRAL 2026 campaign.

Summary WPSA activities 2025 – update summer

Evaluation of bolometer sensor data on W7-X during campaign OP2.3

- Microwave bolometer data inside vessel as well as on the outside of vessel:
 Good data, S/N fine, fully acceptable interference
- ECH-window sensor data: data quality as for bolometers.
- Dynamic range on W7-X:
 - Minimum detection ~ 100 Wm⁻²
 - Maximum as tested on MISTRAL 55 kWm⁻², but could possibly be higher (no data set).
- OBSERVATION: significant reduction of stray radiation at the end of long ports, in modules away from ECRH launchers. Example presented: modules 1,5 versus module 4. Ratio ~ 1:50

Differential ECH-sensor development

- Sensor holder for 3 'standard' bolometer bodies.
- Each bolometer has its own thermo-couple:
 - The difference signal between two bodies with different coatings is proportional to stray radiation only, other heating terms cancel.
 - Absolute temperature available: allows correction for radiated power.
 - To be tested in MISTRAL 2026