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A hierarchy of neutral models
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Computational efficiency

Model accuracy

micro-Macro

(mMH)

Advanced fluid 
neutral models (AFN) Kinetic modelHybrid fluid-kinetic models

Spatially (SpH)
• Efficient (direct) 

coupling to plasma 

equations, no MC 

noise

• Basis for hybrid 

methods

• Good accuracy in 

highly collisional 

regimes • F-K transition 

based on location

• User-defined 

transition criteria

• Decomposition in 

velocity space

• Can be made fully 

equivalent to 

kinetic model

• Most complete 

physical description

• Flexibility w.r.t. 

geometry, collisional 

processes, sources, 

boundary 

conditions,…

• Very expensive in 

highly collisional 

regimes

CPU  1/10?
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Underlying kinetic equation of current AFN models

Boundary conditions

ions  (D+
 )

Neutrals (D)

ion recycling

ions: truncated Maxwellian

sheath acceleration

neutral reflection

Atom-plasma reactions

TRIM database for wall reflection:

𝑹𝑭(𝑬′, 𝝑′, 𝝋′ → 𝑬, 𝝑, 𝝋)

molecules

 Thermal release

 or

 Immediate dissocation

[Horsten, N., PhD Thesis, 2019]
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Atomic and molecular reactions

= default EIRENE reactions except neutral-neutral collisions

Atom-only 

models

With 

molecules

At target
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Resulting fluid model
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• Following Chapman-Enskog procedure
[details: see N. Horsten, PhD; and extensions in W. Van Uytven, PhD.]

• Continuity, parallel momentum, and energy equations:

• Pressure-diffusion relation for perpendicular directions (perp. mom. eq. simplified to balance 

pressure gradient vs. momentum sources):
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AFN boundary conditions
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Diffusion approx.:

• Incident flux: consider 

neutrals from CX or n-

n collisions

• Linearize & integrate 

over half-space

Maxwellian approx.:

• Indicend flux: assume 

(drifting) Maxwellian 

based on Tn and u||n

Incident neutrals: diffusion approx. 

or Maxwellian approx.
Incident ions: truncated Maxwellian 

+ sheath acceleration

Speed- and angular-dependent 
particle flux density 

Reflected/recycled neutrals

TRIM database

Moments total distribution: particle, momentum and 

energy flux densities [N. Horsten et al., NF 57 (2017)]



7

AFN results – Different wall materials
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AFN results – ITER W-Be (ni,c = 8∙1019 m-3)

Tungsten
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Summary achievements AFN: mature models!
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• Significant model improvements compared to ‘standard’ fluid neutral models

o Transport coefficients consistent with collisional processes used by EIRENE (AMJUEL/HYDHEL)

[N. Horsten et al., NF, 2017], including neutral-neutral collision effects [W. Dekeyser et al, PSI, 2024.]

o Boundary conditions consistent with kinetic EIRENE treatment [N. Horsten et al., NF 57, 2017], incl. fast/thermal reflection 

(approximate effect of molecules) and TRIM data (effect of wall materials)

o Separate neutral energy equation to extend validity range of fluid (and SpH) model towards lower recycling conditions 
[W. Van Uytven et al., CPP 60, 2020]

o Inclusion of plasma drift effects [W. Van Uytven et al. NME 2022]

• Made widely available to users through implementation in new extended grids version of SOLPS-ITER

o Correct treatment of grid non-orthogonality [W. Dekeyser et al, NME 18, 2019]

o Simulations up-to-the-wall [W. Dekeyser et al, NME 27, 2021]

• Already successfully applied to various machines, incl. AUG, JET [N. Horsten et al., NME 2022], ITER [W. Van Uytven et al, NF 

62, 2022] and DEMO (link WP-DES) [W. Van Uytven et al, CPP, 2024]

• AFN models implemented in various European turbulence codes (TOKAM3X, GRILLIX – TSVV3).



Three main reasons for fluid-kinetic discrepancies

1. Fluid grid does not extend up to the real vessel wall ➔ no 

neutrals in void/vacuum regions

Solved by using extended grid, but low collisionality demands for 

(partially) kinetic treatment 

2. No explicit treatment of molecules (H2) & 

impurity species in AFN model

Not clear if a fluid model is valid

3. Fluid limit is not valid everywhere ➔ kinetic effects

Low-collisional regions inside fluid grid

Boundary / first-flight effects
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Treatment at plasma-void interfaces

Ion recycling ➔ Also present 

in fully kinetic simulation

Transition from fluid to 

kinetic population

Sampled from 

Maxwellian

Fluid neutral boundary 

condition: Moments of 

Maxwellian ➔ imposed 

fluxes:

Kinetic atoms are 

followed until ionization

Important to incorporate 

some kinetic effects in 

low-collisional regions 

(see further)
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Treatment at wall/divertor boundaries

• Launching (all) neutrals kinetically at the vessel walls captures first-flight effects, and 

significantly improves the agreement with the kinetic reference solution  

• Launch as atom (fast recycling) or molecule (thermal desorption)

• Add condensation process to condense kinetic atoms to fluid atoms in highly collisional 

regions, based on a (user-imposed) transition Knudsen number Knt
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Maximum hybrid-kinetic discrepancies within 20% for JET 

L-mode case at the onset of detachment 

Outer target profiles:

First-flight effects
Speed-up compared to simulation 

with fully kinetic neutrals:

No statistical error correction

With statistical error correction 

(for ne,ot)
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Achievements spatially hybrid modeling (SpH)
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• Combine AFN model in high-collisional regions with kinetic treatment in low collisional regions
[W. Van Uytven, CPP, 2022]

o Improved accuracy compared to pure fluid

o Improved speed compared to kinetic (factor 5-20 depending on regime)

• Accurate treatment of molecular and (kinetic) impurity effects

• Fully integrated in extended grids version of SOLPS-ITER for simulations up-to-the-wall



Next steps
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• Development of AFN model for molecules

• Development of AFN model for impurity atoms

• More rigorous inclusion of n-n collision effects
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