

Gyrokinetic analysis of DTT negative triangularity scenarios and TCV, AUG plasmas with similar shapes

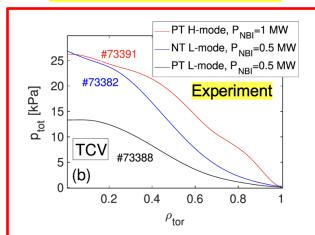
Alberto Mariani

ISTP CNR Milano Italy
DTT, EUROfusion TE and TSVV2,
ASDEX-Upgrade, TCV teams

Author list

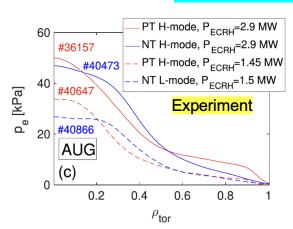
A. Mariani¹, L. Aucone², A. Balestri³, P. Mantica¹, G. Merlo⁴, R. Ambrosino^{5,6,7}, L. Balbinot⁸, J. Ball³, I. Casiraghi¹, A. Castaldo⁹, S. Coda³, T. Happel⁴, J. Hobirk⁴, P. Innocente¹⁰, T. Pütterich⁴, O. Sauter³

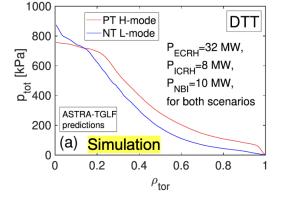
¹ Institute for Plasma Science and Technology, CNR, Milano, Italy,
² Department of Physics "G. Occhialini", University of Milano-Bicocca, Milano, Italy,
³ École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland,
⁴ Max-Planck-Institut für Plasmaphysik, Garching, Germany,
⁵ DTT S.C. a r.l., Frascati, Italy,
⁶ Università degli Studi di Napoli Federico II Napoli, Italy,
⁷ Consorzio CREATE, Napoli, Italy,
⁷ Università della Tuscia, Dipartimento di Economia, Ingegneria, Società e Impresa (DEIM) Viterbo, Italy,
⁹ ENEA C.R.Frascati, Frascati, Italy,
¹⁰ Consorzio RFX, Padova, Italy



Lower δ shape

First DTT NT shape: low delta (LD): SUMMARY


TCV: exceptionally beneficial effect of NT



TCV: experiment:

NT L-modes reach the central n,T of PT H-modes with **double** power.

AUG/DTT: milder effect

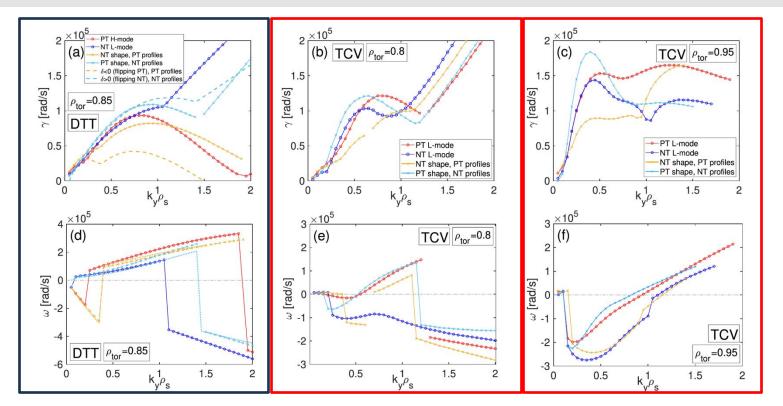
AUG: experiment:

NT H-modes: smaller
pedestal than PT H-mode
with the same power.
However, similar pressure
and much weaker ELMs.

DTT: ASTRA-TGLF SAT2 with BC at $\rho_{tor} = 0.94$:

NT L-mode underperforms PT H-mode, but still NT has a total pressure 80% of the PT counterpart, with good performance in absence of ELMs;

Different strength of NT stabilization for TCV and AUG/DTT


- C (TCV) vs W (AUG/DTT) wall but, no variation in Zeff and C concentration is seen between PT and NT in TCV; in addition, ongoing gyrokinetic analysis seems to point out that switching from C to W impurity does not affect the NT stabilization.

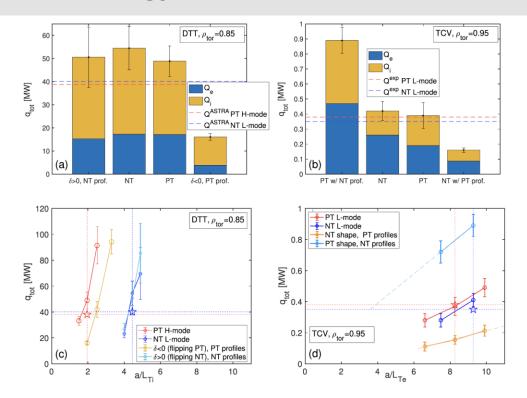
- Neutral penetration larger in TCV → tested by injecting shallow pellets in AUG (shown in the following part on high delta NT shape)

- Mixed ITG-TEM (TCV) vs ITG-dominant (AUG/DTT): check with gyrokinetic simulations (next slides)

Linear GENE gyrokinetic simulations: DTT vs TCV

From NL fluxes:

 $\begin{aligned} &q_e/q_i = 0.54\text{-}0.46\\ &(\text{DTT PT H-NT L}\\ &\text{at } \rho_{tor} = 0.85);\\ &\textbf{PT/NT ITG} \end{aligned}$


 $q_e/q_i = 0.77-1.62$ (TCV PT L-NT L at $\rho_{tor} = 0.8$): **PT more ITG, NT more TEM**

 $\begin{aligned} &q_e/q_i = 1.05\text{-}1.85\\ &(\text{TCV PT H-NT L}\\ &\text{at } \rho_{tor} = 0.95)\text{:}\\ &\textbf{PT balanced,}\\ &\textbf{NT TEM} \end{aligned}$

- AUG: ITG-dominant for ECH only cases, due to large Pei;
- SUMMARY: DTT-AUG are more ITG-dominant, TCV has more balanced ITG-TEM

Nonlinear gyrokinetic simulations

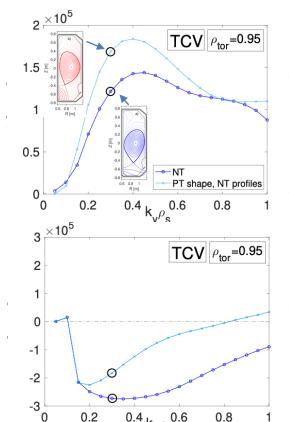
DTT, ITG dominant: one studies the T_i stiffness

TCV, more TEM overall: T_e stiffness

- TCV: the exp. beneficial effect of NT is recovered; very low T_e stiffness.
- DTT: beneficial effect of NT at ρ_{tor} =0.85: only found when keeping fixed the PT Hmode profiles;

It seems that being in a mixed ITG-TEM state like in TCV is beneficial: test for the TCV case with GENE (next slides, new results)

Different linear NT stabilization for ITG and ITG-TEM?

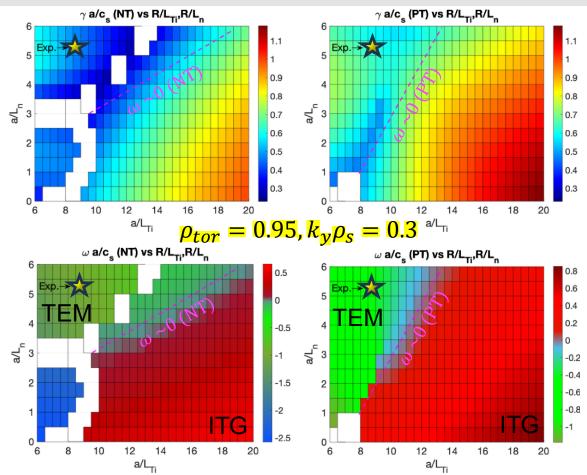


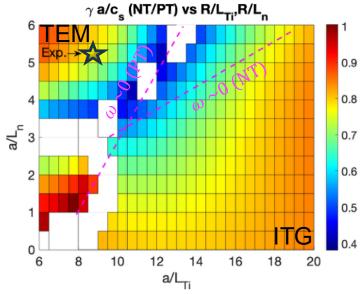
Numerical test (single $k_y \rho_s = 0.3$):

Compare:

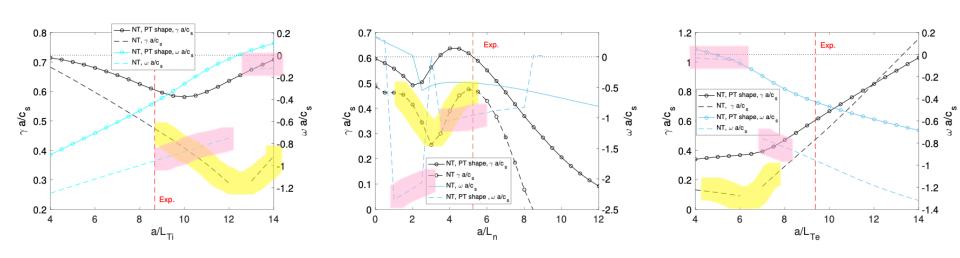
TCV NT with DTT LD shape

Same case with DTT PT shape


- ~750 linear GENE simulations, sampling a subsection of the $(a/L_{Ti}, a/L_n)$ plane for the two cases;
- Ranging from TEM-dominant to ITG-dominant micro-instability regime, since $\eta_i = L_n/L_{Ti}$ drives the ITGs;
- Compute the ratio $\gamma(NT)/\gamma(NT\ profiles, PT\ shape)$ vs $(a/L_{Ti}, a/L_n)$, to see where it is minimum.

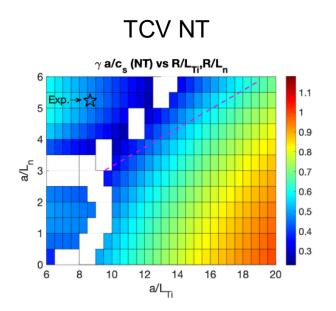

Caveat: all the following scans only consider two species!

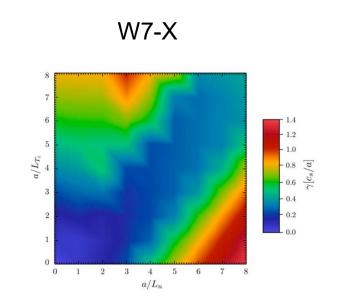
Hypotesis confirmed: max NT stabilization for mixed ITG-TEM



Linear NT stabilization: Maximum close to $\omega=0$ ~ ITG/TEM boundary

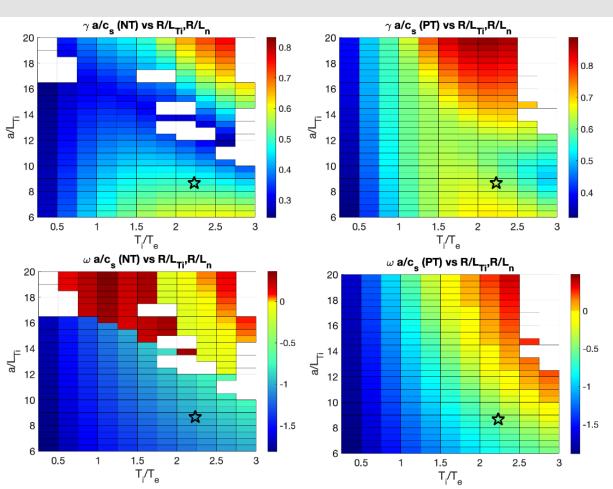
Single a/L_{Ti}, a/L_n, a/L_{Te} scans

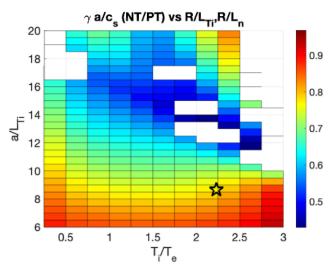



- Stable region ('valley') between the TEMs and ITGs for NT shape (for the a/L_n scan there is a minimum of γ between two $\omega < 0$ branches);
- Very dependent on a/L_{Ti} and a/L_n.

Effect of geometry through the second adiabatic invariant?

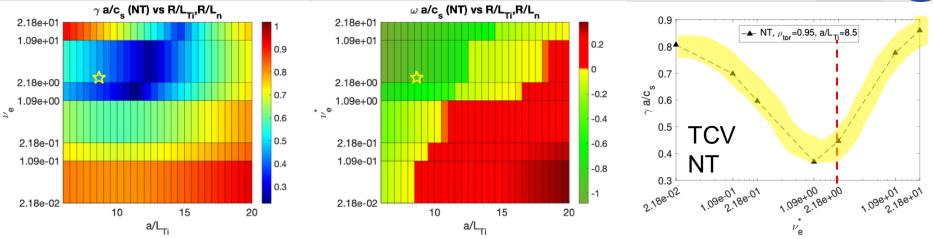
Effect: similar to the 'valley' for Maximum-J stellarators?

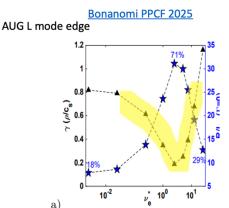



J A Alcusón et al 2020 Plasma Phys. Control. Fusion 62 035005

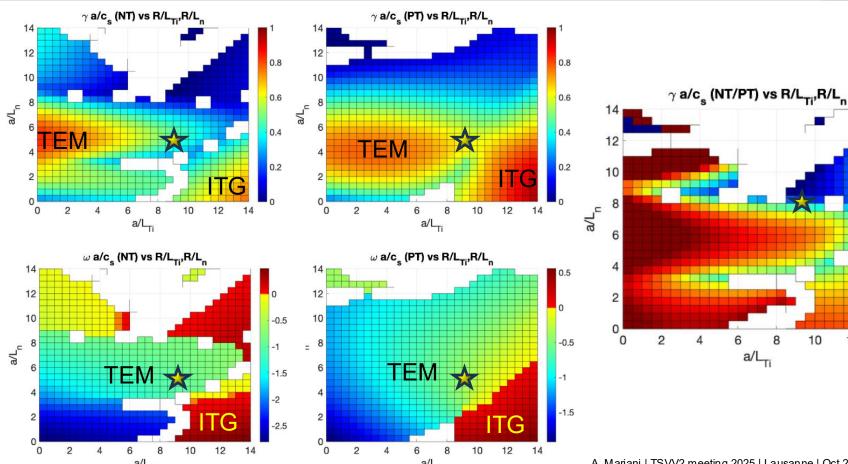
But: the TCV NT case appears to have a large passing electron drive (analysis by M. Kotchenreuter)...so the role of trapped particles and effects of geometry on trapped particle orbits is minor?

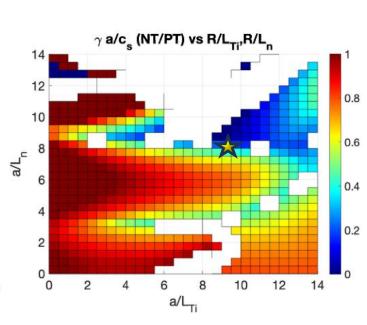
Similar in the T_i/T_e,a/L_{Ti} plane



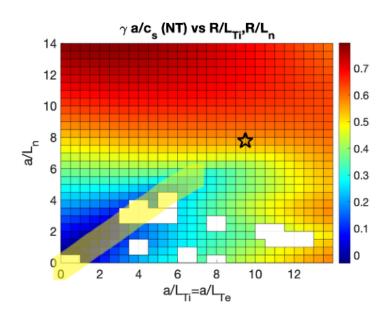

Less NT stabilization at same a/ L_{Ti} for T_i = T_e (AUG) than for T_i > T_e (TCV)

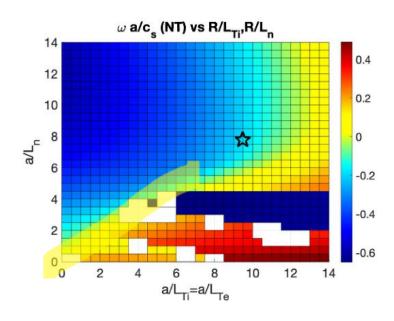
Effect of collisionality? a/L_{Ti},collisionality scans




- Dependence of the NT 'stabilized' region on the collisionality;
- In JET, AUG e WEST: between ITG-TEM at low collisionality and resistive drift waves e RBM at high collisionality, there is a minimum growth rate corresponding to inward turbulent pinch (Snoep's ArXiv 2025, Bonanomi PPCF 2025). TCV NT sits within this collisionality interval.
- Important role of particle transport for NT?

Broader a/L_{Ti},a/L_n scans: complex picture!



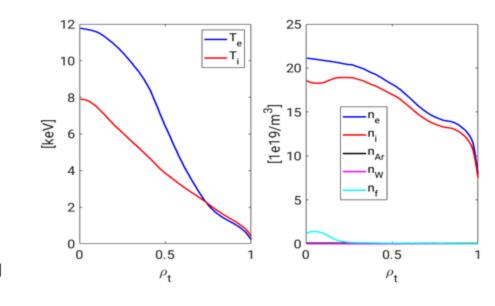


Is AUG different? Test for a ECH-only case

- The stability region is there, and it is still at the ITG-TEM boundary;
- It is at lower gradients than for TCV, so it results in a smaller stabilization.

Higher δ shape

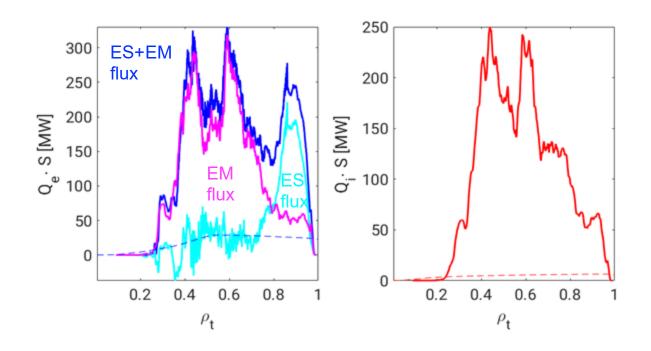
High fidelity prediction: DTT NT HD scenario: GENE +Tango



Goal: Compare ASTRA-TGLF prediction with higher fidelity profile prediction via the GENE-Tango framework

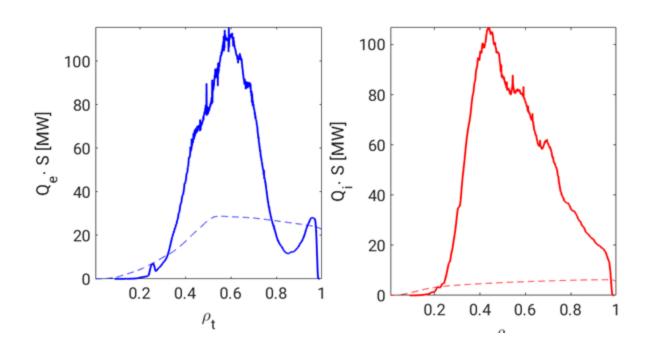
Profiles predicted with ASTRA considering main ions, electrons, Ar, W and fast ions. Computationally very expensive to include 5 kinetic species in global GENE, hence:

- · fast ions: not included in the modeling;
- W: not included in the kinetic modeling but radiation power accounted for in Tango;
- Ar: considered as dilution species in GENE;


This allows us to evolve ion and electron pressures and electron density using the same electron source as ASTRA, keeping $Z_{\rm eff}$ fixed

DTT - initial profiles: **GENE** global

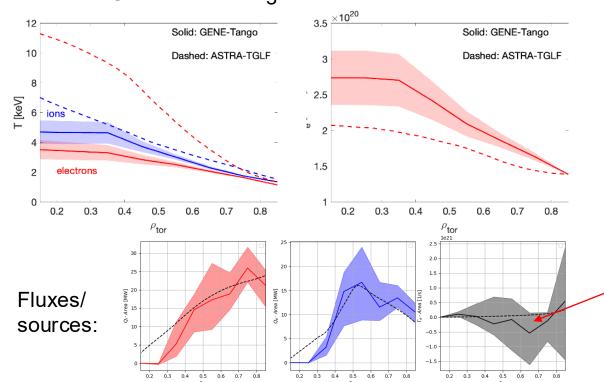
Full physics retained: full EM + collisions (dashed: integral of the source)



Large overestimation of fluxes, electrons are almost fully EM -> remove the EM fluctuations and try to single out its contribution.

DTT - initial profiles – ES: GENE global

Turn-off electromagnetic fluctuations (dashed: integral of the source)

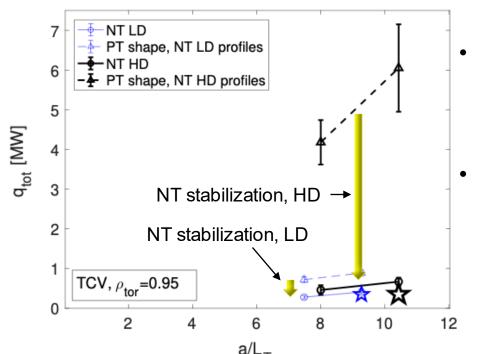


Large overestimation in the core remains, together with inwards particle flux, probably in part due to missing EM stabilization.

DTT GENE local EM +Tango (ongoing)

GENE global+Tango: became computationally unfeasible after few iterations, due to issues on the cluster ⇒ GENE local+Tango

GENE-Tango:


- slightly underpredicts T_i,
- strongly underpredicts T_e,
- strongly overpredicts n_e, compared with ASTRA-TGLF.

Issue: strong pinch at the edge: possible solution: decouple Γ_e and Γ_i by adding gyrokinetic impurities

Flux tube GENE simulations for TCV high / low δ shapes

The T_e stiffness is investigated, since the main micro-instabilities rotate in the electron diamagnetic direction, according to linear runs.

Direct NT stabilization: much increased with the NT HD shape;

NT direct effect: even larger than in the experiment. Other parameters that change between PT/NT HD pulses with same input power partially compensate it.

DISCUSSION and CONCLUSIONS

- The cause of the different behaviour between TCV and AUG/DTT is still unclear, and is key to reliable projections towards NT scenarios in future reactors
- Amongst the possible hypotheses investigated, the most likely seems the difference in edge turbulence: AUG and DTT are ITG dominant, TCV is balanced ITG-TEM. There are hints from the gyrokinetic analysis pointing out that being in a mixed ITG-TEM state could be beneficial for NT stabilization.
- Stability region found for NT in the a/L_{Ti} , a/L_n plane, with dependence on T_i/T_e and collisionality;
- However, even in the case of AUG and DTT, NT scenarios can be achieved without ELMs and still good core pressure levels (-10% from PT H-modes), which make them possible candidates for ELM-free operation in addition to other ELM-free PT options (QCE,EDA, XPR-CRD, I-mode, etc).
- DTT will contribute to NT studies from its early phase, providing new NT data in a plasma scenario more relevant to future reactors
- GENE-TANGO simulations ongoing for the DTT high δ case