
State of the art: Edge turbulence summary discussion

Justin Ball 2025 Annual TSVV 2 Workshop 17 October 2025

E. Laribi, et al. Nucl. Mater. Energy (2021).

D. Silvagni, et al. PPCF (2020).

E. Tonello, et al. *PPCF* (2024).

O. Fevrier, et al. *PPCF* (2024).

P. Ulbl, et al. Nucl. Fusion (2025).

• Compared to PT L-mode, SOLEDGE, GBS, TOKAM3X, GENE-X, and a theory-based scaling law (consistent with experimental database) all indicate that NT has a ~30% narrower SOL width when $\delta=0.3\to-0.3$ [Kyu,Pao,Laribi,Tonello,Fevrier,Becoulet,Ulbl]

SOL decay width

- SOL width in PT H-mode can be a factor of two narrower than for PT L-mode [Silvagni]
- GBS double-null simulations consistent with above, but more power is shared to the inner targets^[Kyu]
- Regardless of geometry or regime, cross-field transport is significantly correlated across the separatrix
 - Thus, NT L-mode has longer τ_E than PT L-mode so it will have a narrower λ_q , but the confinement improvement isn't localized in a narrow pedestal just inside the separatrix so it will have a broader λ_q than PT H-mode

Detachment

O. Fevrier, et al. *PPCF* (2024).

• Harder to achieve in NT relative to PT L-mode, but still possible [Gar]

Discussion

P. Ulbl, et al. Nucl. Fusion (2025).

- How can theory and simulations be useful for detachment in NT?
- What GENE-X simulations would be useful[Ulbl]?
- Different optimal edge impurity seeding in NT (as there is no longer a minimum heating power that must be preserved)?
- Impact of divertor geometry and wall material and recycling/fueling?
- Double-null studies?