

3rd – 6th November 2025

RT-09: Physics understanding of energetic particles confinement and their interplay with thermal plasma

D. Keeling

On behalf of RT-09 Team:

TFLs: D. Keeling, M. Baruzzo

Research Topic Coordinators

Y. Kazakov, J. Galdon-Quiroga, A. Jansen van Vuuren, R. Ochoukov

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Scientific Objectives

Scientific objectives	Status as reported end of 2024
D1: Provide high quality demonstration of diagnostic techniques for the characterization of confined and lost fast ions with fast ion characteristics relevant for ITER and JT60-SA, qualify further diagnostic techniques required for deployment on JT-60SA	Mature - needs underpinning
D2: Quantify ion and electron heating and core-turbulence stabilisation by fast ions in view of JT-60SA, ITER and DEMO including tailored FI energy profiles and radial locations relevant to JT-60SA	Judgemental
D3: Quantify the impact of fast ions and fast ion driven MHD instabilities on transport in various scenarios including those relevant to JT-60SA	Judgemental
D4: Integrate the available heating, fast-ion and transport modelling tools for interpretation of experimental results in view of extrapolation of results to ITER and DEMO	Exploratory
D5: Quantify fast-ion losses and associated heat load from edge perturbations (ELMs and RMPs)	Judgemental
D7: Identification of AE control actuators and assessment for ITER and JT-60SA relevant scenarios	Judgemental

Proposals (summary table in here)

Proposal #	Title	Proponent(s)
191	Study of hot ion mode on MAST-U	F. Orsitto, S. Blackmore, et al.
192	Optimization of fast-ion confinement in tokamaks with externally applied 3D fields	Joaquin Galdon
193	Fast-ion losses induced by edge instabilities across different confinement regimes	Joaquin Galdon
194	Impact of Toroidal Alfvén Eigenmodes on Plasma Core Turbulence and Confinement	Paulo Puglia, Samuele Mazzi.
195	Development of alpha-particle measurements in support of JT-60SA and ITER rebaseline	Yevgen Kazakov, Massimo Nocente
	Travelling Wave Array dual-frequency operation as a flexible tool to tailor fast ion populations and excite	
196	Alfvén Eigenmodes	Samuele Mazzi, Laurent Colas, et al.
197	high frequency Alfvén eigenmode studies with ITER and JT-60SA relevant AE actuators	Roman Ochoukov
198	Stability and space structure of n=0 modes driven by energetic particles	Mykola Dreval
199	Cross machine study of core ICE during sawtooth cycle	Mykola Dreval
200	Alfvén Eigenmode Control in TCV via Systematic ECRH Scans	Anton Jansen van Vuuren
201	Impact of Plasma Shaping on Fast-Ion Confinement and Alfvén Eigenmode Control in the TCV Tokamak	Anton Jansen van Vuuren
202	Investigation of Upward Sweeping Fishbone modes on TCV	Sergei Sharapov
203	Investigation of internal transport barriers induced on TCV	Sergei Sharapov
204	Measurements of Ion Cyclotron Emission in WEST	Bernard B.C.G. Reman, Dmitry Moseev, et al.
205	Optimization of active control of Alfvén Eigenmodes with externally applied 3D fields	Javier Gonzalez-Martin
206	Study of phase-space islands induced by MHD fluctuations using the INPA diagnostic	Alex Reyner-Viñolas
207	Exploitation of FILD4 real-time positioning capabilities	Lucia Sanchis
208	Fast-ion effects on core turbulence at different Qi/Qe on ASDEX Upgrade	Roberto Bilato
209	Fast-ion stabilization of ITG in WEST with TWA	Riccardo Ragona, Roberto Bilato et al.
210	Interplay of Fast Ion MHD ELMs	Javier Gonzalez-Martin

Summary of pulse requests vs. allocation

	TCV (Scientific)	TCV (Sce dev.)	TCV (Total)	AUG	AUG (Pulse for Sce Dev)	AUG (Session total)	MAST-U (Scientific)	MAST-U (Sce dev.)	MAST-U (Total)	WEST (Scientific)	WEST (Sc. Dev)	WEST (Total (Total 2026)
Tot. Requested	200	90	290	115	10	125	98	20	118	112	28	140
Prov. Alloc.			160			32			16			15
Factor			1.8			3.9			7.4			9.3

Proposal Details

Title: STUDY OF HOT ION MODE ON MAST-U (#191)

- **Proposed by**

[francesco.fulvio.auricchio@polimi.it](#)

- **Scientific Objectives**

HOT Fusion Physics
a ST(3) Volumetric
The p
check
time
prop
found

- An interesting proposal looking to establish, effectively, a new operational scenario on MAST-U relevant to a proposed VNS
- Whilst relevant to VNS, relevance to ITER/DEMO is less well-established and links to RT Sci. Obj. also not clear.
- Strategy also appears rather speculative, starting from a transient increase of T_i over T_e and looking to spend a great many shots (~4 sessions) to perform parameter scans around this point to improve the T_i/T_e factor - chances of success appear limited within the expt. time that could be given to this topic.
- **P3**

RT09-D3 context.

- E.g.
- -Determine the dependence of confinement time on plasma current , NBI heating power and energy, plasma density .

- **Experimental Strategy/Machine Constraints and essential diagnostic**

- Reference shots are 52625 and 49244. $I_p=750\text{kA}$, $B_t=0.65\text{T}$
- Plasma current , NBI power and Density scan in low-delta plasma with NBI heating
- Standard set of diagnostic

Proposed pulses

Device	# Pulses/Session	# Development
AUG		
MAST-U	30	10
TCV		
WEST		

Optimization of fast-ion confinement in tokamaks with externally applied 3D fields (#192)

- Proponents and contact person:

- J.Galde

- Continuation of P1 expt begun in previous year(s)

- Scientific Objectives:

- Meas

- Meas

- ELM s

- Directly linked to RT Sci. Obj. and ITPA JEX

- Important to complete the dataset, especially on MAST-U in 2026

- Note that extn. To 1MA on MAST-U may pose some difficulties due to lack of internal prog. Scenario development, to be discussed with ref. SL

- Basis of expt. “block” on 3D magnetic fields (combine with #205)

- **P1-MASTU, P1.5-AUG**

- In MAST-U:

- Investigate

- **P1-MASTU, P1.5-AUG**

- Extend to n=2 ELM suppressed plasmas (n=2)

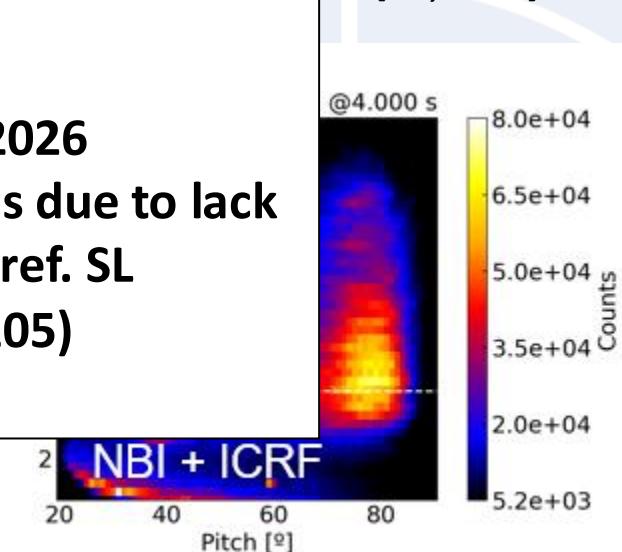
- Extend to high-beta 1MA scenario

- In AUG:

- Continue with investigation of MPs on ICRF fast-ion distribution function (3rd harmonic D scheme) → **MPs + ICRF are unique capabilities of AUG!**

- Effect of MPs on NBI confinement in ELM suppressed plasmas (n=2)

- Scans in MP intensity, differential phase and toroidal phase (for 3D effects)


- **Experimental Strategy/Machine Constraints and essential diagnostic**

- FILD, FIDA and other fast-ion diagnostics are essential

- In MU, special settings for IR thermography

- Scans in MP differential phase and intensity

First measurements of ICRF (3rd harmonic D) fast-UG [July 2025]

Proposed pulses

Device	# Pulses/Session	# Development
AUG	14	
MAST-U	24 (3 sessions)	

Fast-ion losses induced by edge instabilities across different confinement regimes (#193)

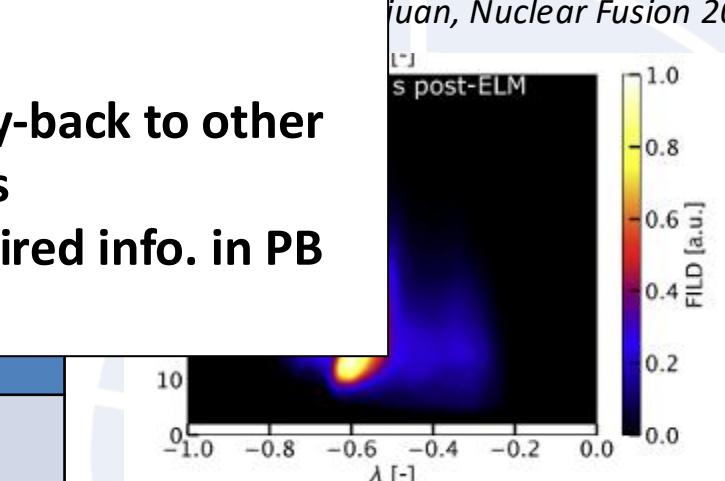
- **Proposed**

- J.Galbraith

- Continuation of P1 expt begun in previous year(s)
- Directly linked to RT Sci. Obj.

- **Scientific**

- Back-to-back
- This pulse regime


- Proposed shots include small quantity of dedicated + piggy-back to other studies, principally RT-02 expts but also other RT-09 pulses
- Careful planning should be able to gather majority of required info. in PB
- **PB (P1 but data to be gathered in PB)**

Machine	Already explored	More work needed
AUG	Type-I ELMs, MP mitigated & suppressed ELMs, QCE, I-mode, QH-mode	I-mode (with PREs), MP ELM suppressed
TCV	Type-I ELMs (NBI 1)	Type-I ELMs (NBI2 higher energy); QCE
MAST-U	Type-I and Type-III ELMs (750 kA scen.)	Type-I ELMs (1MA scenario); MP mitigated / suppressed ELMs; QCE

Velocity-space of FI losses induced by type-I ELM in

tail indicative of fast-ion

Juan, Nuclear Fusion 2025]

Proposed pulses

- **Experimental Strategy/Machine Constraints and essential diagnostic**
 - FILD as essential diagnostic
 - Mostly piggyback shots. Only specific dedicated shots for completing scans.

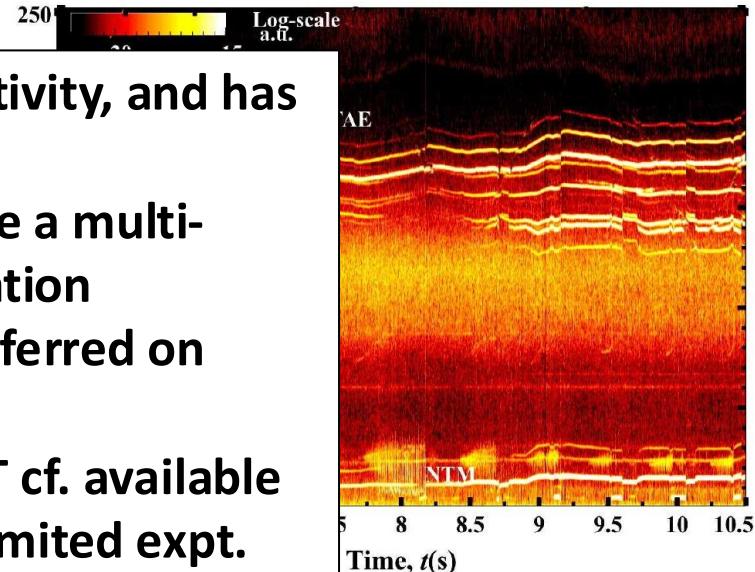
Device	# Pulses/Session	# Development
AUG	5 (+ piggyback)	
MAST-U	5 (+ piggyback)	
TCV	10 (+ piggyback)	

Impact of Toroidal Alfvén Eigenmodes on Plasma Core Turbulence and Confinement (#194)

• Proposer

- Paulo Puglia (JET)
- Anton Jansen
- Alexander Kondratenko, Colas, Roland, Sharapov, S. et al.

• Scientific


- Goal: Explore microturbulence in the plasma core
- Based on recent work on turbulence stabilisation
- Fast ions drive the ITG mode
- Recent evidence of ITG mode stabilisation

• Scientific Obj

- Measure the impact of TAEs on confinement
- Compare NBI and ECRH heating
- Assess TAE amplitudes

- **Proposal is well-aligned with RT Sci. Obj.s (D2/3), ITPA-EP activity, and has a sound theoretical background also including JET**
- **Combination of results with previous JET work would provide a multi-machine dataset to demonstrate the ITG turbulence stabilisation**
- **Proposal was recognised previously as high prio but to be deferred on WEST.**
- **Significant investment of shots needed, particularly on WEST cf. available expt. time, careful assessment of what may be achieved in limited expt. time needed – e.g. Can scenario development be carried out in int. prog?**
- **P1-TCV, P1-WEST**

Impact of TAEs on confinement

Impact of a JET pulse with fast-ion-confinement improvement

[Garcia Nat. Comm. 2024]

• Experimental Strategy/Machine Constraints and essential diagnostic

• TCV:

- Use reference scenario with unstable TAEs, move TAE position towards core via ECRH/ECCD.
- Flip current direction for counter NB2 injection (higher fast ion energy).
- Optimize density profile with NBI modulation/gas puffing for SPR measurements.
- Configure plasma for turbulence diagnostics (Correlation-ECE, TPCI).

• WEST:

- Develop low magnetic field scenario for 2nd harmonic ICRH heating with H-minority.
- Perform scenario scans with 20 pulses, adjusting H-minority concentration and ICRH power.
- Use ECE/C-ECE diagnostics to measure core turbulence affected by TAEs.

Proposed pulses

Device	# Pulses/Session	# Development
AUG		
MAST-U		
TCV	30 / 2	
WEST	40 / 2	20 (within the 40 proposed)

Development of alpha-particle measurements on AUG in support of JT-60SA and ITER rebaseline (#195)

Proposed pulses

- **Proponents and contact person**

Y. Kazakov (LPP-B)
Full team: see the

- **Scientific Backgroun**

- ITER with
- **High-priority** measurement
- Essential i
- 2025: star
- **COSMONAUT**
- Synergy w
- (developme

- **Experimental**

- Step 1 (e.g.

- ✓ Sour

preference: 2.5T/~1MA with core ECRF, if **ICRF 55MHz available**)

- ✓ Source of B impurities: boron dropper (different BD settings tested in

- Step 2 (e.g. 2027): demonstrate **α -particle measurements with GRS**

- ✓ Source of alphas (#1): D- 3 He fusion, $E_D \sim 500$ keV with $\omega=3\omega_{ci}(D)$ as in step #1, **add 5-10% of 3 He**

- ✓ Source of alphas (#2): $p-^{11}B$ fusion, hydrogen minority ICRF (2.5T/~1MA)

- ✓ Source of B impurities: boron dropper

- **Proposal directly linked to a specific open question for ITER (Cat 1 R&D item in ITER re-baselining) which also prompted a new ITPA JEX (EP27)**
- **Follows on from 2025 activity demonstrating COSMONAUT measurements on AUG**
- **Second step (measurements with energetic alphas) requires 3 He for 3 of 4 options. Will need careful scheduling within campaign.**
- **Full proposal requires ~half AUG pulse allocation – careful planning to see what other work may be successfully combined without compromising result.**
- **Unlike preliminary work in 2025, pulses need to be in Deuterium (not H) for compatibility with B-dropper.**
- **P1-AUG**

Step 1 (e.g. 2026)	Step 2 (e.g. 2027)
8	10

-particle
spectrometer
 3 He (E_y = 4.44MeV)
1.8MHz;

Travelling Wave Array bi-frequency operation as a flexible tool to tailor fast ion populations and excite Alfvén Eigenmodes (#196)

- Proponents and contact person:

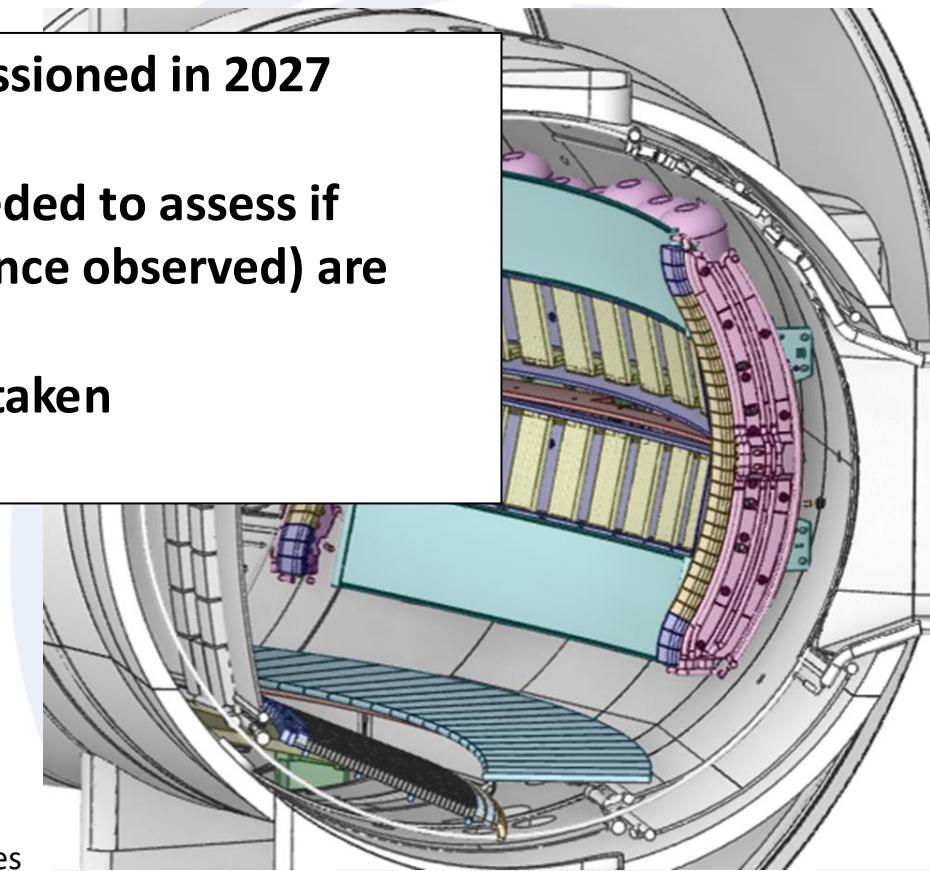
R. Ragona, L. Colas, V. N.

- Scientific Back

- A Travelling WEST in 2021 generators. deposition.

- spread t
fast-ions
 - excite Al

- Bi-frequenc
bandwidth


- Objectives: demonstrate in open loop flexible

- RF heating optimization
 - Control of temperature profile shapes and core MHD
 - Flexible alternative method for Alfvén eigenmode excitation

- Exp. Strategy / Machine Constraints and diagnostics

- LSN L-mode plasma of interest for scenario development. High I_p preferable for sawteeth.
 - One TWA array operated at fixed frequency, fixed power for central heating.
 - Session 1. Fixed frequency of second array scanned from pulse to pulse. Power modulations and/or breaks in slope to assess off-axis power deposition. Monitor core profiles, sawteeth and ion ripple losses over frequency scan. Try frequency steps / ramps in 1 pulse.
 - Session 2. Fixed power levels scanned from pulse to pulse. Dynamic frequency wobulations of second array. Monitor Alfvénic activity destabilized by beat-waves using Mirnov coils, fast diagnostic acquisitions (ECE, interferometry), fast ion losses.

- **Proposal aims to exploit TWA hardware to be commissioned in 2027**
- **Aimed at D7: identify AE control actuators**
- **Quite speculative for now: wide parameter scans needed to assess if technique has required effects and if those effects (once observed) are significant**
- **Careful planning of #194 may allow some data to be taken**
- **P2 (TWA 2027)**

CAD of 2-array TWA in WEST vacuum chamber

Proposed pulses

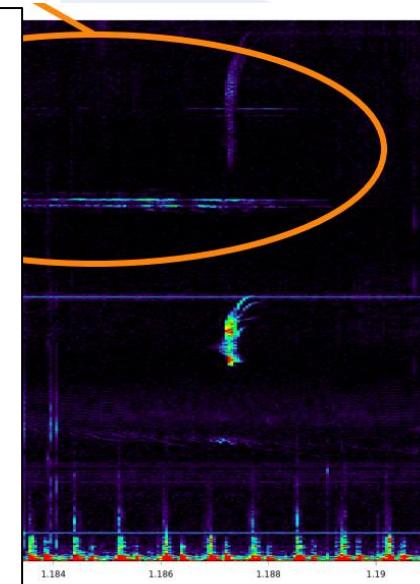
Device	# Pulses/Session	# Development
WEST	2 Sessions (2027)	Scenario is ready, antenna to be commissioned

High frequency Alfvén eigenmode studies with ITER and JT-60SA relevant AE actuators (#197)

#84657, with possible GAE on TCV

- **Proposed**

- The addition/improvement of ICE diagnostics to all machines has meant a good start to investigation of ICE \leftrightarrow FI interaction during 2025.


- **Scientific**

- Address
- Establish
- Model

- hf AEs are an area less well-documented from previous RT-09 work – diagnostics only available in more recent ops periods

- **Experimental**

- This proposal therefore has merit from p.o.v. of D1 as well as well as D3/7
- Combines well with #199 – TCV branch may be executed, AUG branch will need careful consideration – a number of required results can be obtained in PB
- TCV part shots can be allocated., AUG part high prio but with reduced allocation of shots cf. request.
- **P1-TCV, P2-AUG**

essential diagnostic

- For TCV: use 84657 to establish scenario with steady GAE
- Modulate plasma parameters (B_t , n_e , T_e , NBI) to determine GAE stability boundary
- For both AUG and TCV: apply ECCD to discharge with steady GAE (36607 for AUG reference, 84657 for TCV reference), to modulate q-profile
- Rely on iMSE to measure q-profile modifications in presence of ECCD
- Rely on ICE diagnostic to characterize hf AE mode

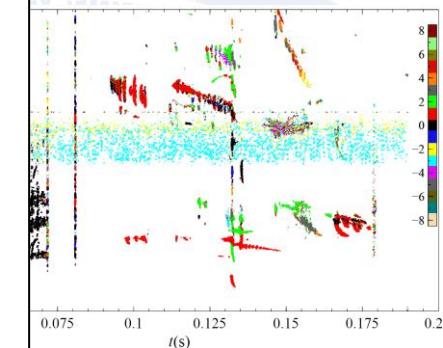
Device	# Pulses/Session	# Development
AUG	15	
MAST-U		
TCV	20	5
WEST		

Investigation of stability and space structure of n=0 modes driven by energetic particles. (#198)

- **Proponents and contact person:**

- Mykola D
- mdreval@
- Principally aligned with D7: Identify AE control actuators, with some relevance also to D3/4

- **Scientific**


- Clarify what unstable
- Clarify co
- Compare
- Role of q and TCV
- Clarify w
- Principally aligned with D7: Identify AE control actuators, with some relevance also to D3/4
- n=0 modes observed previously on TCV and MAST-U... proposal is to start from previously identified scenarios and perform systematic scans.
- Good starting point but could be expensive on shots to make significant progress
- MAST-U part will combine well #193, TCV part should also combine reasonably with #200/201

P2

frequency $n=0$ VDOM and GAE modes

- **Experimental Strategy/Machine Constraints and essential diagnostic**

- Vertical plasma position (NBI deposition region) scan, elongation scan, ECRH power scan
- Mirnov coils used for n and magnetic field structure
- SXR used for spatial structure of mode density perturbations
- FILD, neutrons, ICE, FIDA, CNPA, (C-)ECE, (I-)MSE

2: $n=0$ in MAST-U

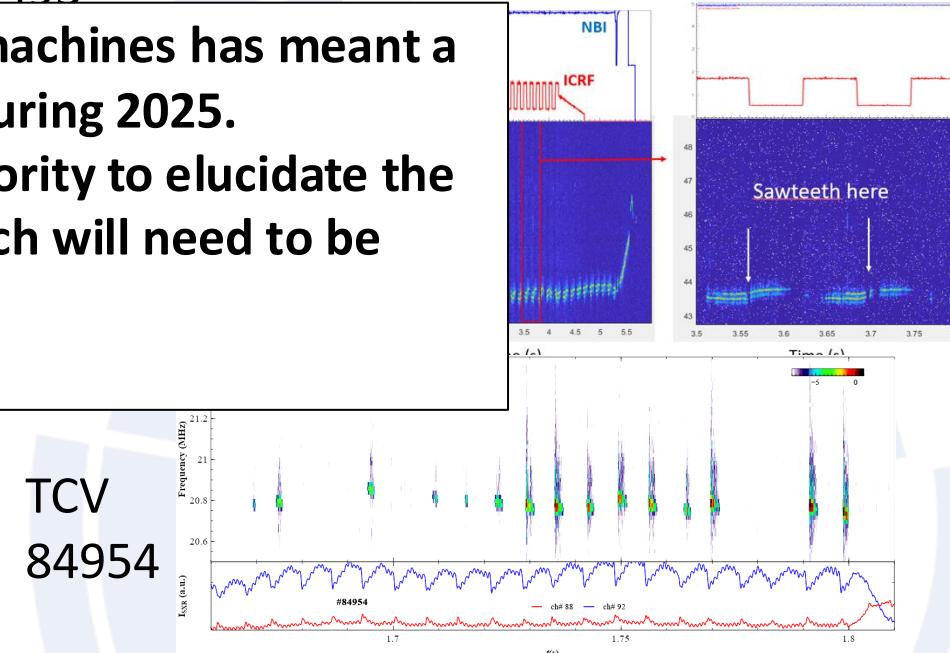
Proposed pulses

Device	# Pulses/Session	# Development
AUG		
MAST-U	15	10
TCV	30	15
WEST		

¹M.B. Dreval et al 2025 Nucl. Fusion **65** 016037

Cross-machine study of core ICE during sawtooth cycle (#199)

AUG 37885


MU 52493

#37885

- Propose to run this campaign in 2025
- The addition/improvement of ICE diagnostics to all machines has meant a good start to investigation of ICE \leftrightarrow FI interaction during 2025.
- Further exploitation of these diagnostics is a high priority to elucidate the interaction.
- Combines well with #197 though AUG/MAST-U branch will need to be carefully considered
- Activities:
 - AUG
 - All machines
- **P1.5-TCV, P2-AUG/MAST-U**
- Results show co- and anti-correlation between core TCE strength and sawtooth cycles
- Recently installed ICE diagnostics on TCV and MU now also detect core ICE in presence of sawteeth.
- Goal: determine dependence of core ICE activity on sawtooth phase/cycle

• Experimental Strategy/Machine Constraints and essential diagnostic

- Establish reference discharge with sawteeth and steady core ICE: MU 52493, AUG 43009 (-2.5 T) or 37885 (-3.0 T), TCV 84954
- Use available actuators to modulate sawtooth cycle, such as NBI, ECCD, ICRF
- Monitor core ICE dynamics via ICE diagnostic
- Track q-profile via iMSE diagnostic

Proposed pulses

Device	# Pulses/Session	# Development
AUG	10	
MAST-U	10	
TCV	20	
WEST		

Systematic Control of Alfvén Eigenmodes in TCV Using Electron Cyclotron Resonance Heating (ECRH) (#200)

- Anton Jansen van Vuuren (EPFL-SPC)

Co-proponents:
Podestà, D. Test

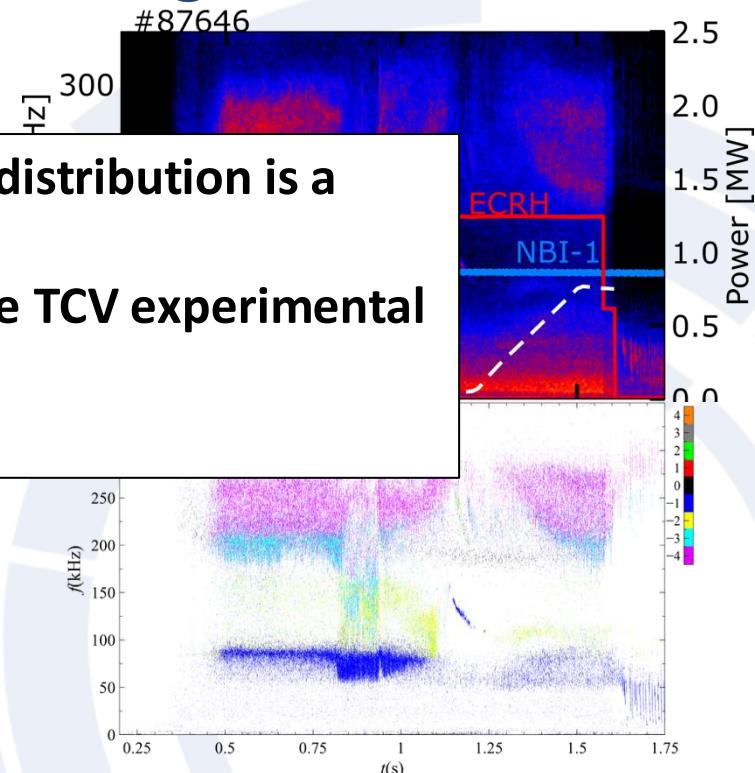
- **Scientific Background**

Alfvén Eigenmode heating efficiency experiments done under varying plasma modification

- Control/suppression of AEs and the resultant FI loss/redistribution is a primary aim of RT-09
- This proposal should therefore feature highly within the TCV experimental branch.
- **P1-TCV**

Main objectives:

- Perform systematic ECRH deposition scans in an established AE-active TCV scenario.
- Use the new Motional Stark Effect (MSE) diagnostic to measure q-profile and magnetic shear evolution.
- Correlate AE suppression with local shear changes to identify the dominant control mechanism.


- **Experimental Strategy/Machine Constraints and essential diagnostic**

Scenario:

- Established AE-active TCV plasma with NBI drive ($I_p = 120$ kA, $B_t = 1.3\text{--}1.5$ T, $\delta \approx +0.3$).
- Systematic ECRH scans: $\rho = 0.2\text{--}0.7$, multiple power levels.
- ~ 20 shots (≈ 10 development).

Essential diagnostics:

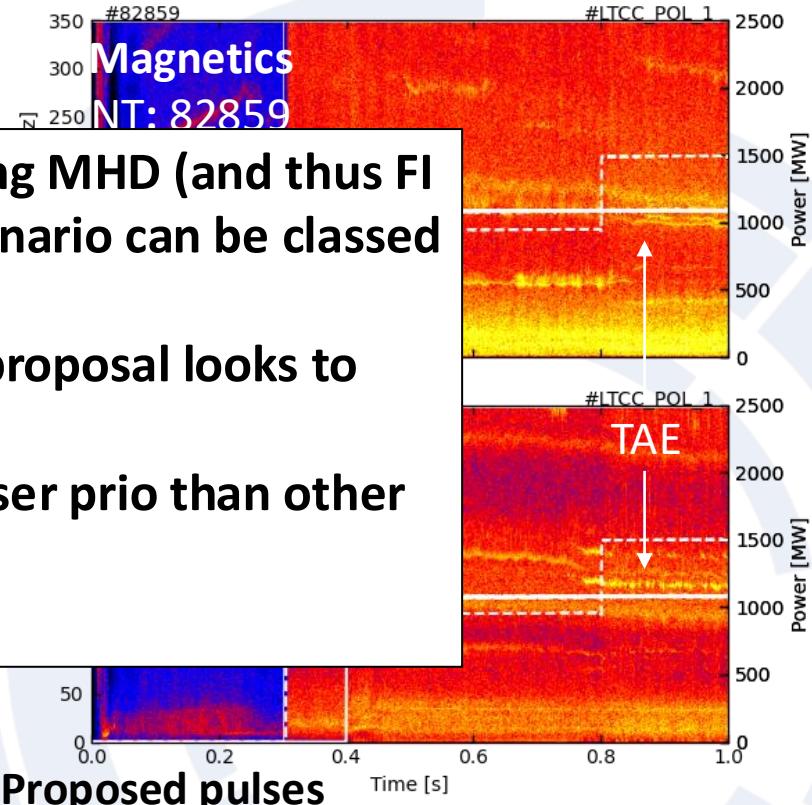
- Mirnov arrays – AE amplitude and spectra
- MSE – q-profile & magnetic-shear evolution
- FILD / FIDA / ICE – fast-ion losses and redistribution
- Thomson / ECE – Te , ne , and ECRH deposition validation

Proposed pulses

Device	# Pulses/Session	# Development
AUG		
MAST-U		
TCV	20	10
WEST		

Impact of Plasma Shaping on Fast-Ion Confinement and Alfvén Eigenmode Control in the TCV Tokamak (#201)

• Proponents


- Anton Jan Karpushko
- Understanding the role of plasma shaping in moderating MHD (and thus FI loss/redistribution) is related to D7 as shaping and scenario can be classed as an actuator.

• Scientific Basis

- Plasma shaping impact on MHD
- Work started in 2024/25 investigating PT vs. NT – this proposal looks to extend the work
- Previous NT and P1 profile control
- A sound extension to work done previously though lesser prio than other proposals.
- This proposal is P2
- frequency spectrum, and damping, and to identify conditions for AE suppression using ECRH/ECCD.

• Experimental Strategy/Machine Constraints and essential diagnostic

- Perform shaping scans ($\delta \approx -0.4 \rightarrow +0.4$, $\kappa \approx 1.3-1.8$) in NBI-heated plasmas to study AE stability and fast-ion confinement.
- Apply localized ECRH/ECCD to test AE suppression and q-profile sensitivity.
- Use FIDA, FILD, ICE coils, Mirnov arrays, and reflectometry for comprehensive AE and fast-ion characterization.

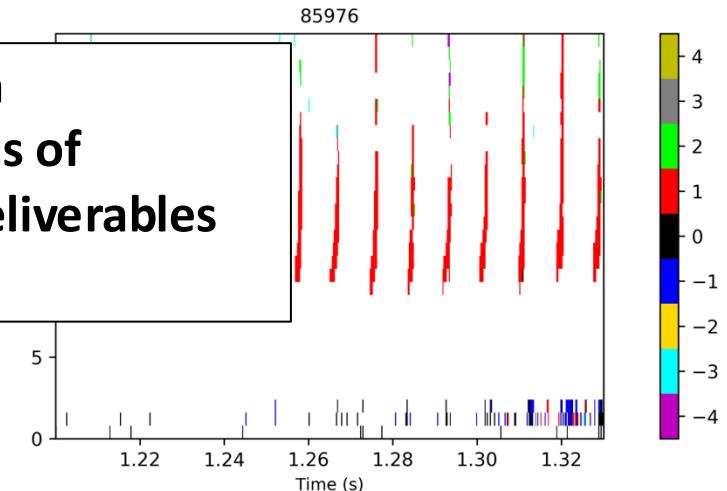
Proposed pulses

Device	# Pulses/Session	# Development
AUG		
MAST-U		
TCV	25	5
WEST		

Fishbones with Upward Sweeping on TCV (#202)

- Proponents and contact person:
- Sergei.Sharapov@ukaea.uk

- **Sc** • Upward frequency sweeping is a newly observed phenomenon
- Whilst recognised that this is an important observation in terms of confirmation of a point of theory, not directly relevant to RT deliverables
- **P2**


fishbones in 2001. The possible change in the frequency sweeping is likely to be caused by the dominant role of MHD nonlinearity in the vicinity of the $q=1$ surface. This is in contrast to the “usual” fishbones with dominant wave-particle nonlinearity that causes a down-sweep of the frequency.

- Objectives: establish the parameter space and conditions for the upward sweeping fishbones. Investigate possibly very different nonlinear effects in such fishbones (e.g. a sawtooth-type reconnection followed by NTM triggering, in contrast to the radial redistribution of energetic ions in the usual fishbones).

- **Experimental Strategy/Machine Constraints and essential diagnostic**

- The Reference discharge is #85976
- Density scan in similar plasma configuration
- Thomson scattering, CXRS, NPA, SXR, ECE imaging as essential diagnostic

An example of the upward-sweeping fishbones

Proposed pulses

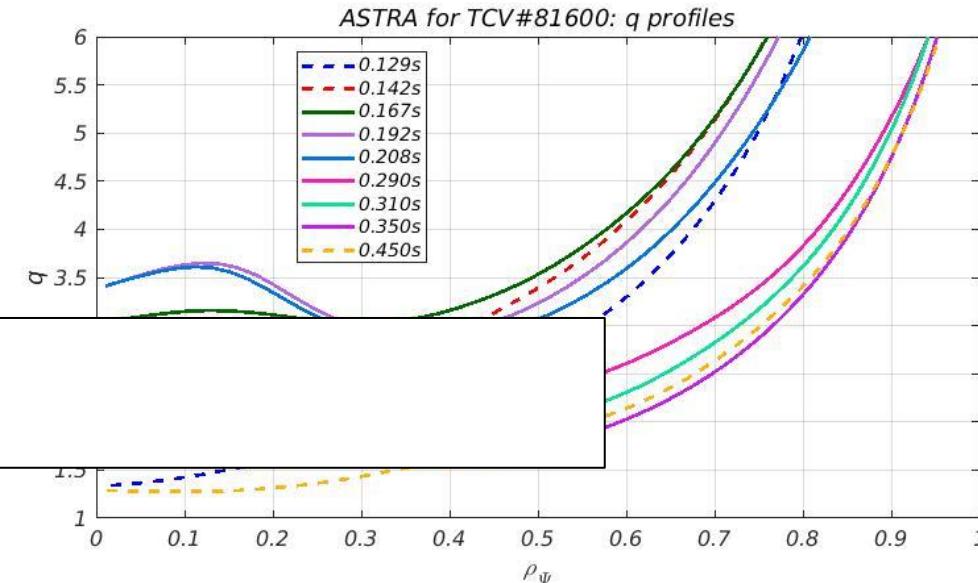
Device	# Pulses/Session	# Development
AUG		
MAST-U		
TCV	20/2	10/1
WEST		

Density versus Temperature ITBs in TCV (#203)

- **Proponents and contact person:**

- Sergei.Sharapov@ukaea.uk

- **Scientific Background & Objectives**


- During previous RT09 experiments on TCV on “Physics under and”
 - ITBs not a topic within the RT-09 deliverables.
 - Propose move to RT-08

transient ITBs was observed. Some of these ITBs were in plasma density, but not in temperature (similar to, e.g. C-MOD), and other – in temperature, but not in density (like on JET). Technically, the switch on TCV was simple. However, we still don't understand how this switch works as not all diagnostics were available and more data is needed.

- **Experimental Strategy/Machine Constraints and essential diagnostic**

- Type of plasma scenario or parameter explored to answer the main questions: Reference pulse #81511
- Scan in vertical position of plasma with dominant NBI heating
- Thomson scattering, CXRS, MSE, and NPA are essential diagnostic

Evolution of q-profile in these reversed-shear TCV plasmas

Proposed pulses

Device	# Pulses/Session	# Development
AUG		
MAST-U		
TCV	20/2	10/1
WEST		

Measurement of ion cyclotron emission (ICE) (#204)

Proponent

B. Reman,
Hillairet, R.

Scientific Objective

TWA has the

- Detect IC
distribution

- ICE measurements are a topic of interest for RT-09 on TCV/AUG/MAST-U
- Potential to extend this to WEST is attractive
- Limited expt. Time and lack of other FI diagnostics on WEST makes this potentially less viable
- Suggest experimental diagnostic technique is implemented via internal prog. Utilised in PB with RT-09 WEST experimental branch.
- Careful planning of #194 may allow some data to be taken
- **PB (TWA 2027)**

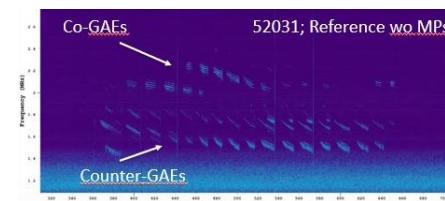
Experimental Strategy

- Use the TWA antenna to heat the plasma and to generate fast ions. Two antennas operated in receiver-mode could pick up the radiation

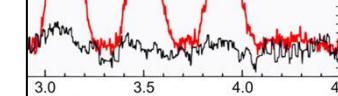
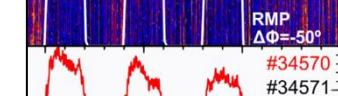
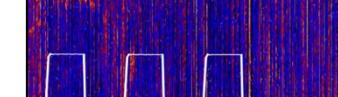
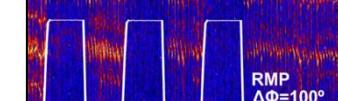
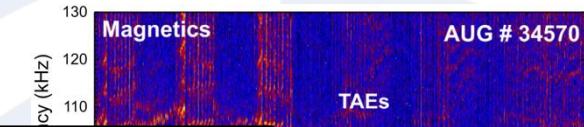
Expected Outcomes

- Qualitative identification of the fast-ion population from measured spectra (localisation, energy)
- Quantitive characterisation with velocity-space tomography (possibly with addition of CTS data)

Optimization of active control of Alfvén Eigenmodes with externally applied 3D fields (#205)

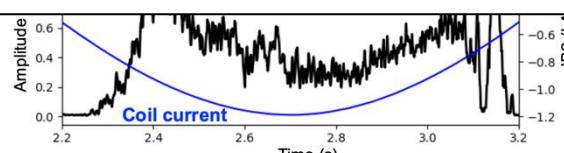

Proponents and contact person:

J. Gonzalez-Martin jgonzalez62@us.es
(full list in the wiki)






Scientific Background

- Expand control to AUG
- Study impact on TAEs
- In AUG:
 - Control of high frequency AEs
 - Control of ICRH
 - Leveraging INPA
- In MAST-U:
 - Control of high frequency AEs

GAEs Impacted by MPs in MAST-U



AUG: AE active control using n=2 [1]

Experimental Strategy/Machine Constraints and essential diagnostics

- FILD, FIDA, INPA, and other fast-ion diagnostics are essential
- In MU, special settings for IR thermography
- Scans in MP differential phase

Proposed pulses

Device	# Pulses/Session	# Development
MAST-U	14	0
AUG	17	4

[1] J. Gonzalez-Martin et al., Phys. Rev. Lett (2023)

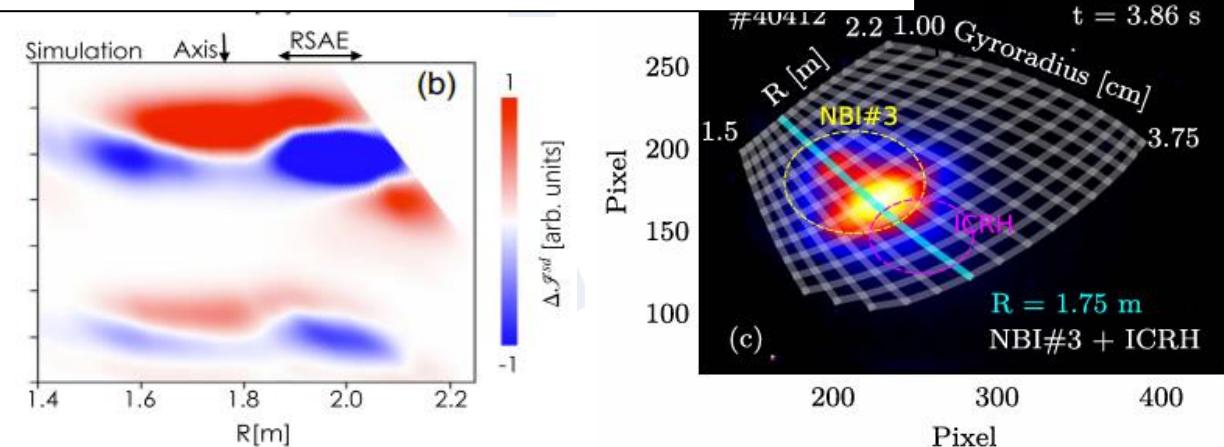
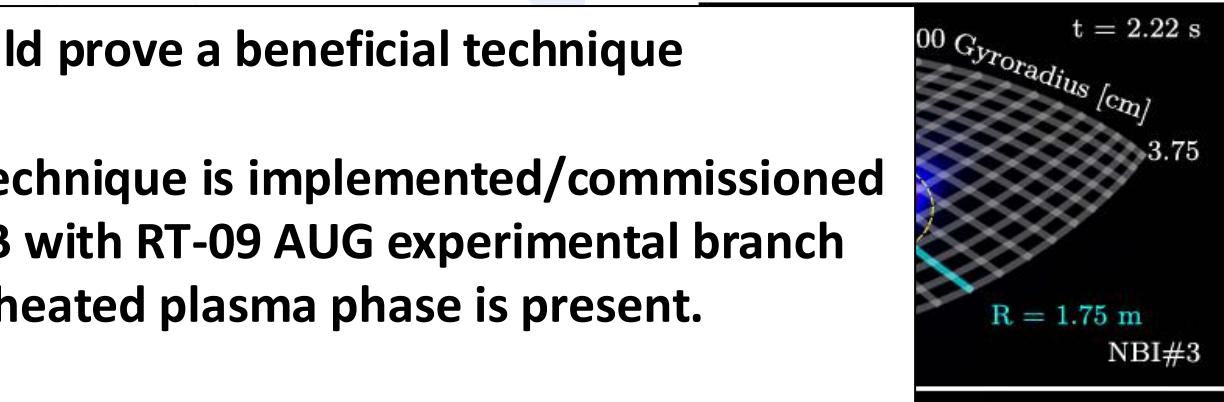
Investigation of phase-space flows induced by TAEs on ICRH heated plasmas (#206)

Proponents and contact person:

A. Reyner-
(full list in t

Scientific
• **Background**
[J.Rued
induced

• **PB**



- **Proposed INPA measurements could prove a beneficial technique furthering RT-09 interests**
- **Suggest experimental diagnostic technique is implemented/commissioned via internal prog. and utilised in PB with RT-09 AUG experimental branch with expt's ensuring a suitable RF heated plasma phase is present.**
- **Goal: use unique capabilities of AUG's INPA diagnostic to measure this in ICRF fast-ion populations with high temporal resolution**

Experimental Strategy/Machine Constraints and essential diagnostics

- Reference scenario well established from WPTE 2021/22: ICRF driven TAEs w. counter-ECCD
- Scan NBI power and sources (for 2nd harmonic D heating)
- Monitor fast-ion distribution with whole suite of diagnostics: INPA, FIDA, FILDs, ICE, ...

DIII-D INPA
measurement vs simulation

AUG INPA signals including ICRF

Proposed pulses:

Device	# Pulses/Session	# Development
AUG	8	-

Exploitation of FILD4 real-time positioning capabilities (#207)

- **Proposed diagnostic technique and contact persons**
 - L. Sanz
- **Scientific interest**
 - Whilst the diagnostic technique looks potentially useful to RT-09 expts. The commissioning and demonstration of the technique should be an internal prog. activity
- **Background and rationale**
 - Exploitation of the diagnostic, once proven is then potentially of interest to WPTE
- **This proposal**
 - Testing
 - Exploitation
 - Measurement
- **PB**

(Upper). DCS aborts the shot when the signal reaches the threshold [Lower]. FILD4 signal over time [

Machine	Already explored	More work needed
AUG	FILD 4 capability for radial scans has already been commissioned	Testing the FILD4 real-time control algorithms based on the VRT cameras

- **Experimental Strategy/Machine Constraints and essential diagnostic**

- FILD4 as essential diagnostic
- Mostly piggyback shots. Only specific dedicated shots for testing ICRF power, USN vs LSN comparison and fine-tuning the control algorithm

Proposed pulses

Device	# Pulses/Session	# Development
AUG	6 (+ piggyback)	

Fast-ion effects on core turbulence at different P_i/P_e on ASDEX Upgrade (#208)

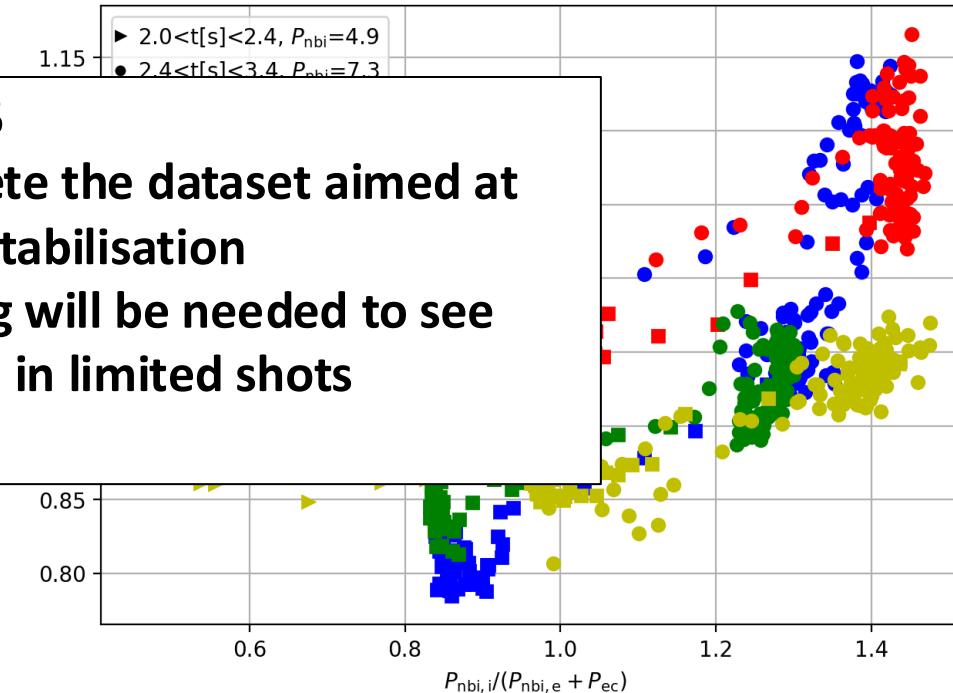
- Proponents and contact person:
 - Roberto Bilato *et al* (see full list in wiki)

- Scientific Background & Objectives

The aim is to
different levels
Pe and Pi are
objective is to
analysed using
FI impact on
(D3).

- Continuation of a successful AUG expt from 2025
- Recommend adoption of this proposal to complete the dataset aimed at elucidating the mechanisms of core-turbulence stabilisation
- Similarly with all AUG proposals, careful planning will be needed to see what can be achieved amongst hi Prio. proposals in limited shots

- Experimental


This study uses
three heating s
for analysis.

- P1-AUG

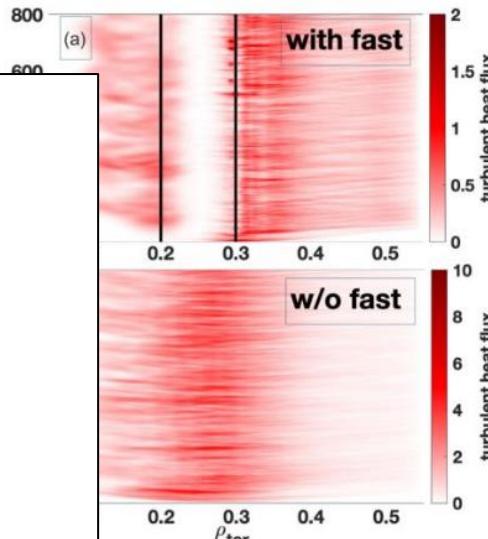
- (LSN, 0.8MA, -2.5T) Impact of P_e/P_i on plasma profiles when the FI content is kept constant (P_{nbi} and P_{icrf} constant) and P_e/P_i is varied by varying P_{ec} - the total auxiliary power, P_{aux} , is not constant.
- (LSN, 0.8MA, -2.5T) Impact of P_e/P_i when P_{aux} is the same (P_{icrf} replacing P_{ecrf}) and the FI content unavoidably varies.
- (USN, 0.8MA, +-2.5T) Impact of the gradB drifts: fav. vs unfav. configuration.
- (LSN, 0.4MA, -2.5T) Comparison with low-density (low plasma current) discharges where the dilution effect is more important.

Diagnostics:

- Characterization the fast-ion population with NPA, FIDA, and FILD diagnostics.
- Good measurements of plasma profiles for n_e , T_e , T_i , and v_{tor}
- Possibly Er measurements (CXRS and DR).

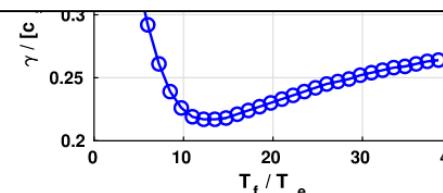
Proposed pulses		
Device	# Pulses/Session	# Development
AUG	10	

Fast-ion stabilization of ITG in WEST with TWA (#209)


- Proponents and contact person:

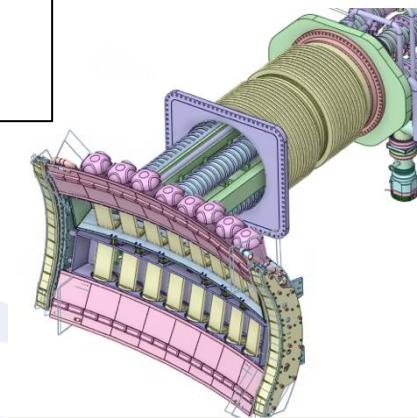
Riccardo Rago

- Scientific Basis:


- ❖ GENE simulations of ITG and RFP turbulent heat flux
- ❖ New (open) approach to determine the effect of the TWA on the distribution function
- ❖ Possible to address several Sci. Obj. (2/3/4)
- ❑ The aim is to stabilize the ITG mode
- ❑ The main impact on the plasma performance
- ❑ An additional benefit is to validate TWA simulations interfaced with transport codes (D4).

- TWA commissioned in 2027
- Scan over amplitude and frequency to determine effect on possible stabilization of the ITG instability
- Potentially addresses several Sci. Obj. (2/3/4) and adds to similar AUG data for the multi-machine “flavour”
- Potentially suffers from lack of direct FI diagnostics on WEST – relies on other measurements + modelling to interpret
- Careful planning of #194 may allow some data to be taken
- **P2 (TWA 2027)**

- Experimental Strategy/Machine Constraints and essential diagnostic


- Define WEST scenario (DN or LSN)
 - Variation of dual-frequency scenario, high Ip, EC beneficial (if not essential)
 - AUG as canvas – minority concentration is key
- Scan f-sweep amplitude and frequency
 - Constant B – different central frequency – power steps (thresholds)
 - Monitor impurity content
- Main diagnostics for plasma performance
 - TS, fast-ECE, Fis-related PWI coverage (edge spectroscopy, divertor diag., ...)

Di Siena POP 26 (2019)

Proposed pulses

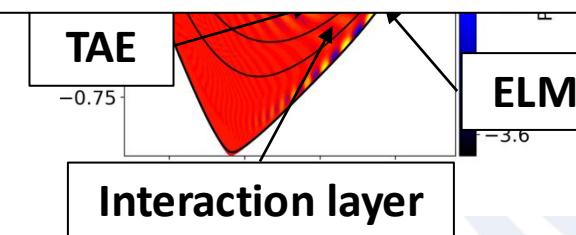
Device	# Pulses/Session	# Development
AUG		
WEST	1 session (2027)	

Characterization of the interplay between fast ions inter-ELM MHD activity and ELMs (#210)

- Proponents and contact person:

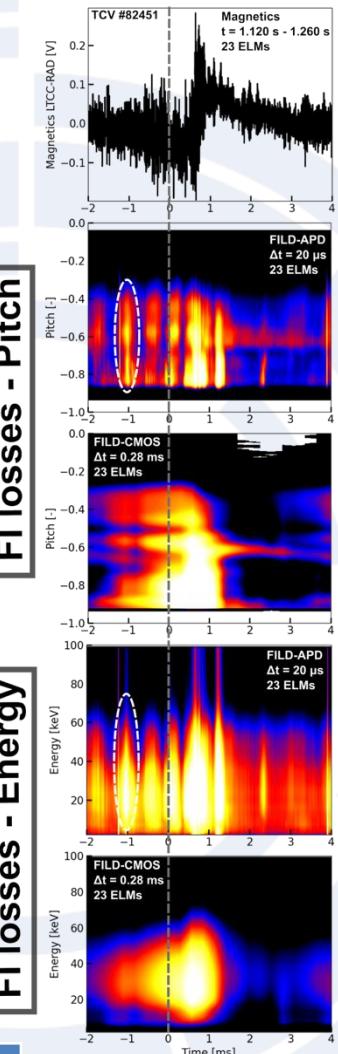
J.Poley-S
Cómez (

- Scientific


- Background

- AUG: hybrid between ELM and MHD plasmas
- TCV: experiments on ELM MHD plasmas

- Goals:


- Investigate interplay between ELMs, inter-ELM MHD activity and fast-ions.
- Experimental Strategy/Machine Constraints and essential diagnostic
- AUG: develop scenario with NBI driven TAEs as much off-axis as possible to maximize ELM-AE interaction
- TCV: Follow-up experiments attempting to minimize inter-ELM MHD activity using ECRH (for comparison with previous experiments). Compare scenarios with on- vs off- axis fast-ion distributions.

- ELM effects on FI loss studied previously – this proposal intends to extend experimental work to a level of control of AE \leftrightarrow ELM loss mechanisms
- TCV proposes scans in ECRH position (on to off-axis) and NBI energy.
- AUG proposes to shift NBI off-axis by adjusting NBI geom. and plasma posn.
- TCV branch looks more feasible – though AUG part may still fit with other proposals in a combined expt.
- P2

Proposed pulses

Device	# Pulses/Session	# Development
AUG	12	4
TCV	5	10

Prio. Summary and pulse allocation

Priority ratings

#	Title	Proponent(s)	Priority
191	Study of hot ion mode on MAST-U	F. Orsitto, S. Blackmore , et al.	3.00
192	Optimization of fast-ion confinement in tokamaks with externally applied 3D fields	Joaquin Galdon	P1-MASTU, P1.5-AUG
193	Fast-ion losses induced by edge instabilities across different confinement regimes	Joaquin Galdon	PB
194	Impact of Toroidal Alfvén Eigenmodes on Plasma Core Turbulence and Confinement	Paulo Puglia, Samuele Mazzi	P1-TCV, P1-WEST
195	Development of alpha-particle measurements in support of JT-60SA and ITER rebaseline	Yevgen Kazakov, Massimo Nocente	P1-AUG
196	Travelling Wave Array dual-frequency operation as a flexible tool to tailor fast ion populations and excite Alfvén Eigenmodes	Samuele Mazzi, Laurent Colas , et al.	P2 (TWA 2027)
197	high frequency Alfvén eigenmode studies with ITER and JT-60SA relevant AE actuators	Roman Ochoukov	P1-TCV, P2-AUG
198	Stability and space structure of n=0 modes driven by energetic particles	Mykola Drevl	2.00
199	Cross machine study of core ICE during sawtooth cycle	Mykola Drevl	P1.5-TCV, P2-MASTU
200	Alfvén Eigenmode Control in TCV via Systematic ECRH Scans	Anton Jansen van Vuuren	P1-TCV
201	Impact of Plasma Shaping on Fast-Ion Confinement and Alfvén Eigenmode Control in the TCV Tokamak	Anton Jansen van Vuuren	2.00
202	Investigation of Upward Sweeping Fishbone modes on TCV	Sergei Sharapov	2.00
203	Investigation of internal transport barriers induced on TCV	Sergei Sharapov	
204	Measurements of Ion Cyclotron Emission in WEST	Bernard B.C.G. Reman, Dmitry Moseev , et al.	PB (TWA 2027)
205	Optimization of active control of Alfvén Eigenmodes with externally applied 3D fields	Javier Gonzalez-Martin	P1-AUG, P1-MASTU
206	Study of phase-space islands induced by MHD fluctuations using the INPA diagnostic	Alex Reyner-Viñolas	PB
207	Exploitation of FILD4 real-time positioning capabilities	Lucia Sanchis	PB
208	Fast-ion effects on core turbulence at different Qi/Qe on ASDEX Upgrade	Roberto Bilato	P1-AUG
209	Fast-ion stabilization of ITG in WEST with TWA	Riccardo Ragona, Roberto Bilato , et al.	P2 (TWA 2027)
210	Interplay of Fast Ion MHD ELMs	Javier Gonzalez-Martin	2.00

P1 pulses/allocation

	TCV (Scientific)	TCV (Sce dev.)	TCV (Total)	AUG	AUG (Pulse for Sce Dev)	AUG (Session total)	MAST-U (Scientific)	MAST-U (Sce dev.)	MAST-U (Total)	WEST (Scientific)	WEST (Sc. Dev)	WEST (Total (Total 2026)
Tot. Requested	60	40	100	64	6	70	43	0	43	40	20	60
Prov. Alloc.			160			32			16			15
Factor			0.63			2.2			2.7			4

TCV: space to execute also an amount of the Priority 2 proposals (145 pulses total)

AUG: some down-selection/combination needed

**MAST-U/WEST: consolidation of which parts of proposals to execute needed –
Some indication shown in assessments (i.e. some machines rated higher prio
within individual proposals), but further work for TFL/RTCs**

Initial grouping

High level topics	Proposal #
3D Fields and ELMs	192, 193, 205
Core AE control and suppression	200, 206, 207, 197, 198, 199, 202
Core turbulence control	194, 208
AUG alpha measurements	195
WEST expt. branch	194, 196, 204, 209

- Within a group, RTCs will allocate pulses-per-machine to the group.
- P1 proposals already account for >100% of allocated pulses on AUG/MAST-U/WEST
- Implies careful planning to ensure principal points of P1 proposals are covered: combine shots where possible, select specific physics to dedicate specific pulses where not
- Experiments will be planned principally with P1 proposals in mind but P2 will be included where pulses may be adapted with no risk to P1 or (esp. TCV) where pulses available not required by P1.

Analysis and Modelling needs

Together with participation proposals for executing experiments based on the presented proposals, analysis & modelling needs for the RT (list defined within the call documents) are as follow:

- Fast Ion Orbits, resonances and distribution function, Heating and fast-ion sources (ICRH, NBI)
 - E.g. ASCOT TRANSP/NUBEAM, TORIC-SSFPQL, PION, Ebdyna,...
- Interpretive modelling
 - E.g. ASTRA, RAPTOR, ETS,...
- Improved/RT equilibrium
 - E.g. CLISTE, CHEASE, CREATE-NL
- Pedestal Stability
 - EPED, EuropeD, ELITE, MARS,..
- MHD stability and Nonlinear MHD, response to RMP
 - MHD(MISHKA, VMEC,...); Nonlinear(MEGA, JOREK,...); RMP(MARS-F, VMEC,...)
- Synthetic diagnostics and tomography
 - FIDASIM, FILDSIM, Velocity space tomography
- Core Gyrokinetic
 - E.g. GENE, GS2,...