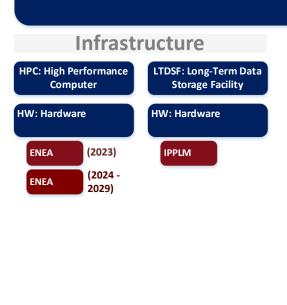


# **WPAC Status Report**

Physics Project Board | October 27-28<sup>th</sup>, 2025

D. Kalupin (with F. Jenko, V. Naulin, and R. Kamendje) *Thanks to contributions by the E-TASC SB* 




This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

## Organisation of activities



## **WP AC: Advanced Computing**



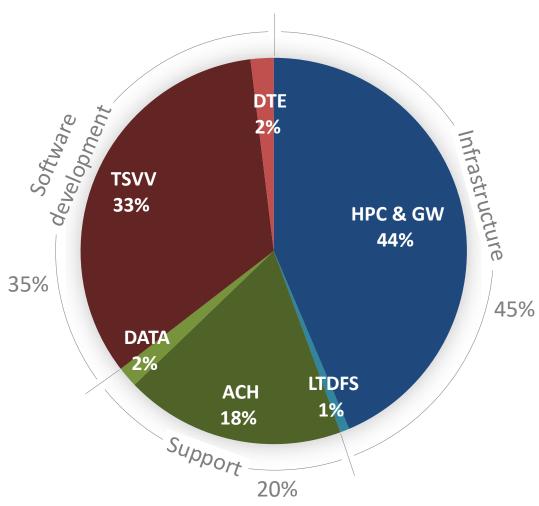




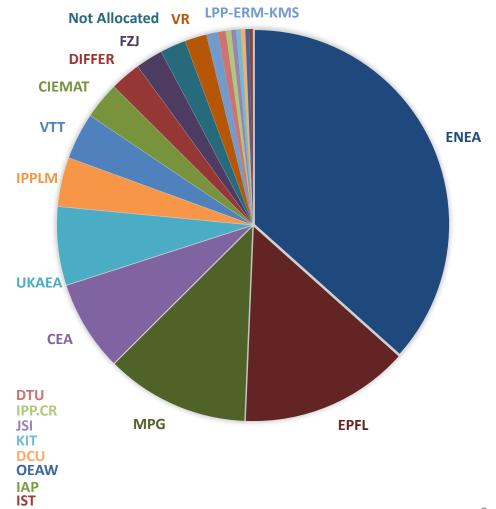







### **Specifics of the WP:**

**Majority of activities** are pre-approved by the GA **Monitoring of activities** is by the E-TASC SB and the PMU


### WPAC resources distribution 2025



# Shares of activities based on Consortium Contribution



# Contributions by beneficiaries based on Total Resources





# Infrastructure

#### **HPC** resources



#### **LEONARDO**

- End of availability to EUROfusion users on July 31 as agreed during the last PC meeting
- End of cycle 8 at this date
- Very good availability until the end of the cycle
- Data produced will be kept at least for 3 months / more if requested



#### **PITAGORA**

- Open to cycle 9 projects
- Full production environment in place since August 13 (Slurm and accounting)
- First reporting to Operations Committee
- Inauguration ceremony scheduled to November 3 with the participation of 2 Italian
  Ministers
- A number of critical issues remain to be solved for some of them (not all) work-around provided and documented but this should be considered as a temporary solution
- Call for proposals for the use of the EUROfusion High Performance Computer (10th cycle)

# Use of HPC resources



|              | Nodes           | HPL      | Jai  | nuary | Feb | ruary | M | arch | Α     | pril    | N    | lay | Ju | ne      | Ju      | uly    | Aug      | gust | Sept | ember | Oct | ober | Nove | ember | Dece | mbei |
|--------------|-----------------|----------|------|-------|-----|-------|---|------|-------|---------|------|-----|----|---------|---------|--------|----------|------|------|-------|-----|------|------|-------|------|------|
|              |                 | (Pflops) |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
|              |                 |          |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
| Leonardo-CPU | 260             | 1.3      |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
| Pitagora-CPU | 1008            | 15.3     |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
|              |                 |          |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
| Leonardo-GPU | 100             | 6.9      |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
| Pitagora-GPU | 168             | 27.9     |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
| Old Gateway  | 88              | 0.2      |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
| New Gateway  | 14 CPU<br>1 GPU | 0.4      |      |       |     |       |   |      |       |         |      |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
|              |                 |          |      |       |     |       |   |      | Testi | ng by A | ACHs |     |    |         |         |        |          |      |      |       |     |      |      |       |      |      |
|              |                 |          | Cycl |       |     |       |   |      |       | ng by A |      |     |    | FEDG    |         |        |          |      |      |       |     |      |      |       |      |      |
|              |                 |          | Cycl | e 9   |     |       |   |      |       | to pro  |      |     |    | re (IMA | · C \ \ | and fi | nal ravi | •    |      |       |     |      |      |       |      |      |

# Main KPIs (final deliverable is accepted by HPC PC#33)



| LEONARDO-DCGP (A5)    | Feb. 2025 | March 2025 | April 2025 | May 2025 | June 2025 | July 2025 |
|-----------------------|-----------|------------|------------|----------|-----------|-----------|
| Availability          | 100.0%    | 100.0%     | 100.0%     | 100.0%   | 100.0%    | 100.0%    |
| SLA                   | none      | none       | none       | none     | none      | none      |
| Usage                 | 84.8%     | 91.9%      | 81.1%      | 85.1%    | 83.7%     | 85.0%     |
| SLA                   | 85.0%     | 85.0%      | 85.0%      | 85.0%    | 85.0%     | 85.0%     |
| LEONARDO Booster (C2) | Feb. 2025 | March 2025 | April 2025 | May 2025 | June 2025 | July 2025 |
| Availability          | 100.0%    | 100.0%     | 100.0%     | 100.0%   | 100.0%    | 100.0%    |
| SLA                   | 97.0%     | 97.0%      | 97.0%      | 97.0%    | 97.0%     | 97.0%     |
| Usage                 | 91.2%     | 81.7%      | 86.5%      | 85.1%    | 77.2%     | 79.1%     |
| SLA                   | none      | none       | none       | none     | none      | none      |
|                       | Feb. 2025 | March 2025 | April 2025 | May 2025 | June 2025 | July 2025 |
| Major incidents       | 2         | 0          | 0          | 0        | 0         | 0         |
|                       | Feb. 2025 | March 2025 | April 2025 | May 2025 | June 2025 | July 2025 |
| Maintenance A3        |           |            | ·          | ·        |           | ·         |
| Maintenance A5        | 0.0       | 61.5       | 251.5      | 13.0     | 0.0       | 31.0      |
| Maintenance C2        | 0.0       | 61.5       | 251.5      | 13.0     | 0.0       | 34.0      |
| Remaining time A3     |           |            |            |          |           |           |
| Remaining time A5     | 168.0     | 114.5      | -129.0     | -134.0   | -134.0    | -157.0    |
| Remaining time C2     | 168.0     | 114.5      | -129.0     | -134.0   | -134.0    | -160.0    |

#### **Availability**

- Solution (Very good availability of the C2 partition (Leonardo-GPU) and of the A5 partition (Leonardo-CPU)
- Time allowed for maintenance exceeded for both Leonardo partitions

#### Usage

Very good for both partitions

#### **Incidents**

D 2025.06

Few incidents – no impact on EUROfusion resources due to the way the nodes are allocated

# Collaboration with Japan (BA-Phase 2)



- The PA covering the period of time FY2020 to FY2024 is completed under this PA, QST made available to IFERC half of the JFRS-1 machine (1.4 Pflops HPL) for EU, JA and joint Project
  - 58% of the resources made available were used by EU projects and EU part of joints project (50%)
  - Equivalent to 300 nodes on average
- A new PA covering the period of time FY2025 to FY2026 is starting with the provision of computing resources (more GPU resources, less conventional resources) and reduced activities
  - This activity will likely end at the end of FY2026 (March 2027)
  - New cycle starting mid-September 2025 until end of March 2026: 10 EU projects, 1 JA projects, 5 Joint projects

|       |     |        | CPA01-JA.EU<br>March 2025 | PA IFERC2-CSCPA01-JA.EU<br>Sept. 2025-March 2027 |            |  |  |
|-------|-----|--------|---------------------------|--------------------------------------------------|------------|--|--|
|       |     | #Nodes | Pflops-HPL                | #Nodes                                           | Pflops-HPL |  |  |
| EU    | CPU | 0      | 0.00                      | 15                                               | 0.23       |  |  |
| EU    | GPU | 10 (*) | 0.22                      | 5                                                | 0.20       |  |  |
| JA    | CPU | 682    | 1.40                      | 15                                               | 0.83       |  |  |
| JA    | GPU | 0      | 0.00                      | 5                                                | 0.88       |  |  |
| Total | CPU |        | 1.40                      |                                                  | 1.06       |  |  |
| Total | GPU |        | 0.22                      |                                                  | 1.08       |  |  |

<sup>(\*)</sup> Marconi100 nodes or equivalent

## Gateway and LTDSF



#### New Gateway

- Open to users on Oct 14<sup>th</sup>
  https://docs.hpc.cineca.it/specific users/gateway.html
- Webinar (introduction to the new Gateway) to be organized in October

# EUROFUSION GATEWAY: NEW GATEWAY start of production

Dear Gateway Users,

the NEW GATEWAY is now open to production. Tomorrow morning you will receive an email with subject

"EFGW Single Sign On: mandatory actions required on your account"

with the link to CINECA Keycloak site by which you can:

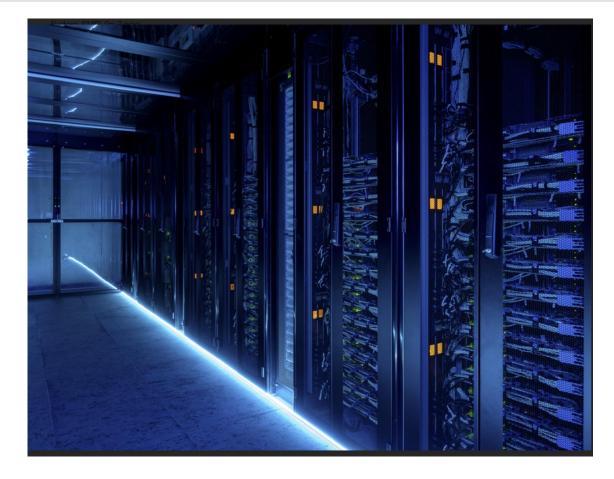
- verify your email address
- set up your password
- configure the Two Factor Authentication (2FA) access and your personal One Time Password (OTP) device

The link expires in 12 hours. If you can't register within this period, once expired please request a new link to <a href="mailto:superc@cineca.it">superc@cineca.it</a> specifying "EFGW" in the Subject.

The 2FA is mandatory to access the NEW GATEWAY, please refer to the EFGW Gateway documentation.

We remind you that the userid (username) in the NEW GATEWAY is the same of OLD GATEWAY.

### Long-Term Data Storage Facility (LTDSF)


- Storage at PSNC (8 PB disks+8 PB tapes) expected to be made available to users soon
- Fast (SSD) buffer at CINECA will be install in two phases (0.3 PB / 1 PB)
- Webinar (introduction to the LTDSF) to be organized in October



# **Poznańskie Centrum Superkomputerowo-Sieciowe**Poznan Supercomputing and Networking Center

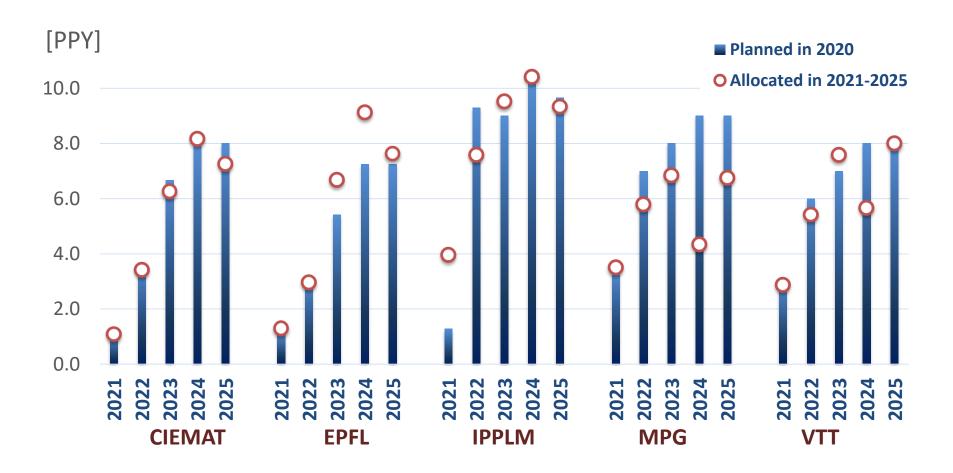


- Integrated LTDSF (Poznań, PL) with the HPC
  Pitagora system (Bolonia, IT)
  - Fast data transfer via fibre optic networks
- Phase I Long Term Storage available in Poznan Supercomputing and Networking Center PCSS (Poznań, PL) – August 2025
- Phase II Additional data cache (data buffer) in Bolonia between LTDSF in Poznan and HPC Pitagora in Bolonia – October 2025 (installed) – fully operational



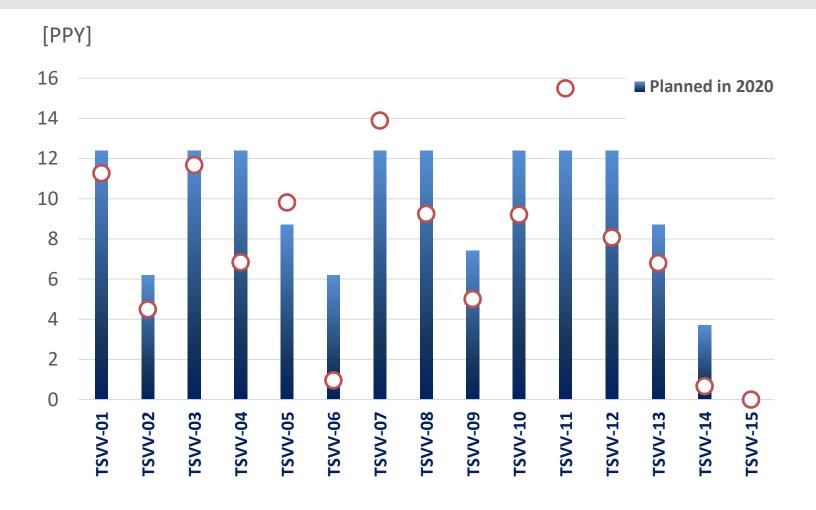
Fast data caches at PCSS

 Phase III – will increase the capacity of data buffer (Jan 2026), to be used for storing data from many other locations




# Support

# **Advanced Computing Hubs**




The ACH is considered one of the most important improvements to EUROfusion software development programme introduced in the current framework. It has significantly accelerated progress and is highly appreciated and valued by code developers.



# Utilization of ACH resources in EUROfusion programme





#### **TSVVs**

 All TSVVs are provided with the adequate level of support

#### **Other WPs**

- Received overall support
  - > 25 PPYs

#### **HPC&GW**

Support level increases annually5 PPYs

#### Transition to 2026-2027



Overall reduction of funds by ~30% compared to 2021-2025 level.

Call for Advanced Computing Hubs 2026-27, issued **9 May 2025** (Ref: GF/DK-25-43); deadline **20 June 2025** 

Evaluation by **E-TASC Scientific Board**, appointed per GA24 (Apr 2019) concluded (*EUROfusion GA (25) 52 - 5.5* ):

- All proposals were evaluated positively
- 4 ACHs recommended for 2026–2027 aiming at broad competence coverage within available resources, Cat1 (HPC): CIEMAT, EPFL, MPG, and Cat2 (MFSW): IPPLM
- VTT (AI/ML focus): not funded as standalone due to budget limits, but competences to be integrated under ACH-MPG

Call for tasks to be carried by Advanced Computing Hubs in 2026 (Ref: GF/DK-25-98); deadline 21 November 2025

E-TASC SB (Approval ACH AWP26): 4-5 December 2025

# Category 1: High-Performance Computing (HPC)

# Category 2: Modelling Frameworks and Standardized Workflows (MFSW)

#### Tasks under the category include:

- Enabling effective GPU usage of a selected set of codes on EUROfusion's HPC platforms with expanded GPU partitions
- Selecting and implementing scalable algorithms
- Assisting with code parallelization and performance optimization
- Optimizing communication patterns and memory usage
- Supporting code refactoring efforts
- Providing targeted support and training for code developers
- Promoting best practices in software engineering and efficient HPC resource utilization
- Providing support for the development of AI/ML surrogates for physics models
- Supporting large-scale model training and inference on EUROfusion infrastructure
- Supporting the development and application of advanced visualization tools

- Supporting the development and maintenance of the Integrated Modelling and Analysis Suite (IMAS) framework to ensure extensibility, maintainability, and usability
- Offering technical support to code developers in adapting their codes to the IMAS data model to enable integration and validation
- Assisting with code integration and workflow optimization
- Contributing to the development of a unified, scalable, and interoperable modelling ecosystem aligned with EUROfusion's long-term objectives
- Advancing database infrastructure and evaluating/implementing software solutions for data storage, management, and analysis, as well as authenticated/authorized access control

# Data Management Plan (DMP)



### Goal is to provide FAIR based data for EUROfusion (related to Grant deliverable). Charge for 2025 is to

- **Provide a searchable catalogue/**database of metadata (waveforms) from the participating sites. (Scenario A)
- **Demonstrate direct data access** of a subset of experimental data for user applications to run on. (Prototyping Scenario B).
- Investigate (and pending available resources) develop the technology to integrate modelling/simulation data as a "facility" of its own

Activity is divided into Core services (PSNC) providing infrastructure and Sites (AUG, COMPASS/-U, JET, MAST/-U, TCV and WEST) providing data mappings and remote data access.

With the long-term data storage facility (LTDSF) and the ability to mint PID's we have the tools to support the longer-term vision towards a one stop facility for researching, accessing, processing, analysing, and sharing experimental and modelling data.

# Data Management Plan (DMP)



#### Infrastructure is in place!

- A UDA (UKAEA) based client/server installation is available and tested on all sites.
- Data ingestion and curation procedures and protocols have been tested for Scenario A data (metadata services) for all devices
- UDA has been updated and is being tested with new security enhancements to allow for Authentication and Authorisation (needed for Scenario B data releases)
- Performance issues with large data volumes has been resolved
- Future work is related to adaptation to user needs and further performance improvements.

#### Metadata - Waveforms, etc (Scenario A) is ready for production services

- Ready for production services: Will be launched on the new gateway (faster access to HW is being explored).
- EUROfusion users will initial have access to: AUG: (11,500 discharges), WEST (~1,200), TCV: ("full catalogue"), JET (TBD: on request mapping tool), MAST-/U &Compass/-U (pending release agreement)
  - Some embargos and data restrictions may apply

#### Direct data access has been demonstrated for a number of use cases (scenario B):

- Remote access tools are available using UDA/IMAS
- A set of user needs representing different TSVVs needs have been defined and tested.
- Relevant data mappings are being developed and have been demonstrated for select devices.

#### Initial testing of integration with modelling/simulation data has started.

- Strategy is to use SimDB and integrate with UDA/IMAS access
- Allow users to log/share simulation results through the catalogue
- The availability of the long term data storage facility (LTDSF) is of key importance to this



# Software development

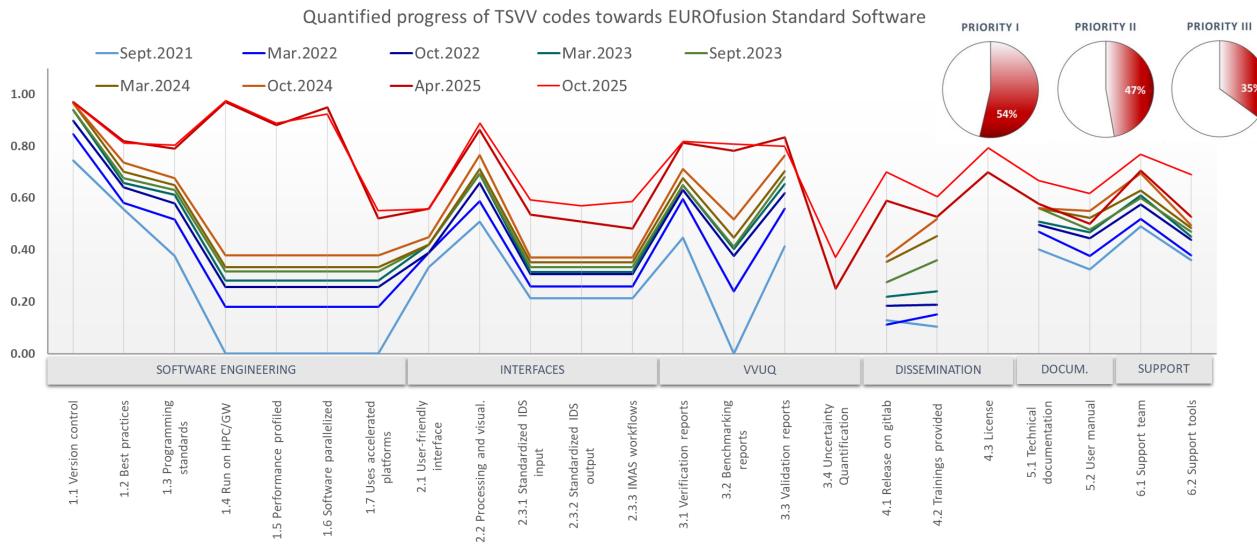
### **Included Activities**



Theory, Simulation, Verification and Validation (TSVV) - 2021-2025

are aimed to advance our understanding and predictive capabilities. They will underpin **the production of a high-quality suite of "EUROfusion-standard" software** (building on the research software) to model data from EUROfusion facilities and to reliably extrapolate to future devices.

| TSVV#   | Title                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------|
| TSVV 01 | Physics of the L-H Transition and Pedestals                                                               |
| TSVV 02 | Physics Properties of Strongly Shaped Configurations                                                      |
| TSVV 03 | Plasma Particle/Heat Exhaust: Fluid/Gyrofluid Edge Codes                                                  |
| TSVV 04 | Plasma Particle/Heat Exhaust: Gyrokinetic/Kinetic Edge Codes                                              |
| TSVV 05 | Neutral Gas Dynamics in the Edge                                                                          |
| TSVV 06 | Impurity Sources, Transport, and Screening                                                                |
| TSVV 07 | Plasma-Wall Interaction in DEMO                                                                           |
| TSVV 08 | Integrated Modelling of Transient MHD Events                                                              |
| TSVV 09 | Dynamics of Runaway Electrons in Tokamak Disruptions                                                      |
| TSVV 10 | Physics of Burning Plasmas                                                                                |
| TSVV 11 | Validated Frameworks for the Reliable Prediction of Plasma Performance and Operational Limits in Tokamaks |
| TSVV 12 | Stellarator Optimization                                                                                  |
| TSVV 13 | Stellarator Turbulence Simulation                                                                         |
| TSVV 14 | Multi-Fidelity Systems Code for DEMO                                                                      |
| TSVV 15 | Pulse Design Tool                                                                                         |


#### DTE Proof of Concept (PoC) - 2025 (9 months)

The aim is to address identified gaps and opportunities through targeted projects. These projects shall link data from science and engineering to build integrated solutions that meet current needs and advance future capabilities.

| Reference | Title                                                       |
|-----------|-------------------------------------------------------------|
| CEA-02    | Integrated Multi-Physics Analysis and Coupled Tools for     |
|           | fusion                                                      |
| CIEMAT-02 | Digital Twin Proof of Concept for the Breeding Blanket      |
|           | System                                                      |
| ENEA-01   | Digital Twin platform for integrated design of tokamak      |
|           | components – pilot project on EU-DEMO divertor              |
| ENEA-02   | Integrated Digital Twin Framework for Disruption Analysis,  |
|           | Tokamak Structural and Activation Product Transport         |
| EPFL-01   | Prototyping and assessment of a highly flexible infinitely  |
|           | scalable digital twin of fusion power plants using existing |
|           | and commercial technologies                                 |
| DIFFER-02 | Divertor digital twin for materials lifetime optimisation   |
| UKAEA     | MOOSE platform                                              |

# TSVV progress towards EUROfusion Standard Software





The quality assurance framework for EUROfusion Standard Software (endorsed by the E-TASC SB on 12.03.2025) <a href="https://idm.euro-fusion.org/?uid=2Q72WQ&version=v2.2">https://idm.euro-fusion.org/?uid=2Q72WQ&version=v2.2</a>

## Transition to 2026-2027 - Work Package: Theory and Modelling (WPTM)



Continuation of TSVV programme aimed in establishments of a strong scientific foundation for future fusion experiments through validated predictive simulation tools, enabling reliable extrapolations beyond current machines.

#### **Topical Areas (2026–2027)**

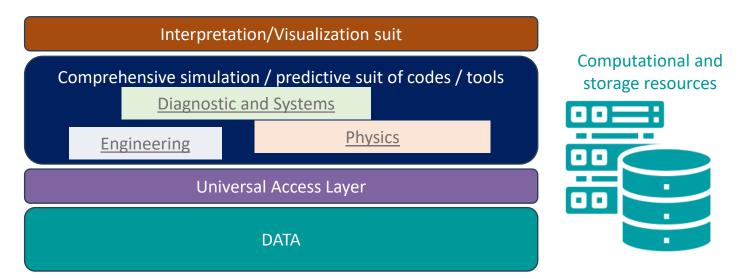
Each project (~5–6 FTEs/year) will focus on one of the following areas:

| Short Ref. | Focus Area                               | Core Objectives                                                                                |
|------------|------------------------------------------|------------------------------------------------------------------------------------------------|
| TSVV-A     | H-Mode & Small/No-ELM Pedestals          | Gyrokinetic simulations of L–H transitions and pedestal profiles                               |
| TSVV-B     | Plasma Exhaust – Fluid Simulations       | Validated fluid/gyrofluid edge-SOL transport modelling including neutrals & impurities         |
| TSVV-C     | Plasma Exhaust – Gyrokinetic Simulations | Gyrokinetic prediction of plasma exhaust under semi-collisional edge conditions                |
| TSVV-D     | Plasma–Wall Interactions                 | Integrated modelling of steady-state plasma-wall interactions and transient events             |
| TSVV-E     | Impurity Sources & Transport             | Integrated modelling of W impurity sources, transport, and screening in metallic devices       |
| TSVV-F     | Tokamak Disruptions & Runaway Electrons  | Self-consistent, validated models for disruption and runaway electron dynamics                 |
| TSVV-G     | Physics of Burning Plasmas               | Simulation tools for energetic particle–MHD–turbulence interactions in tokamaks & stellarators |
| TSVV-H     | Prediction of Plasma Performance         | Integrated core–edge modelling for scenario prediction and validation in ITER-like devices     |
| TSVV-I     | Stellarator Optimization                 | Development of optimized stellarator configurations and modules for optimization codes         |
| TSVV-J     | Stellarator Core Turbulence              | Validation and application of gyrokinetic turbulence codes in 3D magnetic configurations       |
| TSVV-K     | Neutral Particle Models                  | Multi-fidelity neutral physics models integrated into edge turbulence simulations              |

## Transition to 2026-2027 – Digital Twin Environment



**Data Infrastructure:** all kind <u>high-quality data</u>, (plasma, materials, machine components and actuators); standardized <u>data formats and interfaces</u>; FAIR <u>data management</u>; <u>uncertainty quantification</u>). <u>High-quality data</u> (plasma, materials, and machine systems), with standardized formats, FAIR-compliant management, and uncertainty quantification.


**Predictive and Simulation Codes:** <u>Physics-Based</u> models; <u>AI/ML</u> models; <u>HPC Compatibility</u>; <u>frameworks</u> to couple multiple simulation domains.

Real-Time Feedback Systems: <u>Control algorithms</u>; <u>integration with real tokamak</u>.

**Visualization Tools:** Friendly UIs, 3D visualization, tools for evaluation of DTE predictions vs experiment.

Benchmarking and Validation: Accuracy and reliability of DTE.

#### **Computing and storage resources**



Many of DTE key components are already being developed within existing activities. The 2026-27 programme aims to integrate these individual elements into a unified Digital Twin Environment, ensuring full compatibility and seamless communication between them.

### Transition to 2026-2027 – WPAC-DTE



### Integration of activities into a unified Digital Twin **Environment**

| Ref. | Area Title                               | Objectives                                                                                                    | Link to 2021-2025 programme |
|------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------|
| PDT  | Pulse Design Tool Extension              | Expand PDT for real-time, high-fidelity plasma forecasting and virtual control testing                        | TSVV-15                     |
| DDM  | Data-Driven Predictive<br>Modelling      | Apply AI/ML for faster, validated simulations and real-time analysis/control                                  | AI/ML – pilot<br>projects   |
| ENG  | Integrated Physics/Engineering Framework | Develop coupled physics-engineering tools (e.g., breeding blanket, divertor models) and synthetic diagnostics | DTE PoC projects            |
| VIS  | Advanced Visualisation Tools             | Create intuitive, interactive visualization for model validation and decision support                         | ACHs                        |



| DMP | Data Management Plan | Develop coupled physics-engineering tools (e.g., breeding | DMP |
|-----|----------------------|-----------------------------------------------------------|-----|
|     |                      | blanket, divertor models) and synthetic diagnostics       |     |



| Active collaboration and liaison with ITER on the IMAS development and F4E on utilization of AI/ML | ACH-IPPLM |
|----------------------------------------------------------------------------------------------------|-----------|
| techniques                                                                                         |           |

## Materials & Links



EUROfusion Science meeting – Final Report of TSVV projects, 4-2 Nov. 2025
 <a href="https://indico.euro-fusion.org/e/TSVV\_Final\_Report">https://indico.euro-fusion.org/e/TSVV\_Final\_Report</a>

Summary from 1st E-TASC General Meeting (11-15 Nov. 2024, Garching):

https://idm.euro-fusion.org/?uid=2S53YT&action=get\_document

Materials from the 1<sup>st</sup> E-TASC General Meeting:

https://indico.euro-fusion.org/event/3034/

EUROfusion Standard Software:

https://idm.euro-fusion.org/?uid=2Q72WQ&version=v2.2

Review of Advanced Computing Hubs (ACHs) – 2024:

https://idm.euro-fusion.org/Portal/Pages/ContentView.aspx?uid=2RHUC2

Mid-Term Review of TSVV projects (2023):

https://idm.euro-fusion.org/Portal/Pages/ContentView.aspx?uid=2P9MS8

WPAC reporting:

https://idm.euro-fusion.org/default.aspx?uid=2PMTS8

WPAC Presentation at the last Physics Project Board:

https://indico.euro-

fusion.org/event/3435/contributions/14169/attachments/6807/12022/WPAC\_PB6\_Kalupin.pdf