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Strategy from ad-hoc group (2020): https://idm.euro-fusion.org/?uid=2N29CN
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In addition:
JET, MAST-U and WEST expts
DTT-similarity expts

VNS to accelerate 
both VNS and NT-
qualification?

https://idm.euro-fusion.org/?uid=2N29CN
https://idm.euro-fusion.org/?uid=2N29CN
https://idm.euro-fusion.org/?uid=2N29CN


Special Issue on Advances in the Physics Basis of Negative Triangularity 
Tokamaks  (https://iopscience.iop.org/collections/ppcf-231109-412 2024/2025 papers)

4

Modelling of power exhaust in TCV positive and negative triangularity L-mode plasmas
E Tonello et al 2024 Plasma Phys. Control. Fusion 66 065006

Comparison of detachment in Ohmic plasmas with positive and negative triangularity
O Février et al 2024 Plasma Phys. Control. Fusion 66 065005
Assessment of vertical stability for negative triangularity pilot plants
S Guizzo et al 2024 Plasma Phys. Control. Fusion 66 065018
Experiments and gyrokinetic simulations of TCV plasmas with negative triangularity in view of 
DTT operations
A Balestri et al 2024 Plasma Phys. Control. Fusion 66 065031
Experiments and modelling of negative triangularity ASDEX Upgrade plasmas in view of DTT 
scenarios
L Aucone et al 2024 Plasma Phys. Control. Fusion 66 075013
Physical insights from the aspect ratio dependence of turbulence in negative triangularity 
plasmas
A Balestri et al 2024 Plasma Phys. Control. Fusion 66 075012

Study of impurity C transport and plasma rotation in negative triangularity on the TCV tokamak
F Bagnato et al 2024 Plasma Phys. Control. Fusion 66 075019

System size scaling of triangularity effects on global temperature gradient-driven gyrokinetic 
simulations
Giovanni Di Giannatale et al 2024 Plasma Phys. Control. Fusion 66 095003

Effect of rotation on negative triangularity plasmas in DIII-D
C Chrystal et al 2024 Plasma Phys. Control. Fusion 66 105004
MANTA: a negative-triangularity NASEM-compliant fusion pilot plant
The MANTA Collaboration et al 2024 Plasma Phys. Control. Fusion 66 105006

Characterization of the ELM-free negative triangularity edge on DIII-D
A O Nelson et al 2024 Plasma Phys. Control. Fusion 66 105014

Overview of results from the 2023 DIII-D negative triangularity campaign
K E Thome et al 2024 Plasma Phys. Control. Fusion 66 105018

Pedestal properties of negative triangularity discharges in ASDEX Upgrade
B Vanovac et al 2024 Plasma Phys. Control. Fusion 66 115005
Examining transport and integrated modeling predictive capabilities for negative-triangularity 
scenarios
J McClenaghan et al 2024 Plasma Phys. Control. Fusion 66 115008
Plasma edge and scrape-off layer turbulence in gyrokinetic simulations of negative 
triangularity plasmas
T N Bernard et al 2024 Plasma Phys. Control. Fusion 66 115017
Power handling in a highly-radiative negative triangularity pilot plant
M A Miller et al 2024 Plasma Phys. Control. Fusion 66 125004
Characterization and controllability of radiated power via extrinsic impurity seeding in strongly 
negative triangularity plasmas in DIII-D
D Eldon et al 2025 Plasma Phys. Control. Fusion 67 015018
Characterizing the negative triangularity reactor core operating space with integrated 
modeling
H S Wilson et al 2025 Plasma Phys. Control. Fusion 67 015026
Investigation of triangularity effects on tokamak edge turbulence through multi-fidelity 
gyrokinetic simulations
A C D Hoffmann et al 2025 Plasma Phys. Control. Fusion 67 015031
Achievement of highly radiating plasma in negative triangularity and effect of reactor-relevant 
seeded impurities on confinement and transport
L Casali et al 2025 Plasma Phys. Control. Fusion 67 025007
Experimental characterization of turbulence properties in negative triangularity DIII-D plasmas
S D Stewart et al 2025 Plasma Phys. Control. Fusion 67 025032
First observations of edge instabilities in strongly shaped negative triangularity plasmas on 
DIII-D
T Cote et al 2025 Plasma Phys. Control. Fusion 67 035033
Operation above the Greenwald density limit in high performance DIII-D negative triangularity 
discharges
O Sauter et al 2025 Plasma Phys. Control. Fusion 67 075009
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<0 closes access to n=∞ 2nd stability region
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Ideal MHD, hence 
prediction to new 
machine "certain" and 
well validated



• AUG shapes are "oblique"/"tilted", requiring more negative d than 
TCV/DIII-D to close 2nd stability region

• Magnetic axis shifts "diagonally" with increasing  (R~Z)
• The local shear "hill" not very pronounced, easier to open
• AUG results important to better understand other shape effects 

(squareness, etc)

"Specificity" of the AUG shapes leading to residual ELMs
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AUG 43493t4.3



• Even this shape (=-0.47) is marginal to avoid edge activity

• Good/bad curvature limit (solid line) strongly modified with edge 
BS current, usually not the case and will also affect transport

"Specificity" of the AUG shapes leading to residual ELMs
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AUG 43493t4.3
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10.1088/1741-4326/ae01bd
10.1088/1741-4326/ae01bd

At 150MW Pfus

https://doi.org/10.1088/1741-4326/ae01bd
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SOL width small in NT L-mode: good news! (for confinement)

• q
PT H-mode <= q

NT L-mode < q
PT L-mode

• q represents the "confinement" quality just inside and just outside LCFS

• Hence smaller q reflects larger gradients

• DIII-D recent detachment experiments: SOL heat flux widths approach values typical 

of inter-ELM H-mode discharges
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R I Morgan et al, Nucl. Fusion (2025)

https://doi.org/10.1088/1741-4326/ae034e


Detachment studies in recent DIII-D NT armor campaign
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• Rev BT detaches at 
lower density

• Since not a problem for 
H-mode access might 
be best target solution 
for FPP design

• Requires new 
dedicated experiments 
on confinement, just to 
make sure

• Confinement 
degradation probably 
due to X-point 
proximity to wall, tbd

F. Scotti et al, Nucl. Fusion 64 (2024) 094001

https://doi.org/10.1088/1741-4326/ad5f41
https://doi.org/10.1088/1741-4326/ad5f41
https://doi.org/10.1088/1741-4326/ad5f41


Safest at this stage: Combined SND ADC, >0, with top <0

• X-point region "rapidly" uses shape benefits 
for confinement inside LCFS, hence can use 
best PT advanced divertor configuration (ADC)

• Non X-point, on the contrary determines the 
"good confinement" and guarantees the "no 
ELM" behavior

• Snowflake with negative top  successfully 
tested on TCV

• Since NT seem to have lower neutral pressure, 
additional ADC solutions are needed, TCV can 
test a dedicated tightly baffled configuration
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DTT can test exactly this core-edge integration
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What about "standard" operational limits

• q95 down to 2.2-2.4 routinely used on TCV and DIII-D
• No problem with q95~3
• q95>2 limit confirmed on both TCV and DIII-D 

• No impurity accumulation difficulties observed on neither TCV and DIII-D (even at 
high Prad), nor JET (ILW) and AUG (W wall) (nor WEST, preliminary results)

• Stationary plasmas with high power easily obtained even up to >30MW on JET (see 
next slides)

• Density limit >> nG with auxiliary power (DIII-D results, see next slides)

• N up to 3 reached on DIII-D in stationary state, near 3 in JET and TCV. Again, basic 
ideal MHD calculations confirmed

• No "significant" problems with NTMs, except may be when coupling with VDE
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Density limit studied in detail in DIII-D armor campaign
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https://doi.org/10.1088/1361-6587/ade185

https://doi.org/10.1088/1361-6587/ade185
https://doi.org/10.1088/1361-6587/ade185
https://doi.org/10.1088/1361-6587/ade185
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NT-FPP: nGf~1.5, with peaked density relatively safe, n(0.9)=nG



NT at JET

• Very successful given less than 1 day experiments
• Up to 32MW, no ELM confirmed, although shape predicted marginal before 

experiment (residual activity in some cases, still below QCE)
• Since no P>PLH constraint, much easier to operate. Allowed to test from ohmic to full 

power in a few discharges
• High power cases with significant fueling to be safe. No time for optimization, in 

particular for confinement
• High density confirmed, at least nG at lowish power
• High N (through B0 ramp-down) and low q95 confirmed 
• H98 ~0.8 at medium/low gas, but "no gas" cases not really tested, and shape marginal 

for improved confinement
• GENE simulations confirm/explain improve confinement

• NT L-mode can be compared with PT H-mode in JET (PT L-mode "dismissed" usually)
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JET NT cases, H values validated (with TRANSP)

• H98 values up to 0.8 at 
N~2-2.5 obtained in 
NT-L-mode JET 
plasmas, lower with 
stronger gas fueling

• fG>1 reached with 

5MW (only, NBI 

tripped at high 

density) 

• H lower at lower 

power, no significant 

power degradation 

observed
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Some transport properties: Aspect ratio scan
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Conventional and large A 
tokamak

NT has better confinement 
than PT in ITG and TEM 

regimes.

Consistent with previous 
works [1-6] and experimental 

results on TCV and DIII-D

[1] A. Marinoni et al., 2009 PPCF 51 055016
[2] G. Merlo et al., 2015 PPCF 57 054010
[3] G. Merlo et al,  2023 PoP 30 102302
[4] A. Mariani et al., 2024 NF 64 046018
[5] G. Di Giannatale et al., 2024 PPCF 66 095003
[6] A. Balestri et al., 2024 PPCF 66 065031

ITG

TEM

NT worse

NT better

A. Balestri et al., 2024 PPCF 66 075012

https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d


Beneficial effect of NT scales to reactor-like machines
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Simulations show no 𝜌∗ effect 

Beneficial effect of NT scales to 
reactor-like machines.

G. Di Giannatale et al., 2024 PPCF 66 095003

Global gradient-driven gyrokinetic 
simulations performed with the ORB5 
code.

𝜌∗ has been artificially changed



https://doi.org/10.1088/1361-6587/ad5df9


NT-DEMO scenario optimization

• Starting from F. Maviglia initial shape such that avoids access to 2nd stability region for 
ballooning modes, using MAXFEA and PT-DEMO coils design, checked with CREATE 
and with some basic forces and currents considerations already accounted for

O. Sauter | towards NT-DEMO/VNS | 17/09/2025 29



RAPTOR modeling assumptions for PT/NT DEMO
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• Stationary state solver for poloidal flux 𝜓, electron temperature 𝑇𝑒  and density 𝑛𝑒  (→ relaxed 𝑗)
• Gradient-driven transport model with core dlog 𝑇𝑒/d𝜌, dlog 𝑛𝑒/d𝜌, edge d𝑇𝑒/d𝜌, d𝑛𝑒/d𝜌, 

free parameter 𝜌𝑝𝑒𝑑  
• 𝑇𝑖  is set equal to 𝑇𝑒
• Prescribed impurity concentrations n(He)/𝑛𝑒= 0.02, n(W)/𝑛𝑒= 3∙ 10−5, 

n(Xe)/𝑛𝑒  controlled to match target for 𝑃𝑠𝑒𝑝/𝑅0
• Impurity radiation calculated with ADAS cooling factors 𝑝𝑟𝑎𝑑,𝑖𝑚𝑝 =  𝑛𝑖𝑚𝑝𝑛𝑒𝐿𝑖𝑚𝑝(𝑇𝑒)
• Fusion power calculated assuming equal concentrations D and T
• ECRH gaussian deposition profile in the center

• Iterate with CHEASE 
→ consistent equilibrium+transport, 
for NT DEMO operating points, ‘pedestal’ ballooning stability verified 

• Iterate with GENE 
→ consistent heat/particle flux+scalelengths RLT and RLn at 𝜌 = 0.65, 0.75, 0.85 



RAPTOR PT reference matching EU-DEMO 2018

31

PT

Pfus [MW] 1933

Pec [MW] 50

Palpha [MW] 387

Q 38.7

Prad [MW] 262

Psep [MW] 175

PLH 139

Psep/R0 [MW/m] 20

ne0/nevol 1.46

nevol/nGW 1.06

H98 0.99

betaN(th) 2.02

li3 0.94

q95 3.73

Vloop [mV] 45
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[Siccinio FED 2022]

[Siccinio FED 2022]



RAPTOR simulations: transport assumptions to match PT-DEMO's
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RAPTOR simulations
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RAPTOR simulations: PT/NT similar with similar assumptions

34

PT NT

Pfus [MW] 1937 1770

Pec [MW] 50 50

Palpha [MW] 387 354

Q 38.7 35.7

Prad [MW] 263 269

Psep [MW] 175 136

Ne85/nGW 0.95 0.93

H98 0.89 0.83

H98rad 0.98 0.92
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GENE simulations set-up

35

▪ Two radii of analysis 𝜌𝑡𝑜𝑟 = 0.75 and 𝜌𝑡𝑜𝑟 = 0.85 

▪ Linear simulations to assess the nature of turbulence and have a first 
comparison between the linear stability of NT vs PT

▪ Nonlinear simulations to validate the profiles predicted by RAPTOR

▪ All simulations include kinetic electrons, impurities (He, Xe, W), 
collisions and electromagnetic effects
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Linear simulations: 𝒌𝒚 spectra (ion scale) - 𝝆𝒕𝒐𝒓 = 𝟎. 𝟕𝟓

36

▪ Scenarios 
dominated by ITG 
turbulence

▪ NT more stable 
than PT
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Linear 𝒌𝒚 spectra (ion scale) - 𝝆𝒕𝒐𝒓 = 𝟎. 𝟖𝟓

37

▪ PT dominated by 
ITG

▪ NT dominated by 
mix of ITG/TEM

▪ NT more stable 
than PT for the 
most important ky
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Sensitivity to gradients – with impurities (nonlinear simulations)

38

▪ NT is more stable 
than PT

▪ 20% reduction of 
gradients gives 
reasonable heat 
fluxes (for both 
NT and PT initial 
profiles!)
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Geometric parameters
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Resonant with diamagnetic drift

A. Balestri et al, 2024 PPCF 66 075012

https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d
https://doi.org/10.1088/1361-6587/ad4d1d


1st iteration: CHEASE+RAPTOR simulations

40

▪ Original PT H-mode case 
core gradients reduced by 
15% (optimistic choice). 
From preliminary GK 
simulations, lower 
performance are expected 
for PT H-mode

▪ NT edge density and 
temperature greatly 
reduced and increased 
gradients in the core.

▪ Conservative choice for NT 
density at the edge
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1st iteration: CHEASE+RAPTOR simulations

41

PT NT

Pfus [MW] 1345 1240

Pec [MW] 50 50

Palpha 
[MW]

269 206

Q 26.9 24.8

Prad [MW] 191 142

Psep [MW] 129 115

Ne85/nGW 0.94 0.7

H98 0.81 0.64

H98rad 0.88 0.7
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1st iteration: RAPTOR n, T profiles
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Linear GENE from RAPTOR profiles,  𝒌𝒚 (ion scale) - 𝝆𝒕𝒐𝒓 = 𝟎. 𝟔𝟓

43

▪ Scenarios 
dominated by ITG 
turbulence

▪ NT more stable 
than PT
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Linear GENE from RAPTOR profiles,  𝒌𝒚 (ion scale) - 𝝆𝒕𝒐𝒓 = 𝟎. 𝟕𝟓

44

▪ Scenarios 
dominated by ITG 
turbulence

▪ NT more stable 
than PT
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Linear GENE from RAPTOR profiles,  𝒌𝒚 (ion scale) - 𝝆𝒕𝒐𝒓 = 𝟎. 𝟖𝟓

45

▪ PT dominated by 
ITG

▪ NT dominated by 
mix of ITG/TEM

▪ NT more stable 
than PT for the 
most important ky
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Nonlinear GENE: Sensitivity to gradients – with impurities

46

▪ NT heat flux 
overestimated 
between 1.5 and 2. 
Mostly due to 
neglection of 
tungsten

▪ NT more stable than 
PT for all radial 
position. Strong 
stabilization of 
turbulence.
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RAPTOR PT and NT DEMO next iteration (Ip=17.75MA)

• NT L-mode allows for higher 
R/Lne (and ne(edge) as well)

• NT and NT conservative ok 
with respect to GENE 
nonlinear simulations

• Higher density yields high 
Pfus at lower H factor. Hence 
importance of density limit 
experiments/theory
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RAPTOR PT and NT DEMO operating points (Ip=17.75MA)

48

PT PT conservative NT NT conservative

Pfus [MW] 1933 1344 2302 1740

Pec [MW] 50 50 0 - 50 0 - 50

Palpha [MW] 387 269 460 348

Q 38.7 26.9 Inf - 46.1 Inf - 35.1

Prad [MW] 262 189 276 - 330 226 - 280

Psep [MW] 175 131 185 - 182 123 - 122

PLH 139 134 - -

n(Xe)/ne 6∙ 10−4 4∙ 10−4 3 - 4∙ 10−4 2 - 3∙ 10−4

Psep/R0 [MW/m] 20 15 21 14

ne0/nevol 1.46 1.39 1.76 1.76

nevol/nGW 1.06 1.03 1.15 1.15

H98 0.99 0.89 0.80 0.76

betaN(th) 2.02 1.63 1.77 1.52

li3 0.94 0.88 1.20 1.12

q95 3.73 3.77 3.05 3.08

Vloop [mV] 45 54 56 - 60 66 - 71O. Sauter | towards NT-DEMO/VNS | 17/09/2025



What about NT-VNS ?

• Present design uses small top  to avoid large ELMs, as expected from A. Merle et al
• But worse confinement in both L-mode and H-mode
• Let's move to d(top)<-0.2: no ELMs large power demonstrated in JET, better 

confinement
• Win-Win: easier to operate, test NT at large scale
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Ohmic TCV triangularity scan: worse conf at =0
EPED-CH: still small ELMs at =0

A. Merle et al., 2017 PPCF 59 104001S. Coda et al., 2022 PPCF 64 014004

https://doi.org/10.1088/1361-6587/aa7ac0
https://doi.org/10.1088/1361-6587/aa7ac0
https://doi.org/10.1088/1361-6587/ac3fec
https://doi.org/10.1088/1361-6587/ac3fec
https://doi.org/10.1088/1361-6587/ac3fec


Conclusion and Outlook

• All the important questions from the ad-hoc group 2020 have been addressed 
successfully in present tokamaks. "Last" being resolved is the confinement in the 
recent AUG experiments (but clearly better than PT L-mode) 

• Density limit proven better than expected

• Resilience to impurities has proven better than expected. In addition to avoiding
constraints on PLH

• Confinement prediction from first principles emerging (but not really more uncertain
than pedestal prediction in PT H-modes, ELM size and core confinement)

• Next steps:
• Continue optimization using CHEASE-RAPTOR-GENE for ballooning (L-mode), full 

discharge 1D system code with transients, GK fluxes

• Add meq-RAPTOR for free boundary calculations and control issues

• Optimize NT-DEMO and VNS (probably best target since avoids ELMs altogether
and offers similar to better conf than =0, tbd)
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