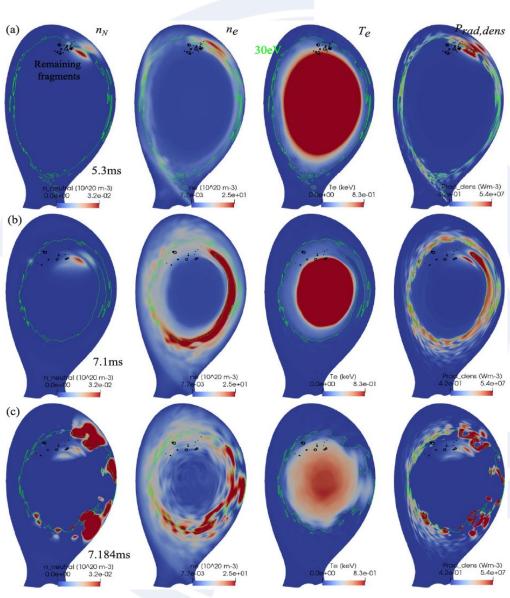


3rd Annual Meeting of EUROfusion HPC ACHs

Cray's inferno: a journey through the porting of the JOREK code on LUMI-C

C. Sommariva, M. Kong, L. Édes, C. Wang, E. Lanti and M. Hoelzl

École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland MaxPlanck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching b. M., Germany



A brief overview of the JOREK code

JOREK is an extended 3D-time varying (reduced and full) MHD code applied to the simulation of fusion plasma transients in realistic 3D geometries [1,2].

Key features of the JOREK code:

- Spatial integration via finite element method on unstructured grid
 - Fourier polynomials (toroidal) and G_n-continuous elements (poloidal)
- Fully non-linear time-marching temporal integration
- Multiple linear solvers (MUMPS [3], PasTix [4], STRUMPACK [5], ...)
- Hybrid MPI-OpenMP parallelization (GPU porting underway)
 - MPI parallelization mainly w.r.t. the toroidal harmonics
 - Additional parallelization within the linear solvers
- Free boundary simulation via coupling with external wall solvers
 - STARWALL [6], CARIDDI [7]
- Kinetic solver via Monte-Carlo integration
 - Particle tracking (6D & 5D), collisions, atomic physics, ...

JOREK simulated MHD activity due to shattered pellet injection in a JET-like plasma (courtesy of M. Kong, [8])

The European pre-exascale system: LUMI

LUMI is a pre-exascale European HPC system in production since 2023

- Cray cluster @ 9th place in the top500 [9] list with 379.70 PFlop/s (Linpack)
- Multiple available partitions for computing:
 - LUMI-G: 2978 nodes (1x64 cores AMD EPYC 7A53 Trento, 512GB RAM, 2x2 MI250 GPUs, 1x 200GB/s HPE slingshot-11)
 - LUMI-C: 1888 nodes w 256GB RAM, 128 nodes w 512GB RAM, 32 nodes w 1024GB RAM (2x64 cores AMD EPYC 7763, 1x 200GB/s HPE slingshot-11)
- Multiple available storage options:
 - LUMI-P: Lustre disk based parallel filesystem w 20PB at 240GB/s
 - LUMI-F: Lustre solid state parallel filesystem w 8PB at 740GB/s
 - LIMI-O: object storage filesystem accessible via webservice and S3
 API w 30PB of storage (not tested in this task)
- Local support for basic installation tasks provided by the LUST team
 - Possible to have more extensive support through the EuroHPC JU (EPICURE, not used here)

LUMI HPC [10]

LUMI HPC architecture [10]

Why porting JOREK on LUMI? What are the requirements & initial conditions?

2024 has been a difficult year for a fraction of the JOREK users:

- Marconi & Pitagora unavailable
- Part of JOREK operation on Leonardo hindered due to bug in the Intel OneAPI - 2021 compiler (solved with OneAPI 2023)
- Leonardo computation resources in fast depletion
- ⇒ Need to diversify the HPC providers of the JOREK community

Dependencies required by the JOREK code (not exhaustive):

- Graph partitioning libraries: Metis, ParMetis, Scotch, PtScotch
- Mathematical libraries: MKL, Cray Scientific Library,
- Dense matrix solvers: MUMPS
- Sparse matrix solvers: STRUMPACK, PasTix
- FFT library: FFTW 3.3.10
- I/O Library: HDF5 1.12 or above
- Object oriented enabled FORTRAN compiler (2011 or above)
- MPI library (better if with full support to multi-threading)

Available resources on LUMI

- GPU-enabled JOREK not in production yet
 - ⇒ JOREK installation performed on LUMI-CPU (LUMI-C)
- Granted pre-production resources on LUMI-C
 - 2000Nh for pre-production project

Available environment on LUMI-C

- HPE Cray Cray Programming Environment 24.03
 - Graph: Scotch 7.0.4, Metis 5.1.0, ParMetis 4.0.3
 - Math: Cray LibSci, Boost 1.83.0
 - IO: parallel HDF5 1.12.2
- HPE GNU Cray Programming Environment 24.03
 - Graph: Scotch 7.0.4, Metis 5.1.0, ParMetis 4.0.3
 - Math: cray-libsci, Boost 1.83.0, FFTW-3
 - IO: parallel HDF5 1.12.2

EasyBuild repository for: MUMPS 5.5.1 & STRUMPACK 7.0.1

First test: Library installation using Cray – CPE environment

First test: compile & install MUMPS and STRUMPACK using HPE Cray – CPE 24.03

- Linked libraries: Metis, ParMetis, Scotch, Cray LibSci from Cray environment
 - ⇒Compilation was successful
 - ⇒Both MUMPS and STRUMPACK tests returned segmentation fault

Third test: compile & install MUMPS using HPE Cray — CPE 24.03 via LUST EasyBuild receipt

- Linked libraries: Metis, ParMetis, Scotch, Cray LibSci from Cray environment
 - ⇒Compilation was successful
 - ⇒Both MUMPS and STRUMPACK tests returned segmentation fault (again)

Second test compile & install: GKLib, Metis, ParMetis, MUMPS, STRUMPACK using HPE Cray — CPE 24.03

- Linked libraries: Cray LibSci from Cray environment
 - ⇒Compilation was successful for all the libraries
 - ⇒Both MUMPS and STRUMPACK tests returned segmentation fault
 - ⇒Support ticket to LUST was opened

After a series of failures in compilation, installation & testing:

- Identified an issue with the Cray CPE compiler and/or Cray LibSci with the handling of multi-threading
 - ⇒Compilation and testing of MUMPS was successful imposing multi-threading optimization -Othread1
 - ⇒Tested compilation of FFTW-3: successful
 - ⇒STRUMPACK testing still failing with segmentation fault (works only for serial applications)

First test: installation of JOREK using Cray – CPE Environment

JOREK installation using Cray compilers is not straight forward

- \Rightarrow JOREK source code must be modified for compilation
- 1. Fortran "implicit" statements must be removed in SIMD declaration
- 2. Order of compiling flags must be changed
- 3. Module access ("use") statements must be moved after SIMD declaration
- 4. Commas after "write" statements must be removed
- 5. Modifications to internal function calls for complying with FORTRAN standard
- 6. Renaming of variables in "select type" statements
- ⇒ Compilation of JOREK using LUMI Cray-CPE succeeded!
- ⇒ Segmentation faults when running standard test cases!
- ⇒ Opened second discussion with LUST for solving execution problems

```
#ifdef _CRAYFTN
#if OPENMP >= 201511
                                use phys_module, only: T_1, T_min_neg, corr_neg_temp_coef
    !$omp declare simd
                              #endif
#ifndef CRAYFTN
                                !$omp declare simd
    implicit none
                              #ifndef CRAYFTN
#endif
                                use phys module, only: T_1, T_min_neg, corr_neg_temp_coef
#else
                              #endif
    implicit none
                              #else
                                use phys_module, only: T_1, T_min_neg, corr_neg_temp_coef
#endif
```

```
#ifndef _CRAYFTN
    !> WARNING: access=append IS NOT standard FORTRAN language
    open(ifile, file=filename, form='formatted', access='append', iostat=ioerr)
#else
    open(ifile, file=filename, form='formatted', position='append', iostat=ioerr)
#endif
```

```
select type (pa => particles(j))
select type (part=>particles(j))
type is (particle_kinetic_leapfrog)
pa%v = ran(5:7) ! save other components of this point for velocity init in a later routine
part%v = ran(5:7) ! save other components of this point for velocity init in a later routine
end select
```

Please note that this also means that i will help you get your code running on LUMI using ONE compiler, e.g. the GNU-compiler. If you then afterwards want to try out the Cray-compiler you will have to do that by yourself

Second test: JOREK installation using GNU-CPE environment

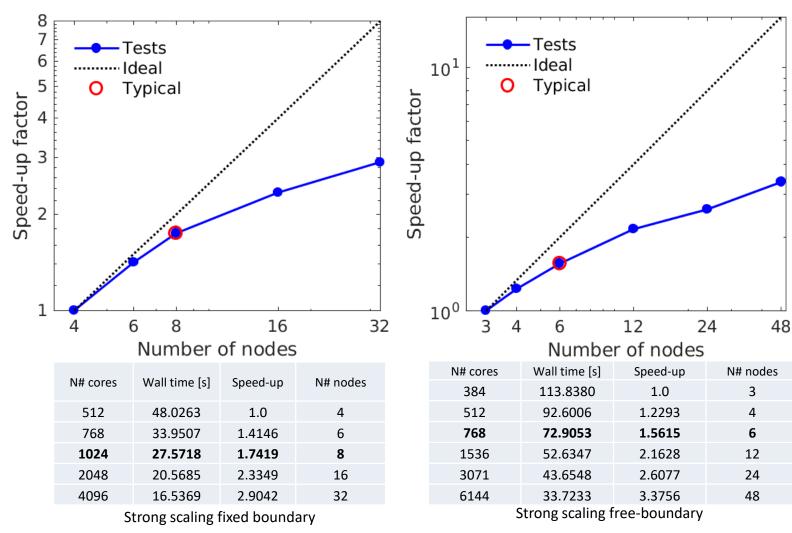
Starting again: new compilation of MUMPS and STRUMPACK using the GNU-CPE environment

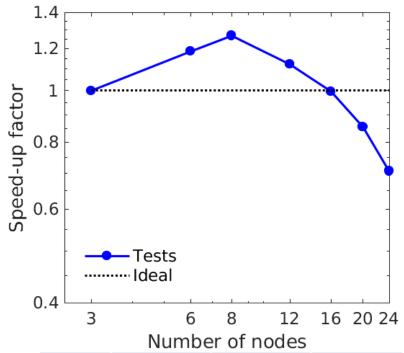
- Compilation of both MUMPS and STRUMPACK with <u>"self"-</u> compiled Metis and ParMetis:
 - ⇒Segmentation fault!
- Compilation of MUMPS with Metis and ParMetis available in the GNU-CPE software stack:
 - ⇒ Success (no-optimization reduction needed)!
- Compilation of STRUMPACK: segmentation faults!
 - ⇒Tested compilation using GNU-CPE software stack
 - ⇒Tested installation with EasyBuild
 - ⇒Tested job submission for reducing memory footprint
 - ⇒Clues suggest a possible bug in the Cray LibSci library
 - ⇒Require compiling all software stack with OpenBLAS
 - ⇒Solution dismissed due to project time limit ...

Installation of the JORKE code using GNU-CPE environment

- JOREK installed mostly using libraries available in the GNU-CPE software stack of LUMI-C
- Only available linear solver: MUMPS
 - ⇒ Expected reduced performance with sparse matrix

Nevertheless:


- ⇒ JOREK successfully installed on LUMI-C
- ⇒ All non-regression tests involving MUMPS passed successfully
- ⇒ All unit tests passed successfully
 - ⇒ Residual segmentation fault issues persist for JOREK branches not merged with the main develop branch


What about using different sparse solvers than STRUMPACK?

- ⇒ Tested installation of PasTix 5.2.3
 - ⇒ Failure due to segmentation faults of the tests

Code performance on LUMI-C using GNU-CPE

N# cores	Wall time [s]	Speed-up	N# nodes
384	48.4957	1.0	3
768	40.9261	1.1898	6
1024	38.2421	1.2549	8
1536	43.2622	1.1730	12
2048	48.6455	1.0618	16
2560	56.7384	0.8951	20
3072	68.6783	0.7023	24
Week scaling fixed houndary			

Weak scaling fixed boundary

⇒ Wall time and scaling considered satisfactory by the users!

Conclusions

- JOREK code successfully ported on LUMI CPU partition, but:
 - Impossible to compile using HPE Cray compilers
 - MUMPS compiled but with reduced multi-threading optimization level
 - STRUMPACK compiled but with segmentation fault in testing
 - JOREK code modified for complying with Cray compiler standard
 - Still segmentation fault while testing
 - Successfully compiled and tested the JOREK code with GNU compilers
 - STRUMPACK compiled but with still segmentation fault in testing (works for serial applications applications)
 - ⇒Most probably, the HPE Cray Scientific Library is the source of errors
 - ⇒Maybe some issue related with the HPE slingshot interconnect?
- Wall time, strong and weak scaling considered satisfactory by the user
 - Tested production fluid Runaway electron test case
 - Both fixed and free boundary simulation tested
- Production project for JOREK allocation on LUMI-C submitted and under review

Lessons learned and future work

- Identify source of issue with STRUMPACK and JOREK
 - ⇒Test new release of HPE Cray compilers & MPI
 - ⇒Test new release of HPE Cray Scientific Library
 - ⇒Test open-source mathematical libraries (BLAS, BLACS, LAPACK, ScaLAPACK)
- Code porting on new systems becomes more challenging with time
 - Variegate architectures are appearing in the scene
 - More complex libraries with challenging installation
 - Support from help desks may be doubtful (similar issue with CINECA-Leonardo ...)
 - Code installation and testing may require tens of days of work from several people
 - ⇒Investigate the containerization of codes for efficient porting on different machine should be studied and tested

THANK YOU!

- [1] M. Hoelzl et al., Nucl. Fus., vol. 64, p. 112016, 2024
- [2] M. Hoelzl et al., Nucl. Fus., vol. 61, p. 065001, 2021
- [3] P. R. Amestoy et al., SIAM J. Matrix Anal. Appl., vol. 23, p. 15, 2001
- [4] P. Hénon et al., Parallel Comput., vol. 28, p. 301, 2002
- [5] P. Ghysels et al., IEEE Int. Parallel and Distrib. Processing Symp. (IPDPS), p. 897, 29 May 2 June, 2017
- [6] P. Merkel et E. Strumberger., arXiv 1508.04911, 2015
- [7] R. Albanese et al., IEEE Proc. A, vol. 135, p. 457, 1988
- [8] M. Kong et al., Nucl. Fus., vol. 64, p. 066004, 2024
- [9] https://top500.org/
- [10] https://lumi-supercomputer.eu/lumi-supercomputer/
- [11] https://www.storicang.it/a/viaggio-nellinferno-di-dante 15320