

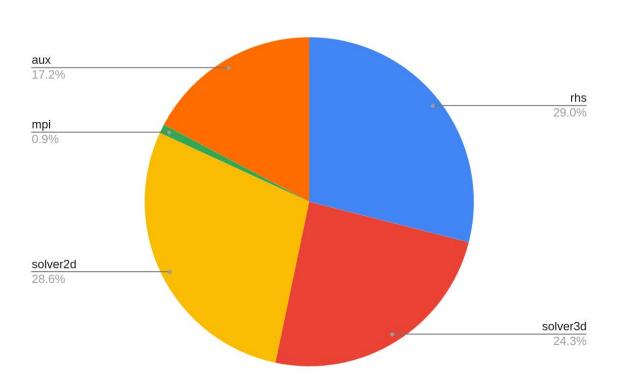
ACH Meeting November 2025

Nicola Varini

GRILLIX

Nicola Varini Andreas Stegmeir

GRILLIX



- The solver2d is performed by parallax:
 - Collaboration for GPU porting
- The solver3d will be ported on GPU by ACH
- The RHS will be ported to GPU last.

The 3D solver applied to heat flux solver

We need to solve

$$\lambda u - \xi \mathbf{P} c \mathbf{Q} u = b$$

In its most basic form, the provided matvec routine does the following: (see GRILLIX: src/solver_aligned3d/solve_aligned3d_s.f90)

- Send/receive u to/from rank+1/rank-1 [MPI COMMUNICATION]
- Multiply Q*u blockwise →heat flux q [SPMV OPERATION]
- Send/receive q to/from rank-1/rank+1 [MPI COMMUNICATION]
- Multiply P*q blockwise [SPMV OPERATION]

The 3D solver code

```
if ((tstep_implicit_level == 0) &
            .or.(tstep_implicit_level == 1) ) then
            call perf_start('
                                     pardif_comp')
#ifdef ENABLE_CUDA
            !call debug device(rank)
            call map%par_grad_cuda(var%vals, var%hfwd, dvar_dpar%vals, 1)
#else
            !$omp parallel default(none) shared(map, var, dvar dpar)
            call map%par_grad(var%vals, var%hfwd, dvar_dpar%vals)
            !$omp end parallel
#endif
           call perf stop('
                                    pardif comp')
            ! Parallel divergence
            call perf_start('
                                     pardif mpi')
            call dvar dpar%start comm halos(comm handler)
            call dvar dpar%finalize comm halos(comm handler)
            call perf stop('
            call perf start('
                                     pardif comp')
#ifdef ENABLE CUDA
            call map%par_divb_cuda(dvar_dpar%vals, dvar_dpar%hbwd, d2var_dpar2)
#else
            !$omp parallel default(none) shared(map, dvar_dpar, d2var_dpar2)
            call map%par_divb(dvar_dpar%vals, dvar_dpar%hbwd, d2var_dpar2)
            !$omp end parallel
#endif
            call perf stop('
                                    pardif comp')
        endif
```

- Parallel gradient and parallel divergence are ported in CUDA with the cusparse library.
 - Arrays are passed between Fortran and C++.
- The auxiliary arrays are allocated with cudaMallocManaged for easy interoperability with CPU.
- MPI call in between.

The 3D solver code

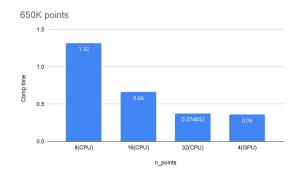
```
use perf m. only : perf start, perf stop
       class(parallel map t), intent(in) :: self
       real(GP), dimension(self%grad_stag_cano_bwd%ncol), intent(in) :: ucano
       real(GP), dimension(self%grad stag cano fwd%ncol), intent(in) :: ucano fwd
       real(GP), dimension(self%grad_stag_cano_fwd%ndim), intent(out) :: par_grad_u_stag
       call perf_start('pgrad_cuda_copy')
       call copydoubleh2d(self%grad stag cano fwd cuda%x, ucano fwd, self%grad stag cano
       call copydoubleh2d(self%grad stag cano bwd cuda%x, ucano, self%grad stag cano bwd
        call setvecvals(self%grad_stag_cano_fwd_cuda%cuda_struct, self%grad_stag_cano_fwd
cuda%x)
        call setvecvals(self%grad stag cano bwd cuda%cuda struct, self%grad stag cano bwd
cuda%x)
       call perf stop('pgrad cuda copy')
       call perf_start('pgrad_cuda_spmv')
       call spmv_cusparse(self%grad_stag_cano_fwd_cuda%cuda_struct)
       call spmv cusparse(self%grad stag cano bwd cuda%cuda struct)
       call perf stop('pgrad cuda spmy')
       call perf start('pgrad cuda update')
       par_grad_u_stag = self%grad_stag_cano_fwd_cuda%y-self%grad_stag_cano_bwd_cuda%y
       call perf stop('pgrad cuda update')
    end subroutine
```

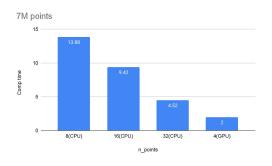
```
nte subroutine par_grau_cuda(sett, ucano, ucano_two, par_grau u stag)
       use perf m. only : perf start, perf stop
       class(parallel map t), intent(in) :: self
       real(GP), dimension(self%grad stag cano bwd%ncol), intent(in) :: ucano
       real(GP), dimension(self%grad stag cano fwd%ncol), intent(in) :: ucano fwd
       real(GP), dimension(self%grad stag cano fwd%ndim), intent(out) :: par grad u stag
       call perf_start('pgrad_cuda_copy')
       call copydoubleh2d(self%grad_stag_cano_fwd_cuda%x, ucano_fwd, self%grad_stag_cano_
fwd cuda%nrows)
       call copydoubleh2d(self%grad_stag_cano_bwd_cuda%x, ucano, self%grad_stag_cano_bwd
       call setvecvals(self%grad_stag_cano_fwd_cuda%cuda_struct, self%grad_stag_cano_fwd
cuda%x)
       call setvecvals(self%grad stag cano bwd cuda%cuda struct, self%grad stag cano bwd
cuda%x)
       call perf_stop('pgrad_cuda_copy')
       call perf start('pgrad cuda spmv')
       call spmv_cusparse(self%grad_stag_cano_fwd_cuda%cuda_struct)
       call spmv_cusparse(self%grad_stag_cano_bwd_cuda%cuda_struct)
       call perf_stop('pgrad_cuda_spmv')
       call perf_start('pgrad_cuda_update')
       par_grad_u_stag = self%grad_stag_cano_fwd_cuda%y-self%grad_stag_cano_bwd_cuda%y
       call perf_stop('pgrad_cuda_update')
   end subroutine
```

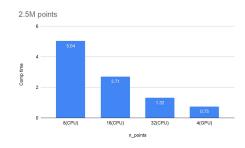
```
extern "C" void spmv_cusparse_(matvec_struct *& mv) {
    cusparseSpMV(
        mv->handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
        &(mv->alpha),mv->matA,mv->vecX,&(mv->beta),mv->vecY, CUDA_R_64F,
        CUSPARSE_SPMV_CSR_ALG1, mv->dBuffer);

cudaDeviceSynchronize();
```


Benchmark results







- We measure only the compute time.
- In the current implementation there's a memory transfer operation which should disappear when the remaining part of GRILLIX are ported on GPU.
- At scale the GPU is ~2 times faster compared to CPU(32 threads)

Feltor

Nicola Varini Matthias Wiesemberg

Miniapp

3D Elliptic Operator Implementation in the FELTOR Framework

Purpose

 Implements a 3D elliptic operator solver (boundary-handling version) using FELTOR's discontinuous Galerkin (dG) framework.

Key Functionalities

- Use the same multigrid solver as in Feltor.
- Applies this operator to vectors (right-hand side).
- Interfaces with FELTOR's grid, weights, and solver modules.

Inputs & Outputs

Inputs: Grid geometry, σ field, boundary condition types.

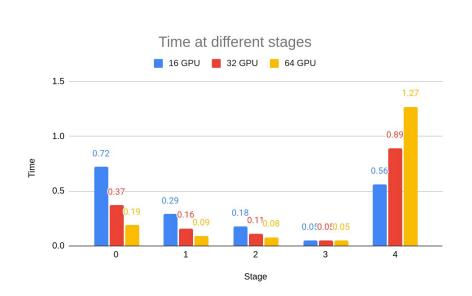
Outputs: Operator object, solution vector (ϕ) .

Miniapp - benchmark

- Goal: to study the performance of the elliptic solver
 - o It is interesting to test the scaling in the poloidal plane
- Benchmark size:
 - Nx=2048, Ny=4096, Nz=32
 - 5 stage multigrid
- Strong scaling and profiling on Pitagora@GPU

```
cmd = [
         "nsys", "stats", "-r", val, "--filter-nvtx", "stage"+str(stage), "--format",
         "json","--output",".","--force-overwrite","true",filename
]
val = {
    "mpi": "mpi_event_sum",
    "cuda": "cuda_gpu_sum"
}
```


Solver profiling - Native implementation

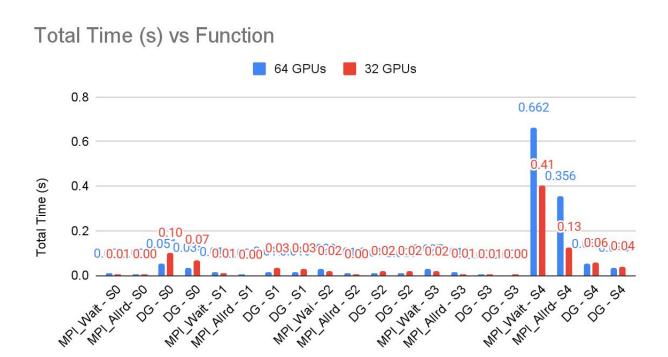


- Good scaling for Stage 0-2(finest)
- Stage 3 and 4 are coarser and the scaling is not good
- Stage 4 takes many iterations
 - Artifact of the simulation

nodes	TTS
16	1.85
32	1.74
64	1.99

#TASK	Stage	Time	Iteration
0	0	0.72	23
1	1	0.29	40
2	2	0.18	90
3	3	0.05	90
4	4	0.56	2200
0	0	0.37	23
1	1	0.16	40
2	2	0.11	90
3	3	0.05	90
4	4	0.89	2200
0	0	0.19	23
1	1	0.09	40
2	2	0.08	90
3	3	0.05	90
4	4	1.27	2200

Profiling different stages



Function

- By using nsys it is possible to extract how much time is spent in MPI and CUDA
- On Stage 4 the communication time explodes
 - Lots of iterations
- Still, it is instructive to explore mitigation strategies

Solver optimization

- For level 3 and 4 MPI_Gather on Rank 0
- Next:
 - Experiment with NCCL/NVSHMEM
 - Benchmark a realistic feltor simulation

nodes	TTS - OPT MPI	TTS - DEF MPI
16	1.85	1.85
32	1.32	1.74
64	1.15	1.99

#TASK	Stage	Time - Opt	Time - Def
16	0	0.72	0.72
16	1	0.29	0.29
16	2	0.18	0.18
16	3	0.05	0.05
16	4	0.56	0.56
32	0	0.37	0.37
32	1	0.16	0.16
32	2	0.11	0.11
32	3	0.06	0.05
32	4	0.57	0.89
64	0	0.195	0.19
64	1	0.09	0.09
64	2	0.08	0.08
64	3	0.06	0.05
64	4	0.59	1.27

SCITAS

GBS

Nicola Varini Micol Bassanini

EPFL Two-fluid turbulent plasma model

No electromagnetic effects

Density
$$rac{\partial n}{\partial t} = -rac{
ho_*^{-1}}{B}[\phi,n] + C(p_e,\phi,n) -
abla_{\parallel}(nV_{\parallel e}) + D_n
abla_{\perp}^2 n + s_n$$

$$\frac{\partial \Omega}{\partial t} = -\frac{\rho_*^{-1}}{B} \nabla \cdot [\phi, n \nabla_\perp \phi] - \nabla \cdot (V_{\parallel i} \nabla_\parallel (n \nabla_\perp \phi)) + B^2 \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\perp^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\perp^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\perp^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\perp^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\perp^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + s_\Omega \nabla_\parallel (j_\parallel) + D_\Omega \nabla_\parallel^2 \Omega + C(p_e, p_i) + c_\Omega \nabla_\parallel (j_\parallel) + c$$

$$\frac{\partial V_{\parallel e}}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, V_{\parallel e}] - V_{\parallel e} \nabla_{\parallel} V_{\parallel e} + \frac{m_i}{m_*} \big(\nu j_{\parallel} + \nabla_{\parallel} \phi - \frac{1}{n} \nabla_{\parallel} p_e - 0.71 \nabla_{\parallel} T_e \big) + \frac{4}{3n} \eta_{0e} \nabla_{\parallel}^2 V_{\parallel e}$$

lon Parallel

$$\frac{\partial V_{\parallel i}}{\partial t} = -\frac{\rho_*^{-1}}{B} [\phi, V_{\parallel i}] - V_{\parallel i} \nabla_{\parallel} V_{\parallel i} - \frac{1}{n} \nabla_{\parallel} (p_e + \tau p_i) + \frac{4}{3n} \eta_{0i} \nabla_{\parallel}^2 V_{\parallel i} + D_{V_{\parallel i}} \nabla_{\perp}^2 V_{\parallel i} + s_{V_{\parallel i}} \nabla_{$$

$$\frac{\partial T_e}{\partial t} = -\frac{\rho_*^{-1}}{B}[\phi, T_e] - V_{\parallel e} \nabla_{\parallel} T_e + \frac{2}{3} T_e \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel e} \nabla_{\parallel} T_e) + s_{T_e} \left[0.71 \frac{\nabla_{\parallel} j_{\parallel}}{n} - \nabla_{\parallel} V_{\parallel e} \right] + C(T_e, n, \phi) + C(T_e,$$

$$\frac{\partial T_i}{\partial t} = -\frac{\rho_*^{-1}}{B}[\phi, T_i] - V_{\parallel i} \nabla_{\parallel} T_i + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel i} \nabla_{\parallel} T_i) + s_{T_i} + \frac{2}{3} T_i \big[j_{\parallel} \frac{\nabla_{\parallel} n}{n^2} - \nabla_{\parallel} V_{\parallel e} \big] + C(T_i, T_e, n, \phi) + \nabla_{\parallel} (\chi_{\parallel} n) + c_{T_i} + c_$$

Potential
$$abla \cdot (n
abla_{\perp} \phi) = \Omega - \tau
abla_{\perp} p_i$$
 Algebraic constraint

Different Time integration schemes

Explicit Time integration schemes:

- Pros:
 - Easy to implement
 - Each time step is computationally fast
 - Easy parallelizable
- Cons:
 - CFL condition on the Δt

Implicit Time integration schemes:

- Pros:
 - No CFL condition (most of them unconditionally stable)
- Cons
 - Expensive per step
 - Complex implementation
 - Harder to parallelize

Implicit-Explicit (IMEX) time integration scheme:

- Pros:
 - Balances stability & efficiency: non-stiff terms are treated explicitly and stiff terms treated implicitly
- Cons:
 - Prior knowledge of the physics
 - Still needs implicit solver (implementation complexity)

Treatment of the Time-Scale separation

Considering $\mathbf{q} = [n, \Omega, V_{\parallel e}]$ and $z = \phi$, the system is of the form:

$$\frac{\partial \mathbf{q}}{\partial t} = \mathbf{F}(\mathbf{q}, z)$$
 Differential Algebraic equation of 1 index DAE-1

where $\frac{\partial g}{\partial z}$ has a bounded inverse.

$$\mathbf{F}(\mathbf{q}, z) = \mathbf{F}_S(\mathbf{q}, z) + \mathbf{F}_F(\mathbf{q}, z)$$

 \mathbf{F}_S are the slow components and are integrated explicitly.

 \mathbf{F}_F are the fast components and are integrated implicitly.

Implicit-Explicit (IMEX) time integration scheme:

- Pros:
 - Balances stability & efficiency: non-stiff terms are treated explicitly and stiff terms treated implicitly
- Cons:
 - Prior knowledge of the physics
 - Still needs implicit solver (implementation complexity)

IMEX-RK for DAE-1: complete implementation

At every internal stage:

1

Computation of the rhs:
$$\mathrm{rhs}_{T_e},\ \mathrm{rhs}_{T_i},\ \mathrm{rhs}_{V_{\parallel i}},\ \mathrm{rhs}_{\Omega},\ \mathrm{rhs}_{V_{\parallel e}},\ \mathrm{rhs}_{\phi}$$

$$rhs_g = g^n + \Delta t \sum_{j=1}^{i-1} a_{ij} f_{g,S} + \Delta t \sum_{j=1}^{i-1} \bar{a}_{ij} f_{g,F}$$

$$T_{a,i}$$

$$\left[\mathbf{I} - \bar{a}_{ii} \Delta t \chi_e \frac{1}{T_e^{(i-1)}} \nabla_{\parallel} \left(T_e^{(i-1)} \nabla_{\parallel} \bullet\right)\right] \left[t_e^{(i)}\right] = \left[\operatorname{rhs}_{T_e}\right] \qquad T_e^{(i)} = \exp t_e^{(i)}$$

$$\left[\mathbf{I} - \bar{a}_{ii} \Delta t \chi_i \frac{1}{T_i^{(i-1)}} \nabla_{\parallel} \left(T_i^{(i-1)} \nabla_{\parallel} \bullet \right)\right] \left[t_i^{(i)}\right] = \left[\operatorname{rhs}_{T_i}\right] \qquad T_i^{(i)} = \exp t_i^{(i)}$$

$$V_{\parallel i}$$

$$\left[\mathbf{I} - \bar{a}_{ii} \Delta t \frac{4}{3n^{(i)}} \nabla_{\parallel}^{2}\right] \left[V_{\parallel i}^{(i)}\right] = \left[\operatorname{rhs}_{V_{\parallel i}}\right]$$

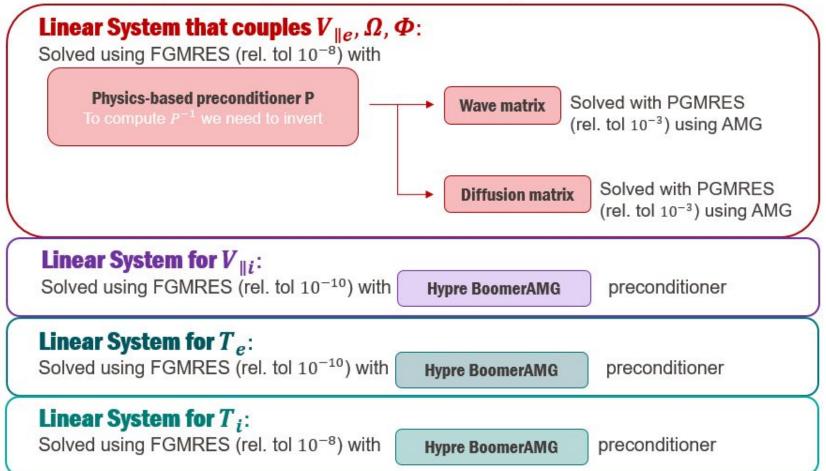
,,

$$\theta^{(i)} = \theta^n + \Delta t \sum_{i=1}^{i-1} a_{ij} f_{n,S}$$
 $n^{(i)} = \exp \theta^{(i)}$

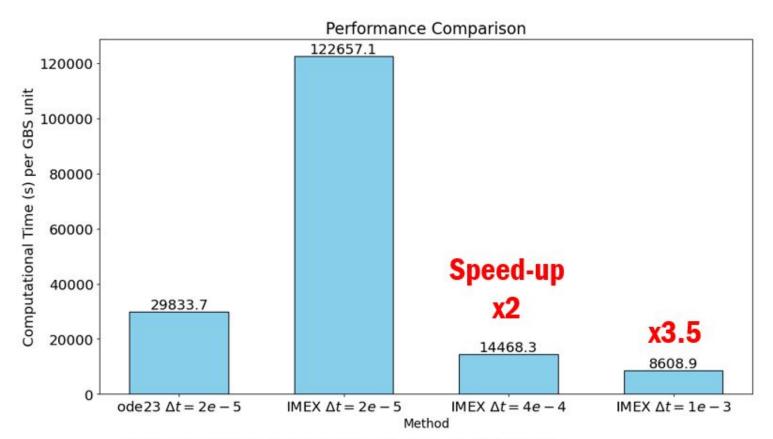
$$\Omega, V_{\parallel e}, \Phi$$

$$\begin{bmatrix} \mathbf{I} & \bar{a}_{ii}\Delta t n^{(i)}\nabla_{\parallel} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} - \bar{a}_{ii}\Delta t \frac{\mathbf{4}}{3n^{(i)}}\nabla_{\parallel}^{2} & -\bar{a}_{ii}\Delta t \frac{m_{i}}{m_{e}}\nabla_{\parallel} \\ \mathbf{I} & \mathbf{0} & -\nabla\cdot\left(n^{(i)}\nabla_{\perp}\right) \end{bmatrix} \begin{bmatrix} \Omega^{(i)} \\ V_{\parallel e}^{(i)} \\ \phi^{(i)} \end{bmatrix} = \begin{bmatrix} \operatorname{rhs}_{\Omega} \\ \operatorname{rhs}_{V_{\parallel e}} \\ \operatorname{rhs}_{\phi} \end{bmatrix}$$

IMEX Implicit Systems Summary



Improved computational efficiency



Test conducted with 4 nodes, 128 tasks per node. LUMI architecture