=PiL

o) .
{_)) EUROfusion
\=¥

® YR w R w 1

Co ' YT

S

SN

4l Ee
" |
3 ! ;
§ : :
N
: *
' |
! kB
'. ‘l
| ! - .
g . 1 1 F-J |
SEEE B
{ \ ¥
1
- R
¢ *_J :
f
. i J
¥ -1y

{

' e

.

aBigelafitele Kiteulafete U EagQeicfleintdeict@e e Qe

v
.

.
i)

|

From SPEC to SPECTRE: breathing Pythonic life

into a legacy Fortran code
E. Lanti, E. Balkovic, C. Smiet, J. Loizu

3rd Annual Meeting of EUROfusion HPC ACHs
Tue. 25th of November 2025, Lausanne

1
I.J

O e O Ul U U U U D Dt D DR L

=PrL
©

= SCITAS

SPEC code

Computing magnetic equilibria

= Compute 3D MHD equilibria using MRxMHD
= Volume is subdivided into regions with V p=0
= |nterfaces between regions are force-free)
ey
"A V x B = ,U,lB
N Fy=[p+B?/2u0) =0
= SPEC does this in two main steps: “Force” TSVV12 mesting 236525

O Field computation
O Optimization of the surfaces

SPEC

et et e e e e el e (i S S S S S EEE RSN EE R E P e] |
: Interface modes: Interface modes: |
1 Rl 111111 Zl lllll 5 . leln Zlnm > :
W \cvton root-finder _— Force object|v<=j = - 5 Bel.tram| \
1 (e.. Powell) truncated Fourier Field 1
: & -— spectrum -— Solver 1

o . . 1
1 , Forceerror: Field on interfaces: :
| Finn[m < Mpol, 1] < Neo] B(9,0) |
! 1

= Doesn’t converge for highly shaped equilibria with many interfaces

ACH 2025 - SPECTRE - Lausanne

ePFL SPEC code

@) Addressing the convergence problem

= The SPC team developed a new minimizer solving the convergence problem
O Field is computed by SPEC (Fortran + MPI + OpenMP)
O Optimization is done by an home-made Python package interfaced to SPEC

inimi py wrapper
New minimizer SPEC
Interface modes: Interface modes:
Rimns Zimn lem Zimn :
Trust-region least- —_— Force abiactive= - Beltrami
) Field

squares optimizer
(e.g. ‘trf’, ‘dogleg’)

Solver

Force in real space =

Force error: . .
; Field on interfaces:

F'(8:¢) B(0,()

= SPEC became a black-box from which we scavenge parts to port in the new code

= SCITAS

ACH 2025 - SPECTRE - Lausanne

=PrL

= SCITAS

From SPEC to SPECTRE

Fortran codebase modernization and standardization
Build system re-writing

Python bindings

Code quality

Cl containerization

Open Source licensing

ACH 2025 - SPECTRE - Lausanne

E;-:'— Modernization of the Fortran codebase
O)
=

= Make the code more maintainable, testable and extensible
= For this the main objectives were:

O Conform to the standard as much as possible
Remove dead and unused code (using code coverage)
Encapsulate related code into modules and set correct visibility
Reduce use of global variables
Impose coding conventions and guidelines

O O O O

, manualT

, volumeT
, coordsT
. basefnT
memoxyT
, met

numrec.f90 pp00ab.f90 spsint.f90
packab.f90 preset.f90 spsmat.f90
packxi.f90 ra@@aa.f90 stzxyz.f90
pcBBaa.f90 rksuite.f tr00ab.f90
pcB0Bab.f90 rzaxis.f90 volume.f90
pp0Baa.f90 sphdf5.f90 wabB0aa.f90

S S)
LSS SIS IS TS TS IS S
(SIS

S

Q.
Q.
Q.
Q.
(/]

Q.
Q.
Q.
Q.
Q.

(SIS

, spsintT
, mp@oacT
, mad2aaT

11 Ttreeab
:+ Teurent
:: Tdfeeab

, treeabT
. cuzentT
, dfeeabT

(SITSINSISRNS BN IS IS)

L T I T T T T

LSS I ST IS IS T I

(SIS

= SCITAS

ACH 2025 - SPECTRE - Lausanne

=PrL

= SCITAS

Removing M4 macros

The SPEC code heavily relies on macros defined in M4 language
Complexify the building process

They make the Fortran code difficult to read

Most of those macros could be written as Fortran subroutines

ACH 2025 - SPECTRE - Lausanne

EPFL Removing M4 macros
(@)

\=
= The SPEC code heavily relies on macros defined in M4 language
= Complexify the building process
= They make the Fortran code difficult to read
= Most of those macros could be written as Fortran subroutines

INTEGER :: vvol, Ndofgl, iflag, cpu_send_one, cpu_send_two, 11, NN, ideriv, iocons
INTEGER :: status(MPI_STATUS_SIZE), requestl, request2

REAL :: Fvec(1:Ndofgl), x(1:Mvol-1), Bt@@(1:Mvol, @©:1, -1:2), 1dItGp(@:1, -1:2)
LOGICAL :: LComputeDerivatives
INTEGER :: deriv, Lcurvature

= SCITAS

ACH 2025 - SPECTRE - Lausanne

EPFL Removing M4 macros
(@)
\:Ef?

= The SPEC code heavily relies on macros defined in M4 language
= Complexify the building process

= They make the Fortran code difficult to read

= Most of those macros could be written as Fortran subroutines

INTEGER :: vvol, Ndofgl, iflag, cpu_send_one, cpu_send_two, 11, NN, ideriv, iocons
INTEGER :: status(MPI_STATUS_SIZE), requestl, request2

REAL :: Fvec(1:Ndofgl), x(1:Mvol-1), Bt@@(1:Mvol, @©:1, -1:2), 1dItGp(@:1, -1:2)
LOGICAL :: LComputeDerivatives

INTEGER :: deriv, Lcurvature

m4_define (INTEGER,integer)m4_dnl ; can put comments here;
m4_define(REAL,real(8))m4_dnl ; can put comments here;

= SCITAS

ACH 2025 - SPECTRE - Lausanne

m
~ T
.;’JI'I_

7

€

= SCITAS

Removing M4 macros

= The SPEC code heavily relies on macros defined in M4 language
= Complexify the building process

= They make the Fortran code difficult to read

= Most of those macros could be written as Fortran subroutines

INTEGER :: vvol, Ndofgl, iflag, cpu_send_one, cpu_send_two, 11, NN, ideriv, iocons
INTEGER :: status(MPI_STATUS_SIZE), requestl, request2

REAL :: Fvec(1:Ndofgl), x(1:Mvol-1), Bt@@(1:Mvol, @©:1, -1:2), 1dItGp(@:1, -1:2)
LOGICAL :: LComputeDerivatives

INTEGER :: deriv, Lcurvature

m4_define (INTEGER,integer)m4_dnl ; can put comments here;

m4_define(REAL,real(8))m4_dnl ; can put comments here;

HSCALL(sphdfs, : hdfier), __FILE_, _ LINE_)

HSCALL (sp , _FILE__, _LINE__)

ACH 2025 - SPECTRE - Lausanne

=PrL

= SCITAS

Managing precision using kinds

By default, Fortran real numbers are of “single precision”
Different techniques to impose real “double precision”

O Use compiler flag

O Use Fortran double precision type

O Usekinds'!

Kind parameters are integers specifying which type representation to use (how
bits are mapped to numbers)

For reals, one could define a kind representing IEEE-754 double precision using:

> Kind value for 64bits IEEE-754 (~15 digits, 1071307)
integer, parameter :: dp = selected_real_kind(15, 307)

Could also use real64 from iso_fortran_env, butitis less portable’

1 https://stevelionel.com/drfortran/2017/03/27/doctor-fortran-in-it-takes-all-kinds/

ACH 2025 - SPECTRE - Lausanne

EPFL Managing precision using Kinds

A > ti
g_j}) Quiz time

1 program test_kinds

2 implicit none

3

4 1> Kind value for 64bits IEEE-754 floats (~15 digits, 10/A+307)
5 integer, parameter :: dp = selected_real_kind(15, 307)
6

7 real :: pi_sp_sp = 3.1415926535897932385

8 real(dp) :: pi_dp_sp = 3.1415926535897932385

9 real(dp) :: pi_dp_dp = 3.1415926535897932385_dp

10

11 print*, "pi_sp_sp", pi_sp_sp

1.2 print*, "pi_dp_sp", pi_dp_sp

13 print*, "pi_dp_dp", pi_dp_dp

14 end program test_kinds

15

= SCITAS

ACH 2025 - SPECTRE - Lausanne

EPFL Managing precision using Kinds

A > ti
g_j}) Quiz time

1 program test_kinds

2 implicit none

3

4 1> Kind value for 64bits IEEE-754 floats (~15 digits, 10/A+307)
5 integer, parameter :: dp = selected_real_kind(15, 307)
6

7 real :: pi_sp_sp = 3.1415926535897932385

8 real(dp) :: pi_dp_sp = 3.1415926535897932385

9 real(dp) :: pi_dp_dp = 3.1415926535897932385_dp

10

11 print*, "pi_sp_sp", pi_sp_sp ! 3.14159274

1.2 print*, "pi_dp_sp", pi_dp_sp

13 print*, "pi_dp_dp", pi_dp_dp

14 end program test_kinds

15

= SCITAS

ACH 2025 - SPECTRE - Lausanne

EPFL Managing precision using Kinds

A > ti
g_j}) Quiz time

1 program test_kinds

2 implicit none

3

4 1> Kind value for 64bits IEEE-754 floats (~15 digits, 10/A+307)
5 integer, parameter :: dp = selected_real_kind(15, 307)
6

7 real :: pi_sp_sp = 3.1415926535897932385

8 real(dp) :: pi_dp_sp = 3.1415926535897932385

9 real(dp) :: pi_dp_dp = 3.1415926535897932385_dp

10

11 print*, "pi_sp_sp", pi_sp_sp ! 3.14159274

1.2 print*, "pi_dp_sp", pi_dp_sp ! 3.1415927410125732

13 print*, "pi_dp_dp", pi_dp_dp

14 end program test_kinds

15

= SCITAS

ACH 2025 - SPECTRE - Lausanne

EPFL Managing precision using Kinds

@) Quiz time
1 program test_kinds
2 implicit none
3
4 1> Kind value for 64bits IEEE-754 floats (~15 digits, 10/A+307)
5 integer, parameter :: dp = selected_real_kind(15, 307)
6
7 real :: pi_sp_sp = 3.1415926535897932385
8 real(dp) :: pi_dp_sp = 3.1415926535897932385
9 real(dp) :: pi_dp_dp = 3.1415926535897932385_dp
10
11 print*, "pi_sp_sp", pi_sp_sp ! 3.14159274
1.2 print*, "pi_dp_sp", pi_dp_sp ! 3.1415927410125732
13 print*, "pi_dp_dp", pi_dp_dp ! 3.1415926535897931
14 end program test_kinds
15

= SCITAS

ACH 2025 - SPECTRE - Lausanne

EPFL Managing precision using Kinds

@) Quiz time
1 program test_kinds
2 implicit none
3
4 1> Kind value for 64bits IEEE-754 floats (~15 digits, 10/A+307)
5 integer, parameter :: dp = selected_real_kind(15, 307)
6
7 real :: pi_sp_sp = 3.1415926535897932385
8 real(dp) :: pi_dp_sp = 3.1415926535897932385
9 real(dp) :: pi_dp_dp = 3.1415926535897932385_dp
10
11 print*, "pi_sp_sp", pi_sp_sp ! 3.14159274
1.2 print*, "pi_dp_sp", pi_dp_sp ! 3.1415927410125732
13 print*, "pi_dp_dp", pi_dp_dp ! 3.1415926535897931
14 end program test_kinds
15

= |n addition to adding kind parameters, one must also take care of literals, and
functions, e.g. cmplx
O Difficulty: literals can be written 1.0, 1.0E0, 1.0DO0, 1DO0, 1EO0, 1.DO0, 1.EO, .1, .1DO0, efc.

= SCITAS

ACH 2025 - SPECTRE - Lausanne

=PrL

= SCITAS

Cleaning the build configuration

= Remove outdated Makefile configuration
= Rewrite CMake configuration and adhere to modern CMake

O Reduce complexity (450 lines to 150 lines)

ACH 2025 - SPECTRE - Lausanne

E;f)'— Cleaning the build configuration

&
N\
\=

= Remove outdated Makefile configuration
= Rewrite CMake configuration and adhere to modern CMake

O Reduce complexity (450 lines to 150 lines)

= Use of CMake presets
O Store project configuration in version-controlled JSON files, “CMakePresests.json’
O Must-have for ClI build, IDEs, etc.
O Simplify user experience
O Separate generic configuration from machine/environment specific

. > cmake -
cmake -B build \ Preset CMake variables:
AKE_BUILD_TYPE=Release \

I_F@8=0N \ - CMAKE_BUILD_TYPE="Release"

USE_MPI_F@8="ON"

[...]

= SCITAS

ACH 2025 - SPECTRE - Lausanne

E;;L Interfacing Fortran with Python

There are three main ways of interfacing Fortran and Python
O Using ctypes to load a shared object
O Writing a Fortran <-> C interface and use PyBind
O Using f2py and f90wrap
Later is chosen because less boilerplate code
O f90wrap generates simpler Fortran interfaces for f2py and a Python interface module

O f2py generates the Fortran <-> C interface
Scikit-build-core is used as a build backend for CMake <-> Python

Limitations of f90wrap
O project is maintained by one person and documentation is gappy
O Not working as advertised (issue opened with solution since August 6th)
O Downcase everything

= SCITAS

ACH 2025 - SPECTRE - Lausanne

=PrL

= SCITAS

Improving code quality

Various tools and workflow have been used to improve code quality
= Fortran
O Fortitude: an open source Fortran linter built upon Ruff
O Codee formatter: a free commercial code formatter
= Python
O Ruff: (extremely fast) linter and code formatter
= Treatment of the warnings from the different tools
= Coding guidelines
= Code review

ACH 2025 - SPECTRE - Lausanne

https://fortitude.readthedocs.io/en/stable/
https://www.codee.com/codee-formatter/
https://docs.astral.sh/ruff/

=PrL

= SCITAS

Cl setup

= New Cl setup currently being implemented
O Build, test, code quality and doc generation
= Docker image containing an extensible software stack to compile SPECTRE

ACH 2025 - SPECTRE - Lausanne

ePFL Cl setup
©
=
= New Cl setup currently being implemented
O Build, test, code quality and doc generation
= Docker image containing an extensible software stack to compile SPECTRE

Easily generate software stack using Spack
- lmd O Core packages: built once with default compiler
e O Packages: built by each compiler

- openmpi
- openblas

O Compilers
Use also by users for reproducible build environment

@ Spack

- py-mpidpy

re-packages]

- matrix:
- [$packages]
- [$%compilers]

= SCITAS

ACH 2025 - SPECTRE - Lausanne

=PrL

= SCITAS

Licensing

= SPEC was licensed under GPLv3
O Can be problematic, especially for collaboration with private companies

= Original authors accepted to switch to MIT license
= SPECTRE code available shortly on GitLab.com:

https://qitlab.com/spectre-eq/spectre

ACH 2025 - SPECTRE - Lausanne

https://gitlab.com/spectre-eq/spectre#

=PrL

= SCITAS

Conclusions

The new SPECTRE code is about to be released under MIT license
It is born out of the original SPEC

Fortran code has been refactored and standardized
It is interfaced to the new Python minimizer
Everything is build consistently using CMake and scikit-build-core

Code quality has been improved using good practices and tools:
O Linter and code formatter
O Coding guidelines and conventions
O Systematic code review

The community is eager to use this new SPECTRE code

ACH 2025 - SPECTRE - Lausanne

