
From SPEC to SPECTRE: breathing Pythonic life 
into a legacy Fortran code
E. Lanti, E. Balkovic, C. Smiet, J. Loizu

3rd Annual Meeting of EUROfusion HPC ACHs
Tue. 25th of November 2025, Lausanne



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

SPEC code
Computing magnetic equilibria

▪ Compute 3D MHD equilibria using MRxMHD
▪ Volume is subdivided into regions with ∇p=0 
▪ Interfaces between regions are force-free

▪ SPEC does this in two main steps:
○ Field computation
○ Optimization of the surfaces

▪ Doesn’t converge for highly shaped equilibria with many interfaces



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

SPEC code
Addressing the convergence problem

▪ The SPC team developed a new minimizer solving the convergence problem
○ Field is computed by SPEC (Fortran + MPI + OpenMP)
○ Optimization is done by an home-made Python package interfaced to SPEC

▪ SPEC became a black-box from which we scavenge parts to port in the new code



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

From SPEC to SPECTRE

▪ Fortran codebase modernization and standardization
▪ Build system re-writing
▪ Python bindings
▪ Code quality
▪ CI containerization
▪ Open Source licensing



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Modernization of the Fortran codebase

▪ Make the code more maintainable, testable and extensible
▪ For this the main objectives were:

○ Conform to the standard as much as possible
○ Remove dead and unused code (using code coverage)
○ Encapsulate related code into modules and set correct visibility
○ Reduce use of global variables
○ Impose coding conventions and guidelines



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Removing M4 macros

▪ The SPEC code heavily relies on macros defined in M4 language
▪ Complexify the building process
▪ They make the Fortran code difficult to read
▪ Most of those macros could be written as Fortran subroutines



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Removing M4 macros

▪ The SPEC code heavily relies on macros defined in M4 language
▪ Complexify the building process
▪ They make the Fortran code difficult to read
▪ Most of those macros could be written as Fortran subroutines



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Removing M4 macros

▪ The SPEC code heavily relies on macros defined in M4 language
▪ Complexify the building process
▪ They make the Fortran code difficult to read
▪ Most of those macros could be written as Fortran subroutines



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Removing M4 macros

▪ The SPEC code heavily relies on macros defined in M4 language
▪ Complexify the building process
▪ They make the Fortran code difficult to read
▪ Most of those macros could be written as Fortran subroutines



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Managing precision using kinds

▪ By default, Fortran real numbers are of “single precision”
▪ Different techniques to impose real “double precision”

○ Use compiler flag
○ Use Fortran double precision type
○ Use kinds !

▪ Kind parameters are integers specifying which type representation to use (how 
bits are mapped to numbers)

▪ For reals, one could define a kind representing IEEE-754 double precision using:

!> Kind value for 64bits IEEE-754 (~15 digits, 10^±307)
integer, parameter :: dp = selected_real_kind(15, 307)

▪ Could also use real64 from iso_fortran_env, but it is less portable1

1https://stevelionel.com/drfortran/2017/03/27/doctor-fortran-in-it-takes-all-kinds/



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Managing precision using kinds
Quiz time



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Managing precision using kinds
Quiz time



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Managing precision using kinds
Quiz time



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Managing precision using kinds
Quiz time



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Managing precision using kinds
Quiz time

▪ In addition to adding kind parameters, one must also take care of literals, and 
functions, e.g. cmplx
○ Difficulty: literals can be written 1.0, 1.0E0, 1.0D0, 1D0, 1E0, 1.D0, 1.E0, .1, .1D0, etc.



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Cleaning the build configuration

▪ Remove outdated Makefile configuration
▪ Rewrite CMake configuration and adhere to modern CMake 

○ Reduce complexity (450 lines to 150 lines)



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Cleaning the build configuration

▪ Remove outdated Makefile configuration
▪ Rewrite CMake configuration and adhere to modern CMake 

○ Reduce complexity (450 lines to 150 lines)

▪ Use of CMake presets
○ Store project configuration in version-controlled JSON files, “CMakePresests.json”
○ Must-have for CI build, IDEs, etc.
○ Simplify user experience
○ Separate generic configuration from machine/environment specific



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Interfacing Fortran with Python

▪ There are three main ways of interfacing Fortran and Python
○ Using ctypes to load a shared object
○ Writing a Fortran <-> C interface and use PyBind
○ Using f2py and f90wrap

▪ Later is chosen because less boilerplate code
○ f90wrap generates simpler Fortran interfaces for f2py and a Python interface module
○ f2py generates the Fortran <-> C interface

▪ Scikit-build-core is used as a build backend for CMake <-> Python

▪ Limitations of f90wrap
○ project is maintained by one person and documentation is gappy
○ Not working as advertised (issue opened with solution since August 6th)
○ Downcase everything



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Improving code quality

▪ Various tools and workflow have been used to improve code quality
▪ Fortran

○ Fortitude: an open source Fortran linter built upon Ruff
○ Codee formatter: a free commercial code formatter

▪ Python
○ Ruff: (extremely fast) linter and code formatter

▪ Treatment of the warnings from the different tools
▪ Coding guidelines
▪ Code review

https://fortitude.readthedocs.io/en/stable/
https://www.codee.com/codee-formatter/
https://docs.astral.sh/ruff/


■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

CI setup

▪ New CI setup currently being implemented
○ Build, test, code quality and doc generation

▪ Docker image containing an extensible software stack to compile SPECTRE



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

CI setup

▪ New CI setup currently being implemented
○ Build, test, code quality and doc generation

▪ Docker image containing an extensible software stack to compile SPECTRE

▪ Easily generate software stack using Spack
○ Core packages: built once with default compiler
○ Packages: built by each compiler
○ Compilers

▪ Use also by users for reproducible build environment



■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Licensing 

▪ SPEC was licensed under GPLv3
○ Can be problematic, especially for collaboration with private companies

▪ Original authors accepted to switch to MIT license
▪ SPECTRE code available shortly on GitLab.com:

https://gitlab.com/spectre-eq/spectre

https://gitlab.com/spectre-eq/spectre#


■ SCITAS

A
C

H
 2

02
5 

- S
P

E
C

TR
E

 - 
La

us
an

ne

Conclusions 

▪ The new SPECTRE code is about to be released under MIT license
▪ It is born out of the original SPEC

▪ Fortran code has been refactored and standardized
▪ It is interfaced to the new Python minimizer
▪ Everything is build consistently using CMake and scikit-build-core

▪ Code quality has been improved using good practices and tools:
○ Linter and code formatter
○ Coding guidelines and conventions
○ Systematic code review

▪ The community is eager to use this new SPECTRE code


