“ACOYEARS

P Thiswork hes been camied cut within theframework of theBUROfusion Consortium, funded by the EurgpeanUnion via the
@ EU Ro fUSiO n Euratom Research and Training Programime (Grart Agreenent No 101062200- - BUROfusion). Mewsand opinions expresed are

however thaseof the athor(9 only and do nat necessarily rel ectthose of the Eurgpean Union orthe Eurgpeen Commission.
Neither theurBpeanUnion northeEuropean Commission can be held reporsibleforthem.

Solving the generalized eigenvalue
problem in the JOREK free boundary
and resistive wall extension:

a progress report from the
CIEMAT-BSC ACH
about the assessment of using ELPA

F. Cipolletta, N. Isernia, S. Ventre, M. Hoelzl,
N. Schwarz, G. Rubinacci, A. Soba, E. Cabrera

25/11/2025 3rd Annual Meeting of EUROfusion HPC ACHs

Outline

* Old work
- Recap on J-S and J-C couplings
- What has been attempted
* New work
- The generalized eigenvalue problem

- Problems and ideas

Available tools

Methodologies

- Results

* Conclusions

- Takeaways and Perspectives

“XCOVEARS

Old Work

Recap on J-S and J-C couplings

The free-boundary and resistive wall extension considers the interactions between the conducting structures and the plasma
Calculations are done via coupling of JOREK to STARWALL (J-S) or CARIDDI (J-C) by means of response matrices

Those couplings consist of memory-intensive works to be performed, directly related to the accuracy adopted in 3D modeling
Representing “big” geometries (like ITER) with high accuracy may easily become untreatable on modern CPU architectures

STARWALL/CARIDDI ﬁ/RESPONSE MATRICES/L> JOREK 47/OUTPUT /

Geometry used in STARWALL adopting Geometry used in CARIDDI adopting a
a 3D thin wall modeling of the response

“XCOVEARS

What has been attempted

STARWALL
| S e [sorx |—/oureur/

CARIDDI

* A has been implemented:
- Compress the response matrices using SVD
Produce a new response file holding compressed matrices
Adapt JOREK to deal with the compressed matrices format
- Test the new implementation with TM and VDE
See 10.1088/1361-6587/ad728a for details
* Some issues:
- The (theoretical) achievable compression is somehow limited
- The compressed matrices can be not effective in all the scenarios of applications (e.g. in VDE)
- The novel implementation is quite complicated and merging into develop is still under consideration

“XCOVEARS

https://iopscience.iop.org/article/10.1088/1361-6587/ad728a/meta

New Work

The generalized eigenvalue problem

* Both STARWALL and CARIDDI rely on the solution of a generalized eigenvalue problem (gEP)

* The 3D passive structures (STARWALL/CARIDDI) are interfaced with the plasma (JOREK)

* JOREK adopts a 2D Bezier discretization on the poloidal cut and a Fourier expansion on the toroidal direction
* STARWALL/CARIDDI instead models the walls in full 3D

L. S,=AR,S,,

L., _. Inductance (dense) matrix for the conductive structures
S _ Basis of eigenvectors

R,, _, Resistance (dense) matrix
A _ Eigenvalue

* Once this problem is solved, the system of equations treated in STARWALL/CARIDDI becomes diagonal
* Both the inductance and resistance matrices have a size of the walls’ DoF squared
* No cut can be done, because a complete basis of eigenvectors is needed

See 10.1063/5.0167271 for further details

“XCOVEARS

https://pubs.aip.org/aip/pop/article/30/11/113901/2919514/Self-consistent-coupling-of-JOREK-and-CARIDDI-On

Problems and ideas

* The gEP can become untreatable if considering ITER-like geometry, due to required memory
* Two ideas:
1. Evaluate alternative solvers for the gEP:

- Test new libraries and optimization and try to reach the maximum treatable number of DoF

- Test also the capabilities to exploit GPUs for the calculation

2. Evaluate Model Order Reduction (MOR):

- Perform a first assessment of MOR to limit the DoF on the walls without losing precision

* The rest of the talk will report what has been done so far for 1.

“XCOVEARS

Available tools

1.Scal APACK
* This is currently used in STARWALL/CARIDDI
* The implementation starts to be a bit old (mid 90s) but it is robust
* Itis still considered the state-of-the-art reference for parallel linear algebra on CPUs
2. MAGMA
* It is developed by the same group of LAPACK/ScaLAPACK
* It offers CPUs and GPUs capabilities
* The gEP solver is not available on GPUs - NOT AN OPTION
3.ELPA
* Developed at MPG
* It offers CPUs (ELPA2 solver) and GPUs (ELPA1 solver) capabilities
* The results shown ahead are obtained with this library
4.SLATE
* Developed by the same group of LAPACK/ScaLAPACK
* It offers CPUs and GPUs capabilities
* Not clear if the gEP solver is available on multi-GPUs...should still be investigated and tested...

“XCOVEARS

https://www.netlib.org/scalapack/
https://icl.utk.edu/magma/
https://elpa.mpcdf.mpg.de/index.html
https://icl.utk.edu/slate/

“XCOVEARS

Methodologies used

1. Toy Fortran code to solve the gEP calling ELPA or ScaLAPACK
2. The matrices can be defined
— Randomically (prescribed dimension)
— Analytically (prescribed complexity)
— Read from STARWALL
— Read from CARIDDI
3. Measure time for gEP with WTIME
4. Measure memory consumption per node with free, at a prescribed time interval
5. Measure memory consumption per GPU with nvidia-smi, at a prescribed time interval
6. Measure Parallel Efficiency with TALP metrics from the DLB library (Pure MPI)

Test implementation

Results

Hybrid Parallel ‘
Hyb
‘_ Efficiency el
L MPL | MPIy OpenMP | OMPgy
MPIcomm ¢) ¢ MPI; ¢ \;j ¢
Comn?ulmcatmn | | Load Balance ‘ Serialization Load Balance Scheduling
Efficiency
‘l' é 'L OMPsepiql OMP; g OMPseq
Intra-node | ‘ Inter-node ‘
Load Balance Load Balance
MPILB_EH MPILEI_O[N

https://dlb-docs.readthedocs.io/en/stable/talp_metrics.html#how-the-metrics-are-computed
https://dlb-docs.readthedocs.io/en/stable/index.html

Results - MareNostrumb5

* Due to the initial unavailability of MARCONI, MareNostrum5 was used for the tests
* 2 partitions available:
1. ACC
- 80 cores per node
- 512 GIiB of RAM per node
- 4 NVIDIA H100 (64GB) GPUs per node
2. GPP (Standard)
- 112 cores per node
- 256 GIB of RAM per node
- Only CPUs (no GPUs)

“XCOVEARS

Results - Matrices from STARWALL

ELPA2 on CPUs

ELPA1 on GPUs

ScaLAPACK

“XCOVEARS

t[s]

= ELPAZ - CPU - 90000
{ == ELPAZ - CPU - 152100
—a— ELPAZ - CPU - 409600
- GPU - 90000

GPU - 152100

= ELPAL

10% | == ELPAL.
1 ScalAPACK - 20000

| == ScalAPACK - 152100

ScalAPACK - 409600

10° 4

102 4

0 1000 2000

3000 4000

CPU cores

5000 6000

Speedup

25 A

20

15 A

10 A

nvu X nwv 300 x 300 390 x 390 640 x 640
Matrix Size (90000)>=8.1B (152100)>=23.1B (409600)?> = 168 B
Time to solution Speedup

mmmm |deal - MN5 GPP

=il ELPA2 - CPU - 90000

=@= ELPA2 - CPU - 152100

—a— ELPA2 - CPU - 409600
ScalLAPACK - 90000

== ScalAPACK - 152100
ScalLAPACK - 409600

-

0

3000 4000 5000

CPU cores

1000 2000

6000

Results - Matrices from STARWALL

nvu X nwv

300 x 300

390 x 390

640 x 640

Matrix Size

(90000)2 = 8.1 B

(152100)% = 23.1 B

(409600)2 = 168 B

Parallel Efficiency

1.0
== ELPA2 - CPU - 90000
=8 ELPA2 - CPU - 152100
—=— ELPA2 - CPU - 409600
== ELPAL - GPU - 90000
—#- ELPAL - GPU - 152100
0.8 1 ScalAPACK - 90000
\ == ScalAPACK - 152100
N ScalAPACK - 409600
0.6 1
b
w
| -
©
o
0.4 4
-
\N'\.
“\\\
0.2 4 »
D.D T T T T T T T
0 1000 2000 3000 4000 5000 6000

“XCOVEARS

CPU cores

Peak Memory per node [GB]

500

Peak memory per node

=9
Qo
=]

300

200 A

100 4

=i ELPAZ - CPU -
== ELPAZ - CPU -

—- ELPAE-CPU-_QQODU were ran on GPP standard

= ELFAL - GPU

90000

152100 All the simulations using CPUs
409600

. ELFRL ¢ DELLE 153000 nodes; selecting the compilers
ScalAPACK - 90000 .
~#— ScalAPACK - 152100 toolchain as

Scal APACK - 409600

INTEL 2024.2 +
MKL 2024.2 +
IMP1 2021.13

was needed to avoid a bug
calling too much memory

On ACC, the same compilers
were used together with

50 CUDA 12.2

w = =
w (=] u
| I

(%8
L]
1

]
=
L

Peak Memory per GPU [GB]
1 8]

-
=]
I

Results - Matrices from STARWALL

nvu X nwv

300 x 300

390 x 390

640 x 640

Matrix Size

(90000)2 = 8.1 B

(152100)% = 23.1 B

(409600)* = 168 B

Peak memory per GPUs

== ELPAL - GPU - 90000

=@ ELPA1 -|GPU - 152100

TN

20

40 60 80
GPUs

“XCVEARS

100

Speedup

16 4

144

12 4

104

Speedup on CPUs

m—— |deal - MNS ACC
== ELPAL - GPU - 90000
—=— ELPAl - GPU - 152100

750 1000 1250 1500 1750 2000
CPU cores

250 500

Speedup

Speedup on GPUs

— |-
16 1 Ideal - MNS ACC

=file= ELPAL - GPU - 30000
—&— ELPAl - GPU - 152100

20 40 60 80
GPUs

100

Results - PITAGORA

* To avoid moving too big matrices, the tests with CARIDDI ones were done on PITAGORA
* 2 partitions available:

1. DCGP
- 256 cores per node
- 768 GIB of RAM per node
- Nodes based on AMD architecture
2. Booster
- 64 cores per node
- 512 GiB of RAM per node
- 4 NVIDIA H100 (80GB) GPUs per node

“XCOVEARS

Results - Matrices from CARIDDI

Some notes on the following results:

CARIDDI requires CAD models to start the computation - Scaling tests are not trivial

CARIDDI needs squared grid processors to run - the results are obtained with the same constraint
Tried compiling ELPA, DLB, and the Eigensolver toy code with

1. INTEL

2. GNU

3. AOCC

Only 1. and 2. works, while 3. returns wrong eigenvalues from ScaLAPACK -. Ticket never solved
CARIDDI was compiled with INTEL compilers, therefore the same are used for the results

“XCOVEARS

“XCOVEARS

t[s]

Results - Matrices from CARIDDI

Time to solution

10° 4

103 1

= ELPA2
=@ ELPAZ
== ELPAL
=8 ELPAL

-CPU-
= CPU -
- GPU -
- GPU -

71533
161089
71553
161089

ScalAPACK - 71553
=@ ScalAPACK - 161089

.

0

500 1000

1500 2000 2500 3000 3500 4000

CPU cores

Speedup

160 -

140 ~

120 ~

100 +

80 1

Speedup

60 -

40 -

20 1

mmmm |deal - Pitagora DCGP
mfil== ELPA2 - CPU - 71553
== ELPA2 - CPU-161089

ScalLAPACK - 71553

== ScalAPACK - 161089

0

500 1000 1500 2000 2500 3000 3500 4000
CPU cores

0.9

0.8 1

0.7 1

Par Eff

0.5 1

0.4 A

0.3 1

Results - Matrices from CARIDDI

Parallel Efficiency

0.6 1

=il ELPAZ2 - CPU - 71553
== ELPAZ2 - CPU - 161089
el ELPAL - GPU - 71553
=@ ELPAL-GPU- 161089
ScalAPACK - 71553
=== ScalAPACK - 161089

0

500

1000 1500 2000 2500 3000 3500 4000
CPU cores

“XCOVEARS

Peak Memory per node [GB]

Peak memory per node

450

400

350 4

300 4

250 4

200

150 4

100 4

50 4

== ELPAZ - CPU - 71553
== ELPAZ - CPU - 161089
mfilen F|PAL - GPU - 71553
=@ ELPA]L - GPU - 161089
ScalAPACK - 71553
== 5CcalAPACK - 161089

-

NOTE 3:

All the simulations using CPUs
were ran on DCGP nodes;
selecting the compilers toolchain
as

INTEL 2024.1 +
MKL 2024.0 +
IMP1 2021.12.1

was needed to avoid a bug
calling too much memory

NOTE 4:
On Booster, the same compilers
were used together with

CUDA 12.6

Results - Matrices from CARIDDI

Peak memory per GPUs

l == ELPAL - GPU - 90000
90 =m= ELPAL - GPU - 152100

[six]
=
1

et |
=
1

(=]
(=]
1

wu
=
I

=9
]
I

Peak Memory per GPU [GB]

L
=1
1

20 A

5 10 15 20 25 30 35 40 45
GPUs

“XCOVEARS

Speedup on CPUs

mmmm |deal - Pitagora Booster

=il E| PA1 - GPU - 71553
7 4 == ELPAl - GPU - 161089
6 -
5 -
4
3 -
2 -
1 -

100 200 300 400
CPU cores

500

Speedup

Speedup on GPUs

mmmm |deal - Pitagora Booster
== F| PA1 - GPU - 90000
=@ ELPAl - GPU - 152100

5 10 15 20 25 30 35 40 45
GPUs

Conclusions

Takeaway and perspectives

ELPA offers a very promising solvers for the gEP, in terms of time-to-solution (kind of 3X)
- CARIDDI team is interested in implementing the library in the code

- It also offers GPU capabilities — almost automatic introduction within CARIDDI

The memory utilization of ELPA is slightly worse (kind of 2X) wrt to ScaLAPACK
- It might not be the best choice to grow with treatable matrix dimensions

* Some more studies and trials might be needed for exploiting GPUs

Alternative libraries (SLATE) could be investigated

Shall we consider trying different compilers to exploit AMD architectures?

“XCOVEARS

Thank you

w3 7
X @Fusion_BSC'.

B fusion-bsc -

“ACOYEARS

P Thiswork hes been camied out within theframewark of theBU ROfision Consortium, funded by the EuropeanUnion via the
[EU Rof - Euratom Research and Training Programime (Grart Agreenent No 101062200- - BUROfusion). Mews and opinions expressed are
usion however thoseof the author(9) only and do nat necessarily rel ectthose of the European Union orthe European Comrission.
Neither theiBpeanUnion northeEuopean Comnrission can ke held reporsibleforthem.

3rd Annual Meeting of EUROfusion HPC ACHs

	Solving the generalized eigenvalue problem in the JOREK free bo
	Slide 2
	Old Work
	Slide 4
	Slide 5
	New Work
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Conclusions
	Slide 21
	Thank you
	Slide 23

