
ThisworkhasbeencarriedoutwithintheframeworkoftheEUROfusionConsortium,fundedbytheEuropeanUnionviathe
EuratomResearchandTrainingProgramme(Grant Agreement No101052200- EUROfusion).Viewsandopinionsexpressedare
however thoseoftheauthor(s) onlyanddonot necessarilyre!ectthoseof theEuropeanUnionortheEuropeanCommission.

Neither the EuropeanUnionnortheEuropeanCommissioncanbeheld responsibleforthem.

Solving the generalized eigenvalue 
problem in the JOREK free boundary 

and resistive wall extension: 
a progress report from the 

CIEMAT-BSC ACH
about the assessment of using ELPA

F. Cipolletta, N. Isernia, S. Ventre, M. Hoelzl, 
N. Schwarz, G. Rubinacci, A. Soba, E. Cabrera

25/11/2025 3rd Annual Meeting of EUROfusion HPC ACHs



Outline
● Old work

− Recap on J-S and J-C couplings
− What has been attempted

● New work
− The generalized eigenvalue problem
− Problems and ideas
− Available tools
− Methodologies
− Results

● Conclusions
− Takeaways and Perspectives



Old Work



Recap on J-S and J-C couplings
 The free-boundary and resistive wall extension considers the interactions between the conducting structures and the plasma
 Calculations are done via coupling of JOREK to STARWALL (J-S) or CARIDDI (J-C) by means of response matrices
 Those couplings consist of memory-intensive works to be performed, directly related to the accuracy adopted in 3D modeling
 Representing “big” geometries (like ITER) with high accuracy may easily become untreatable on modern CPU architectures 

Geometry used in CARIDDI adopting a 
3D volumetric modeling of the response

Geometry used in STARWALL adopting 
a 3D thin wall modeling of the response

STARWALL/CARIDDI JOREKRESPONSE MATRICES OUTPUT



What has been attempted
STARWALL

/
CARIDDI

JOREKRESPONSE
MATRICES

OUTPUTCOMPRESSION 
TOOL

COMPRESSED
RESPONSE 
MATRICES

● A compression tool has been implemented:
− Compress the response matrices using SVD
− Produce a new response file holding compressed matrices
− Adapt JOREK to deal with the compressed matrices format
− Test the new implementation with TM and VDE
− See 10.1088/1361-6587/ad728a for details

● Some issues:
− The (theoretical) achievable compression is somehow limited
− The compressed matrices can be not effective in all the scenarios of applications (e.g. in VDE)
− The novel implementation is quite complicated and merging into develop is still under consideration

https://iopscience.iop.org/article/10.1088/1361-6587/ad728a/meta


New Work



The generalized eigenvalue problem
 Both STARWALL and CARIDDI rely on the solution of a generalized eigenvalue problem (gEP)
 The 3D passive structures (STARWALL/CARIDDI) are interfaced with the plasma (JOREK)
 JOREK adopts a 2D Bezier discretization on the poloidal cut and a Fourier expansion on the toroidal direction
 STARWALL/CARIDDI instead models the walls in full 3D

Lw
∗ Sλ=λ Rw S λ ,

Lw
∗

S
Rw
λ

→ Inductance (dense) matrix for the conductive structures
→ Basis of eigenvectors
→ Resistance (dense) matrix
→ Eigenvalue

 Once this problem is solved, the system of equations treated in STARWALL/CARIDDI becomes diagonal
 Both the inductance and resistance matrices have a size of the walls’ DoF squared
 No cut can be done, because a complete basis of eigenvectors is needed

See 10.1063/5.0167271 for further details

https://pubs.aip.org/aip/pop/article/30/11/113901/2919514/Self-consistent-coupling-of-JOREK-and-CARIDDI-On


● The gEP can become untreatable if considering ITER-like geometry, due to required memory

● Two ideas:

1. Evaluate alternative solvers for the gEP: 

− Test new libraries and optimization and try to reach the maximum treatable number of DoF

− Test also the capabilities to exploit GPUs for the calculation

2. Evaluate Model Order Reduction (MOR):

− Perform a first assessment of MOR to limit the DoF on the walls without losing precision

● The rest of the talk will report what has been done so far for 1.

Problems and ideas



1.ScaLAPACK
 This is currently used in STARWALL/CARIDDI
 The implementation starts to be a bit old (mid 90s) but it is robust
 It is still considered the state-of-the-art reference for parallel linear algebra on CPUs

2.MAGMA
 It is developed by the same group of LAPACK/ScaLAPACK
 It offers CPUs and GPUs capabilities
 The gEP solver is not available on GPUs → NOT AN OPTION

3.ELPA
 Developed at MPG
 It offers CPUs (ELPA2 solver) and GPUs (ELPA1 solver) capabilities
 The results shown ahead are obtained with this library

4.SLATE
 Developed by the same group of LAPACK/ScaLAPACK
 It offers CPUs and GPUs capabilities
 Not clear if the gEP solver is available on multi-GPUs...should still be investigated and tested...

Available tools

https://www.netlib.org/scalapack/
https://icl.utk.edu/magma/
https://elpa.mpcdf.mpg.de/index.html
https://icl.utk.edu/slate/


Methodologies used
1. Toy Fortran code to solve the gEP calling ELPA or ScaLAPACK
2. The matrices can be defined
−Randomically (prescribed dimension)
−Analytically (prescribed complexity)
−Read from STARWALL
−Read from CARIDDI

3. Measure time for gEP with WTIME
4. Measure memory consumption per node with free, at a prescribed time interval
5. Measure memory consumption per GPU with nvidia-smi, at a prescribed time interval
6. Measure Parallel Efficiency with TALP metrics from the DLB library (Pure MPI)

Test implementation

Results

https://dlb-docs.readthedocs.io/en/stable/talp_metrics.html#how-the-metrics-are-computed
https://dlb-docs.readthedocs.io/en/stable/index.html


Results - MareNostrum5
● Due to the initial unavailability of MARCONI, MareNostrum5 was used for the tests
● 2 partitions available:

1. ACC
− 80 cores per node
− 512 GiB of RAM per node
− 4 NVIDIA H100 (64GB) GPUs per node

2. GPP (Standard)
− 112 cores per node
− 256 GiB of RAM per node
− Only CPUs (no GPUs)



Results – Matrices from STARWALL
nvu x nwv 300 x 300 390 x 390 640 x 640

Matrix Size (90000)2 = 8.1 B (152100)2 ≈ 23.1 B (409600)2 ≈ 168 B

Time to solution

0 1000 2000 3000 4000 5000 6000
CPU cores

0

5

10

15

20

25

Sp
ee

du
p

Ideal - MN5 GPP
ELPA2 - CPU - 90000
ELPA2 - CPU - 152100
ELPA2 - CPU - 409600
ScaLAPACK - 90000
ScaLAPACK - 152100
ScaLAPACK - 409600

Speedup
ELPA2 on CPUs

ELPA1 on GPUs

ScaLAPACK



Results – Matrices from STARWALL
nvu x nwv 300 x 300 390 x 390 640 x 640

Matrix Size (90000)2 = 8.1 B (152100)2 ≈ 23.1 B (409600)2 ≈ 168 B

Parallel Efficiency Peak memory per node
NOTE 1:
All the simulations using CPUs 
were ran on GPP standard 
nodes; selecting the compilers 
toolchain as

INTEL 2024.2 + 
MKL 2024.2 + 
IMPI 2021.13

was needed to avoid a bug 
calling too much memory

NOTE 2:
On ACC, the same compilers 
were used together with

CUDA 12.2



Results – Matrices from STARWALL
nvu x nwv 300 x 300 390 x 390 640 x 640

Matrix Size (90000)2 = 8.1 B (152100)2 ≈ 23.1 B (409600)2 ≈ 168 B

Peak memory per GPUs Speedup on CPUs Speedup on GPUs



Results - PITAGORA
● To avoid moving too big matrices, the tests with CARIDDI ones were done on PITAGORA
● 2 partitions available:

1. DCGP
− 256 cores per node
− 768 GiB of RAM per node
− Nodes based on AMD architecture

2. Booster
− 64 cores per node
− 512 GiB of RAM per node
− 4 NVIDIA H100 (80GB) GPUs per node



Results – Matrices from CARIDDI

● Some notes on the following results:
● CARIDDI requires CAD models to start the computation → Scaling tests are not trivial
● CARIDDI needs squared grid processors to run → the results are obtained with the same constraint
● Tried compiling ELPA, DLB, and the Eigensolver toy code with

1. INTEL
2. GNU
3. AOCC

● Only 1. and 2. works, while 3. returns wrong eigenvalues from ScaLAPACK → Ticket never solved
● CARIDDI was compiled with INTEL compilers, therefore the same are used for the results



Results – Matrices from CARIDDI

Time to solution

0 500 1000 1500 2000 2500 3000 3500 4000
CPU cores

0

20

40

60

80

100

120

140

160

Sp
ee

du
p

Ideal - Pitagora DCGP
ELPA2 - CPU - 71553
ELPA2 - CPU - 161089
ScaLAPACK - 71553
ScaLAPACK - 161089

Speedup



Results – Matrices from CARIDDI

Parallel Efficiency Peak memory per node
NOTE 3:
All the simulations using CPUs 
were ran on DCGP nodes; 
selecting the compilers toolchain 
as

INTEL 2024.1 + 
MKL 2024.0 + 
IMPI 2021.12.1

was needed to avoid a bug 
calling too much memory

NOTE 4:
On Booster, the same compilers 
were used together with

CUDA 12.6



Results – Matrices from CARIDDI

Peak memory per GPUs

100 200 300 400 500
CPU cores

1

2

3

4

5

6

7

Sp
ee

du
p

Ideal - Pitagora Booster
ELPA1 - GPU - 71553
ELPA1 - GPU - 161089

Speedup on CPUs

5 10 15 20 25 30 35 40 45
GPUs

2

4

6

8

10

Sp
ee

du
p

Ideal - Pitagora Booster
ELPA1 - GPU - 90000
ELPA1 - GPU - 152100

Speedup on GPUs



Conclusions



Takeaway and perspectives

● ELPA offers a very promising solvers for the gEP, in terms of time-to-solution (kind of 3X)
− CARIDDI team is interested in implementing the library in the code
− It also offers GPU capabilities → almost automatic introduction within CARIDDI

● The memory utilization of ELPA is slightly worse (kind of 2X) wrt to ScaLAPACK
− It might not be the best choice to grow with treatable matrix dimensions

● Some more studies and trials might be needed for exploiting GPUs
● Alternative libraries (SLATE) could be investigated
● Shall we consider trying different compilers to exploit AMD architectures?



Thank you



ThisworkhasbeencarriedoutwithintheframeworkoftheEUROfusionConsortium,fundedbytheEuropeanUnionviathe
EuratomResearchandTrainingProgramme(Grant Agreement No101052200- EUROfusion).Viewsandopinionsexpressedare
however thoseoftheauthor(s) onlyanddonot necessarily re!ectthoseof theEuropeanUnionortheEuropeanCommission.

Neither the EuropeanUnionnortheEuropeanCommissioncanbeheld responsibleforthem.

3rd Annual Meeting of EUROfusion HPC ACHs


	Solving the generalized eigenvalue problem in the JOREK free bo
	Slide 2
	Old Work
	Slide 4
	Slide 5
	New Work
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Conclusions
	Slide 21
	Thank you
	Slide 23

