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Old Work




Recap on J-S and J-C couplings

The free-boundary and resistive wall extension considers the interactions between the conducting structures and the plasma
Calculations are done via coupling of JOREK to STARWALL (J-S) or CARIDDI (J-C) by means of response matrices

Those couplings consist of memory-intensive works to be performed, directly related to the accuracy adopted in 3D modeling
Representing “big” geometries (like ITER) with high accuracy may easily become untreatable on modern CPU architectures

STARWALL/CARIDDI ﬁ/RESPONSE MATRICES/L> JOREK 47/OUTPUT /

Geometry used in STARWALL adopting Geometry used in CARIDDI adopting a
a 3D thin wall modeling of the response

“XCOVEARS



What has been attempted

STARWALL
| S e [ sorx  |—/oureur/

CARIDDI

* A has been implemented:
- Compress the response matrices using SVD
Produce a new response file holding compressed matrices
Adapt JOREK to deal with the compressed matrices format
- Test the new implementation with TM and VDE
See 10.1088/1361-6587/ad728a for details
* Some issues:
- The (theoretical) achievable compression is somehow limited
- The compressed matrices can be not effective in all the scenarios of applications (e.g. in VDE)
- The novel implementation is quite complicated and merging into develop is still under consideration
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https://iopscience.iop.org/article/10.1088/1361-6587/ad728a/meta

New Work




The generalized eigenvalue problem

* Both STARWALL and CARIDDI rely on the solution of a generalized eigenvalue problem (gEP)

* The 3D passive structures (STARWALL/CARIDDI) are interfaced with the plasma (JOREK)

* JOREK adopts a 2D Bezier discretization on the poloidal cut and a Fourier expansion on the toroidal direction
* STARWALL/CARIDDI instead models the walls in full 3D

L. S,=AR,S,,

L., _. Inductance (dense) matrix for the conductive structures
S _ Basis of eigenvectors

R,, _, Resistance (dense) matrix
A _ Eigenvalue

* Once this problem is solved, the system of equations treated in STARWALL/CARIDDI becomes diagonal
* Both the inductance and resistance matrices have a size of the walls’ DoF squared
* No cut can be done, because a complete basis of eigenvectors is needed

See 10.1063/5.0167271 for further details

“XCOVEARS


https://pubs.aip.org/aip/pop/article/30/11/113901/2919514/Self-consistent-coupling-of-JOREK-and-CARIDDI-On

Problems and ideas

* The gEP can become untreatable if considering ITER-like geometry, due to required memory
* Two ideas:
1. Evaluate alternative solvers for the gEP:

- Test new libraries and optimization and try to reach the maximum treatable number of DoF

- Test also the capabilities to exploit GPUs for the calculation

2. Evaluate Model Order Reduction (MOR):

- Perform a first assessment of MOR to limit the DoF on the walls without losing precision

* The rest of the talk will report what has been done so far for 1.
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Available tools

1.Scal APACK
* This is currently used in STARWALL/CARIDDI
* The implementation starts to be a bit old (mid 90s) but it is robust
* Itis still considered the state-of-the-art reference for parallel linear algebra on CPUs
2. MAGMA
* It is developed by the same group of LAPACK/ScaLAPACK
* It offers CPUs and GPUs capabilities
* The gEP solver is not available on GPUs - NOT AN OPTION
3.ELPA
* Developed at MPG
* It offers CPUs (ELPA2 solver) and GPUs (ELPA1 solver) capabilities
* The results shown ahead are obtained with this library
4.SLATE
* Developed by the same group of LAPACK/ScaLAPACK
* It offers CPUs and GPUs capabilities
* Not clear if the gEP solver is available on multi-GPUs...should still be investigated and tested...
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https://www.netlib.org/scalapack/
https://icl.utk.edu/magma/
https://elpa.mpcdf.mpg.de/index.html
https://icl.utk.edu/slate/
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Methodologies used

1. Toy Fortran code to solve the gEP calling ELPA or ScaLAPACK
2. The matrices can be defined
— Randomically (prescribed dimension)
— Analytically (prescribed complexity)
— Read from STARWALL
— Read from CARIDDI
3. Measure time for gEP with WTIME
4. Measure memory consumption per node with free, at a prescribed time interval
5. Measure memory consumption per GPU with nvidia-smi, at a prescribed time interval
6. Measure Parallel Efficiency with TALP metrics from the DLB library (Pure MPI)

Test implementation

Results

Hybrid Parallel ‘
Hyb
‘_ Efficiency el
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https://dlb-docs.readthedocs.io/en/stable/talp_metrics.html#how-the-metrics-are-computed
https://dlb-docs.readthedocs.io/en/stable/index.html

Results - MareNostrumb5

* Due to the initial unavailability of MARCONI, MareNostrum5 was used for the tests
* 2 partitions available:
1. ACC
- 80 cores per node
- 512 GIiB of RAM per node
- 4 NVIDIA H100 (64GB) GPUs per node
2. GPP (Standard)
- 112 cores per node
- 256 GIB of RAM per node
- Only CPUs (no GPUs)
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Results - Matrices from STARWALL

ELPA2 on CPUs

ELPA1 on GPUs

ScaLAPACK
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Results - Matrices from STARWALL
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CPU cores
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Results - Matrices from STARWALL
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Results - PITAGORA

* To avoid moving too big matrices, the tests with CARIDDI ones were done on PITAGORA
* 2 partitions available:

1. DCGP
- 256 cores per node
- 768 GIB of RAM per node
- Nodes based on AMD architecture
2. Booster
- 64 cores per node
- 512 GiB of RAM per node
- 4 NVIDIA H100 (80GB) GPUs per node

“XCOVEARS



Results - Matrices from CARIDDI

Some notes on the following results:

CARIDDI requires CAD models to start the computation - Scaling tests are not trivial

CARIDDI needs squared grid processors to run - the results are obtained with the same constraint
Tried compiling ELPA, DLB, and the Eigensolver toy code with

1. INTEL

2. GNU

3. AOCC

Only 1. and 2. works, while 3. returns wrong eigenvalues from ScaLAPACK -. Ticket never solved
CARIDDI was compiled with INTEL compilers, therefore the same are used for the results
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Results - Matrices from CARIDDI
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Results - Matrices from CARIDDI
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Results - Matrices from CARIDDI
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Speedup on CPUs
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Conclusions




Takeaway and perspectives

ELPA offers a very promising solvers for the gEP, in terms of time-to-solution (kind of 3X)
- CARIDDI team is interested in implementing the library in the code

- It also offers GPU capabilities — almost automatic introduction within CARIDDI

The memory utilization of ELPA is slightly worse (kind of 2X) wrt to ScaLAPACK
- It might not be the best choice to grow with treatable matrix dimensions

* Some more studies and trials might be needed for exploiting GPUs

Alternative libraries (SLATE) could be investigated

Shall we consider trying different compilers to exploit AMD architectures?
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Thank you
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