
Consolidating ORB5 Bsplines with the
SPClibs library

Huw Leggate

Dublin City University/Advanced Computing Hub - Garching

ACH meeting Lausanne – 26th Nov 2025

2/21

ORB5

● δ-f modified distribution
function discretized with PIC

● Fields solved using finite
elements

● Fields stored using Bsplines

● Global kinetic electromagnetic
(EM) simulations

“ORB5: a global electromagnetic gyrokinetic code using the PIC
approach in toroidal geometry” [for details, see Lanti 2020]

3/21

ORB5 - Splines

Initialisation

part_fields.f90

sp
lin

es

sp
lin

es

splines

BSplinesBasis.f90

sp
lin

es

pdespline.f90

bsplines.f90

PSZS Diagnostic

bsplines.f90

splines

part_fields.f90

BSplinesBasis.f90

bsplines.f90

4/21

Consolidation into bsplines_int

● Code contains splines from three different libraries
● Goal to base all spline computations on a single library

– spclibs/bsplines.f90
● New module bsplines_int.F90

 call set_spline((/nidbas,nidbas,nidbas/), (/nq,nq,nq/), &
 gridx, gridy, gridz, spl2d1d, &

 period=(/.True.,.True.,.True./), &
 nlppform=.True., nlequid=(/.True.,.True.,.True./))

5/21

Spline Deposition

● Charge and current are deposited using B-Splines, cubic by default

– Spline weights (Basis functions) are given by

– Where x is the normalised particle location relative to the cell

– So that

W 0(x)=(1−x)3 /6

W 1(x)=(3 x3−6 x2+4)/6

W 2(x)=(−3 x3+3 x2+3 x+1)/6

W 3(x)=x
3 /6

ρ(i)=ρ(i)+W (i) ρp

St (x)=∑i
ciBi , k (x)

6/21

Spline Deposition

● Charge and current are deposited using B-Splines, cubic by default

– Spline weights (Basis functions) are given by

– Where x is the normalised particle location relative to the cell

– So that

W 0(x)=(1−x)3 /6

W 1(x)=2/3+x
2(x /2−1)

W 2(x)=1/6+0.5 x (1+x×(1−x))

W 3(x)=x
3 /6

ρ(i)=ρ(i)+W (i) ρp

St (x)=∑i
ciBi , k (x)

7/21

Spline Deposition

Generated by Claude AI

8/21

Spline Deposition

Generated by Claude AI

9/21

B-Spline Boundaries

● At fixed (non-periodic) boundaries splines are clamped

[0 ,0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,8 ,8 ,8 ,8]

10/21

B-Spline Boundaries

● At fixed (non-periodic) boundaries splines are clamped

[0 ,0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,8 ,8 ,8 ,8]

11/21

B-Spline Boundaries

● Looking at individual cells

12/21

● ORB5 dimensions have 1 fixed and 2 periodic boundaries

– However, deposition does not account for this

– Deposited spline values are treated as periodic

– Requires rebase of 2D rhs

– For simplicity the 3D splines are created periodic in all dimensions

Correction for Periodic Splines

rhs=(
1/c1 0 0 ⋯ 0
c '2 1 0 ⋯ 0
c '3 0 1 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
c ' p 0 ⋯ 0 1

)×(
v v v ⋯ v
v v v ⋯ v
v v v ⋱ ⋮
⋮ ⋮ ⋱ ⋱ v
v v ⋯ v v

)
Where c are the spline basis functions

13/21

bsplines_int
pde_splines

impose_bc
rebase

analytical_rhs

BSplinesBasis

compute_bsplinesXX
compute_mappingXX

+Grid parameters

spclibs

bsplines
matrix

...

ORB5

solver
deposition

gyroaverage
...

part
spline_bas

14/21

bsplines_int

bsplines_int
pde_splines

impose_bc
rebase

analytical_rhs

BSplinesBasis

compute_bsplinesXX
compute_mappingXX

+Grid parameters

spclibs

bsplines
matrix

...

spline2d1d

part
spline_bas

15/21

bsplines_int

spclibs

bsplines
matrix

...

ORB5

solver
deposition

gyroaverage
...

bsplines_int

spline2d1d

compute
mapping

spline_bas
...

16/21

● Interface to spclibs bsplines module
● Public routines imported from pdespline module

– impose_bc, rebase, analytical_rhs

● Public routines imported from BsplinesBasis

– compute_bsplines_XX+fft, compute_mapping_XX

● Public spline basis functions moved from part_fields

● Public grid parameters imported from BsplinesBasis used in the solver

● Spline routines now obtain values from bsplines spline2d1d type

bsplines_int

17/21

Phase Space Zonal Structure Diagnostic

● Allow detailed treatment of energetic particles
● Defined as angle average of gyrocenter distribution function
● Transform each dimensions into either:

– Kinetic Energy, Toroidal Angular Momentum or Magnetic Moment
– Choice of which made during initialisation
– All 3 dimensions now have fixed boundaries
– Property is deposited on a PSZS spline grid
– Carried out using SPCLIB Bspline routines

18/21

● All three dimensions are bounded

– Stencil as applied in rebase will not work

– Need to account for boundaries during deposition

● Bsplines basfun routines are not GPU enabled

– Need similar approach to local spline basis functions

PSZS splines

Inner knot affected
by both faces

Cannot retrieve
original values

 pure function splines_bas3(x)
 !$acc routine seq
 real, intent(in) :: x
 real, dimension(0:3) :: splines_bas3
 splines_bas3(0) = (1.-x)**3 / 6.
 splines_bas3(1) = 2./3. + x**2*(x/2. - 1.)
 splines_bas3(2) = 1./6. + .5*x*(1.+x*(1.-x))
 splines_bas3(3) = x**3 / 6.
 end function splines_bas3

19/21

● Solution - Store polynomial coefficients at left boundary

– Now can use same approach as bsplines.F90

PSZS splines

pure function splines_ppform_bas3(x,ppform)
 !$acc routine seq
 real, intent(in) :: x
 real, intent(in) :: ppform(4,4)
 real, dimension(0:3) :: splines_ppform_bas3
 splines_ppform_bas3(0) = ppform(1,1) + x*(ppform(2,1)+x*(ppform(3,1)+x*ppform(4,1)))
 splines_ppform_bas3(1) = ppform(1,2) + x*(ppform(2,2)+x*(ppform(3,2)+x*ppform(4,2)))
 splines_ppform_bas3(2) = ppform(1,3) + x*(ppform(2,3)+x*(ppform(3,3)+x*ppform(4,3)))
 splines_ppform_bas3(3) = 1.0d0 - sum(splines_ppform_bas3(0:2))
end function splines_ppform_bas3

p(x)=c0+c1 x+c2 x
2+c3 x

3

x∈[0,1]

● Could be used to remove rebase requirement

20/21

● Deposition GPU enabled

– Different metrics available for each dimension

– Deposition routine split between position calculation and deposition

– Different possible metrics in each dimension are computed during
initialisation and stored as an integer in pszs_coord

– pszs work arrays declared in module header contain storage for
position and weight

PSZS splines

subroutine pszs_deposit_bsplines(pszs_, …)
call pszs_calc_position(pszs_,…)

!$acc parallell loop gang worker vector...present(pos...
call pszs_deposit(pszs_,…,)

!$acc parallell loop gang worker vector...present(pos...
end subroutine pszs_deposit_bsplines

21/21

Summary

● All spline routines now contained in bsplines_int module

● BsplinesBasis and pdespline removed

– All routines added to bsplines_int – minimal code changes elsewhere

● Now uses spclibs bsplines module

● Splines stored in spline2d1d derived type

● Splines are stored with PERIODIC boundary conditions

● New splines_ppform routines can account for boundary during
deposition while running on the GPU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

