
Scalable Domain-decomposed
Monte Carlo Neutral Transport for Nuclear Fusion

Oskar Lappi
ACH-VTT

Nov 2025

1 / 76

Presentation Outline

1. EIRENE needs domain-decomposed Monte Carlo (DDMC)
2. Monte Carlo transport in Eiron (a new MC code)
3. EIRENE’s algorithms
4. Eiron’s DDMC algorithm visually explained
5. Strong and weak scaling results

2 / 76

Fusion plasmas in the edge and scrape-off-layer (SOL)

Plasma solver
Fluid dynamics

Plasma fields

Neutral solver
Kinetic

Monte Carlo

Neutral fields

Simulating the edge and SOL regions is done with a fluid-kinetic model
• Plasma has a short mean free path (mfp), fluid model valid
• Neutral gas surrounding it has a long mfp, fluid model invalid

• Kinetic Monte Carlo (neutrals) is more complex than CFD (plasma)
• EIRENE is the kinetic neutral solver of choice in EUROfusion

3 / 76

EIRENE has issues with large grids
”The use of EIRENE as a neutrals solver is also possible in 3D but only
at low resolutions due to technical limitations associated with memory
requirements, making it incompatible for the moment with turbulent sim-
ulations.”

V. Quadri et al. “Edge plasma turbulence simulations in detached
regimes with the SOLEDGE3X code”. In: Nuclear Materials and Energy 41
(2024), Section 2.3

”For large 3D grids used for transport calculations (e.g. EMC3-EIRENE)
on large machines or for turbulent calculations on present day devices the
memory requirements to store the �100 input and output tallies of EIRENE
become large enough so as to preclude running with one MPI process
per core on a node.”

D.V. Borodin et al. “Fluid, kinetic and hybrid approaches for neutral
and trace ion edge transport modelling in fusion devices”. In: Nuclear Fusion
62.8 (Aug. 1, 2022), Section 3.

4 / 76

Why? Because it is not domain-decomposed

”Overcoming this limitation would require implementing a domain decom-
position scheme in EIRENE and/or coarsening the grid used for neutrals,
which is currently identical to the plasma grid.”

V. Quadri et al. “Edge plasma turbulence simulations in detached
regimes with the SOLEDGE3X code”. In: Nuclear Materials and Energy 41
(2024), Section 2.3

”On the longer term, further relaxing memory constraints will require im-
plementing a domain decomposition approach, with nodes being allocated
chunks of the full grid, and particles distributed among threads on the node”

D.V. Borodin et al. “Fluid, kinetic and hybrid approaches for neutral
and trace ion edge transport modelling in fusion devices”. In: Nuclear Fusion
62.8 (Aug. 1, 2022), Section 3.

5 / 76

Lack of domain decomposition holding back EIRENE

Issues
• The grid must fit inside the memory on one compute node
• Performance slows down without DD, worse cache efficiency

Performance improvements in the plasma codes don’t matter when
EIRENE takes 90-99% of the runtime 1.

1EIRENE uses ”>90% of computing time in ITER mean-field simulations (e.g.,
>99% in SOLEDGE3X-EIRENE)”, Patrick Tamain, TSVV-5 presentation slides

6 / 76

Eiron, a reduced EIRENE for domain decomposition

Domain decomposition is a big change
Domain decomposition is quite complicated, so we did not implement it
straight into EIRENE.

Eiron is a new open source C++ Monte Carlo code built for testing
domain decomposition and other new schemes[3][4].

[3] Oskar Lappi et al. Scalable Domain-decomposed Monte Carlo Neutral
Transport for Nuclear Fusion. Nov. 6, 2025. arXiv: 2511.04489

[4] Oskar Lappi et al. 2D implementation of Kinetic-diffusion Monte Carlo in
Eiron. Sept. 23, 2025. arXiv: 2509.19140

7 / 76

https://arxiv.org/abs/2511.04489
https://arxiv.org/abs/2509.19140

Monte Carlo transport in Eiron

8 / 76

Monte Carlo transport

In Eiron, we’re working with 2D, square-celled grids. There are static
plasma fields stored on the grid.

9 / 76

Monte Carlo transport

There are particle sources which can be placed in the space.
This is a wall source, ”volume sources” in 2D space also possible.

10 / 76

Monte Carlo transport

Neutral particles are randomly generated at the sources.

11 / 76

Monte Carlo transport

We integrate the total macroscopic cross section Σt along the particle’s
linear trajectory until the integral is equal to a sampled value X , and a
collision occurs.

12 / 76

Monte Carlo transport

After scattering collisions, particles continue with a new velocity.

13 / 76

Monte Carlo transport

After absorption events, particles are terminated.

14 / 76

Parallel algorithms in Eiron

Domain replication (DR)
Traditional way to parallelize Monte Carlo.
EIRENE’s MPI parallellization.
Requires a lot of memory.

Shared memory (SM)
Same as EIRENE’s OpenMP parallelization.
Partially alleviates memory issue. Scales worse than DR.

Domain decomposition (DD)
Novel asynchronous domain decomposition algorithm.
Solves the memory issue.

15 / 76

Algorithm Domain replication (DR)
In an OpenMP parallel region
Create thread-private copy of estimation grid
for each source in sources do

for particles in source, in parallel over threads do
Simulate particle, estimate into private estimation grid

Reduce estimation grids

Memory usage grows
Memory usage scales linearly with grid resolution × #CPU cores.

Grid res. or #CPU cores grows =⇒ worse resource allocation

At some point, simulations become too big to run.

16 / 76

Algorithm Shared memory (SM)
In an OpenMP parallel region
for each source in sources do

for particles in source, in parallel over threads do
Simulate particle, estimate into shared estimation grid

Less memory usage, but memory usage still grows
Memory usage scales linearly with grid resolution. Adding CPU cores on a
single node does not increase memory usage.

However, shared writeable grid =⇒ cache thrashing.

At some point, simulations still become too big to run.

17 / 76

Domain decomposition (DD)

Domain decomposition is what you reach for when your simulation space
is too big to efficiently simulate in a single process.

Eiron’s domain-decomposed Monte Carlo algorithm is fully asynchronous.
As far as we know it’s the first fully asynchronous algorithm.

18 / 76

DDMC algorithm
visualized example

4 MPI ranks, BUFFER_SIZE = 4,
SEND_PERIOD = 4

19 / 76

20 / 76

21 / 76

22 / 76

23 / 76

24 / 76

25 / 76

26 / 76

27 / 76

28 / 76

29 / 76

30 / 76

31 / 76

32 / 76

33 / 76

34 / 76

35 / 76

36 / 76

37 / 76

38 / 76

39 / 76

40 / 76

41 / 76

42 / 76

43 / 76

44 / 76

45 / 76

46 / 76

47 / 76

48 / 76

Algorithm, for completeness
Algorithm Domain decomposition

Partition grid and sources
live_ranks ← {all ranks}, live_parts ← 0, dead_parts[all ranks]← 0
buffers ←one buffer per neighbor
iteration←1
while there are active ranks do

sim_buffer ← try_recv(live_ranks, live_parts)
while |sim_buffer | < BUFFER_SIZE do

sim_buffer ⇐ try to generate particle from local sources
Increment live_parts for each generated particle

for each particle in sim_buffer do
if particle crossed subdomain boundary then

Add particle to buffer with sid equal to the particle’s next subdomain id
dead_parts ← send_buffer(buffer ,buffer .sid,dead_parts) (if full)

if particle terminated then
Increment dead_parts[particle.gen_rank]

if iteration ≡ 0 (mod SEND_PERIOD) then
for each buffer in buffers do

dead_parts ← send_buffer(buffer ,buffer .sid, dead_parts)
dead_parts ← send_dead_particle_count(dead_parts)

if local sources depleted and live_parts = 0 then
Mark local rank as dead, broadcast empty msg with tag 0

Increment iteration

Task legend: receive/generate particles simulate particles ensure progress

49 / 76

Algorithm, for completeness
Algorithm Domain decomposition communication routines

function try_recv(live_ranks, live_parts)
if a message msg has arrived then

live_parts ← live_parts −msg.tag
if msg.buffer is not empty then

return (msg.buffer , live_ranks, live_parts)
if msg.buffer is empty ∧msg.tag = 0 then

Remove msg.source from live_ranks
return (empty buffer, live_ranks, live_parts)

function send_buffer(buffer , sid, dead_parts)
rank ← Select an MPI rank that is assigned to subdomain sid
t ←min(dead_parts[rank], MPI_TAG_UB)
Asynchronously send buffer to rank with tag=t
dead_parts[rank]← dead_parts[rank]− t
return dead_parts

function send_dead_particle_count(dead_parts)
for each (rank, count) in dead_parts do

if count > 0 then
t ←min(count, MPI_TAG_UB)
Asynchronously send empty message to rank with tag=t
dead_parts[rank]← dead_parts[rank]− t

return dead_parts 50 / 76

Asynchronous termination control

Novel asynchronous termination control
Previous algorithms have relied on global sums of generated vs terminated
particles. The novelty is that the sums are partitioned by generating rank
and done fully asynchronously.

Piggy-backing on the particle buffer messages we also eliminate a portion
of the termination messages.

51 / 76

Performance and scalability
results

52 / 76

Scaling experiments

We define two collision processes
• scattering (isotropic rotation)
• absorption (path termination)

Setting mean speed = 1, and we vary
• λ, the mean free path
• νs/νt , the ratio of scattering collisions to total collisions

We use two collision regimes
• λ = 0.25, νs/νt = 0.01 (low-collisional)
• λ = 0.05, νs/νt = 0.99 (high-collisional)

53 / 76

Strong scaling experiment

Definition
In a strong scaling experiment, we measure the speedup as we add more
compute resources to a constant overall workload.

Scale
We scale all three algorithms to a full node (128 cores).

For DR and SM algorithms, we add an OpenMP thread for each new core.

54 / 76

Strong scaling experiment

For DDMC, we recursively bisect the domain as we add MPI ranks.
55 / 76

Strong scaling experiment

We use z-order indexing to assign nearby subdomains to nearby CPU cores.
56 / 76

Strong scaling experiment

Strong scaling efficiency
The figure on the next slide plots the strong scaling efficiency SSEn as it
varies when we increase the CPU core count n:

SSEn =
t1

tn × n

where tn is the runtime of the simulation for n CPU cores.

You may be used to seeing the strong scaling speedup, this number is the
speedup divided by the number of cores.

57 / 76

In the above log-log figure, SSE is shown across grid resolutions and collision
regimes. Small grids on top, large grids on bottom.
Note: due to variance in superlinear scaling, y-axis is specific to subfigure pairs.

58 / 76

• For small grids domain replication scales well. Better than DDMC
• Domain replication is not really sensitive to collisionality

59 / 76

• Shared memory scalability is never good, except for small core counts
• We used OMP_PROC_BIND=spread, but OMP_PROC_BIND=close improves

performance if optimizing for a handful of cores
60 / 76

• Domain decomposition scales well except for really small grids and
low-collisionality (high communication overhead)

• DDMC is superlinear for grids larger than the L3 cache (and sometimes for
smaller ones)

61 / 76

• If we compare domain decomposition to domain replication we see that the
advantage grows as we move from small grids to larger ones

• For big grids, the performance advantage is on the order of 100× or 1000×
62 / 76

Strong scaling, cache efficiency

The grid size, or more precisely, the memory footprint of the grid, has a strong
impact on the performance. This is due a higher cache efficiency.

63 / 76

Weak scaling experiment

Definition
In a weak scaling experiment, we measure how the runtime changes as we
add more compute resources, keeping the workload per compute resource
constant.

Scale
We scale DDMC to a 128 nodes (16384 cores). This is the largest
compute allocation we could get on Mahti.

The other algorithms run out of memory, so they were not tested.

64 / 76

Weak scaling experiment

Each MPI rank in the experiment always gets a subdomain of the same
size, 2562. The boundary conditions are periodic, and we generate the
same number of particles in each subdomain.

NOTE: The mean free paths are now relative to the subdomain size, not the full domain
size.

65 / 76

Weak scaling experiment

Weak scaling efficiency
The figure on the next slide plots the weak scaling efficiency WSEn as it
varies when we increase the CPU core count n:

WSEn =
t1
tn

where tn is the runtime of the simulation for n CPU cores.

66 / 76

Domain decomposition weak scaling results
The weak scaling of domain decomposition is good, at 16384 CPU cores it is
around 50% for high-collisional cases, 25% for low-collisional cases.

In other words, 16384 cores do 16384 times as much work as a single core
in twice the time (high-col) or four times the time (low-col).

67 / 76

Particle generation bottleneck

Filtering particles
The deterministic generation method is for each rank to generate all
potential particles, and then filter out the ones that don’t.

68 / 76

Particle generation bottleneck

Figure: log-log plot with # cores on x-axis, part. generation time on y-axis (deterministic method). Weak scaling experiment.

Linearly growing cost
The cost to generate a particle is roughly 0.6us. But for 16384 cores, each
core generates 81, 920, 000 particles, which costs 53 seconds.

69 / 76

Particle generation bottleneck

Figure: log-log plot with # cores on x-axis, part. generation time on y-axis (decomposed method). Weak scaling experiment.

Decomposed method
What we ended up doing is to decompose the sources into independent
subsources, which keeps the generation cost low. What particle trajectories
that are generated now depends on the source decomposition.

70 / 76

Particle generation bottleneck

Filtering particles
Decomposition by subdomain works, as we can see here. A Quasi-Monte
Carlo method could potentially be better, allowing for both determinism
and performance.

71 / 76

Scalability drop to 50%

Simulation cost
The two big drops in efficiency at 1 → 4 cores and 16 → 64 are not due to
comm. overhead, but simulation becoming slower. Suspect cache effects.
The last low-collisional drop is due to communication overhead.

72 / 76

Model limitations
1) The cross section Σt is based on constant collision rates νk , one scalar
per collision process k:

Σt =
∑

k

νk
|v |

2) Eiron has two simple scattering collisions: isotropic rotations (dummy
collision) and a globally constant BGK distribution.

3) Eiron only supports 2D square grids

The plan is to improve on the situation
1) implement more collision rate models, starting with AMJUEL
2) implement elastic collisions and cell-wise BGK collisions
3) go to 3D (lowest priority)

73 / 76

Future work

TSVV-5/TSVV-K wants to continue the project.

1 Begin implementing the algorithm in EIRENE
2 Add physics discussed on previous slide
3 Investigate the compute performance drop at 4 and 64 cores
4 Begin porting the algorithm to GPUs

74 / 76

Thank you
Questions?

https://version.helsinki.fi/lapposka/eiron

75 / 76

https://version.helsinki.fi/lapposka/eiron

[1] V. Quadri et al. “Edge plasma turbulence simulations in detached
regimes with the SOLEDGE3X code”. In: Nuclear Materials and
Energy 41 (2024), p. 101756. issn: 2352-1791. doi:
https://doi.org/10.1016/j.nme.2024.101756.

[2] D.V. Borodin et al. “Fluid, kinetic and hybrid approaches for neutral
and trace ion edge transport modelling in fusion devices”. In: Nuclear
Fusion 62.8 (Aug. 1, 2022), p. 086051. issn: 0029-5515, 1741-4326.
doi: 10.1088/1741-4326/ac3fe8.

[3] Oskar Lappi et al. Scalable Domain-decomposed Monte Carlo Neutral
Transport for Nuclear Fusion. Nov. 6, 2025. doi:
10.48550/arXiv.2511.04489. arXiv: 2511.04489. url:
http://arxiv.org/abs/2511.04489.

[4] Oskar Lappi et al. 2D implementation of Kinetic-diffusion Monte
Carlo in Eiron. Sept. 23, 2025. doi: 10.48550/arXiv.2509.19140.
arXiv: 2509.19140. url: http://arxiv.org/abs/2509.19140.

76 / 76

https://doi.org/https://doi.org/10.1016/j.nme.2024.101756
https://doi.org/10.1088/1741-4326/ac3fe8
https://doi.org/10.48550/arXiv.2511.04489
https://arxiv.org/abs/2511.04489
http://arxiv.org/abs/2511.04489
https://doi.org/10.48550/arXiv.2509.19140
https://arxiv.org/abs/2509.19140
http://arxiv.org/abs/2509.19140

	References

