

Flang and OpenMP offloading in
Orb5

Ville-Markus Yli-Suutala

Why flang?
● Only way to do compiler directive based GPU

programming in Fortran on AMD GPUs

Flang background
● Modern open source Fortran compiler
● Developed from scratch to replace Classic Flang
● Started out as F18 at Nvidia, first announced in 2018
● Part of the llvm-project since 2020

Flang background
● Uses MLIR (Multi Level Intermediate Representation),

it’s like a framework for compiler intermediate
representations

● Uses LLVM so it can benefit from the massive
resources put into that, run on many platforms, etc.

● Uses the same OpenMP and GPU libraries as clang

Flang background
● Developers at ARM, AMD and Nvidia
● Intel has their own ifx compiler that does use

LLVM

Where to get it?
● Upstream https://github.com/llvm/llvm-project
● AMD fork https://github.com/ROCm/llvm-project
● Prebuilt binaries at

https://repo.radeon.com/rocm/misc/flang
● Small readme at

https://github.com/amd/InfinityHub-CI/tree/main/fort
ran

https://github.com/llvm/llvm-project
https://github.com/ROCm/llvm-project

Which one?
● AMD fork has more advanced support for

OpenMP offloading
● Features come here before being upstreamed
● Not everything is upstreamed

Building flang from source
cmake \
 -G Ninja \
 -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_INSTALL_PREFIX=$INSTALLDIR \
 -DCMAKE_CXX_STANDARD=17 \
 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
 -DCMAKE_CXX_LINK_FLAGS="-Wl,-rpath,$LD_LIBRARY_PATH" \
 -DLLVM_ENABLE_ASSERTIONS=ON \
 -DLLVM_TARGETS_TO_BUILD='X86;AMDGPU' \
 -DLLVM_LIT_ARGS=-v \
 -DLLVM_ENABLE_PROJECTS='clang;mlir;flang;lld' \
 -DLLVM_ENABLE_RUNTIMES='compiler-rt;openmp;offload;flang-rt' \
 -DRUNTIMES_amdgcn-amd-amdhsa_LLVM_ENABLE_RUNTIMES='libc;openmp' \
 -DLLVM_RUNTIME_TARGETS='default;amdgcn-amd-amdhsa' \
 -DLLVM_CCACHE_BUILD=ON \
 -DLLVM_ENABLE_PER_TARGET_RUNTIME_DIR=ON \
 ../llvm-project/llvm

Building the flang runtime for GPUs
CXXFLAGS='-mcode-object-version=5' cmake ../llvm-project/runtimes/ \
 -DCMAKE_BUILD_TYPE=Release \
 -DLLVM_ENABLE_RUNTIMES=flang-rt \
 -DFLANG_RT_EXPERIMENTAL_OFFLOAD_SUPPORT="OpenMP" \
 -DCMAKE_C_COMPILER=clang \
 -DCMAKE_CXX_COMPILER=clang++ \
 -DFLANG_RT_DEVICE_ARCHITECTURES='gfx90a' \
 -DFLANG_RT_INCLUDE_TESTS=OFF

Building flang and runtime
● Might be possible to build the GPU runtime in

one go with the rest
● Easier to add flags only for the runtime when

compiling it separately

Building software
● flang -fopenmp --offload-arch=gfx90a -mcode-object-version=5

● Code object version needs to be manually set
to 5 if a rocm version older than 6.3 is used

● Newer devicelibs is required to compile with
code object version 6 and some other libraries
to run the binaries

Building software
● Libraries need to be rebuilt for flang
● For Orb5 these are mpi and hdf5

Debugging?
● Still work in progress
● CPU debugging is useful
● GPU debugging not yet
● If a GPU kernel is crashing, the kernel name

might be printed. It can be useful to get
backtrace with gdb

Compiler limitations affecting Orb5
● Data mapping used to be an issue
● Optional arguments can’t be used in device

code
● Some intrinsics don’t work on device. bessel_jn

for example is not implemented for GPUs. Can
be worked around by calling jn from C, clang
knows

Compiler limitations affecting Orb5
● OpenMP atomics are faster with clang for some

reason
● Operations on arrays are slow on device, better

to change an element at a time
● Performance of GPU code in general not very

good yet

Profiling on AMD GPUs
● Rocprof
● Omnitrace / ROCm Systems Profiler
● Omniperf / ROCm Compute Profile

Bugs
● Sudden slowdown a few weeks ago
● Better the next day without changing anything
● Last week the program again became

unexpectedly slow
● The results come out clearly wrong

Bugs
● Debugging shows problems start with the push

kernel

Bugs

Bugs
● work1_loc(ip,S_PIC) = work1_loc(ip,S_PIC) + basic%dt*dvardt(S_PIC)

● First value is right, but then the second

● work1_loc(ip,S_PIC) = 0 + 100 * -3.236E-07 = -6.472E-05

● The following values seem to be even more off

● Does the loop body execute more than once per particle?

Example

Expected output

Push loop

Counts for push

Causes?
● Library compatibility?
● Driver compatibility?
● Compiler bug?

Thank you!
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

