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Why flang?
● Only way to do compiler directive based GPU 

programming in Fortran on AMD GPUs



  

Flang background
● Modern open source Fortran compiler
● Developed from scratch to replace Classic Flang
● Started out as F18 at Nvidia, first announced in 2018
● Part of the llvm-project since 2020



  

Flang background
● Uses MLIR (Multi Level Intermediate Representation), 

it’s like a framework for compiler intermediate 
representations

● Uses LLVM so it can benefit from the massive 
resources put into that, run on many platforms, etc.

● Uses the same OpenMP and GPU libraries as clang



  

Flang background
● Developers at ARM, AMD and Nvidia
● Intel has their own ifx compiler that does use 

LLVM



  

Where to get it?
● Upstream https://github.com/llvm/llvm-project
● AMD fork https://github.com/ROCm/llvm-project
● Prebuilt binaries at 

https://repo.radeon.com/rocm/misc/flang
● Small readme at 

https://github.com/amd/InfinityHub-CI/tree/main/fort
ran

https://github.com/llvm/llvm-project
https://github.com/ROCm/llvm-project


  

Which one?
● AMD fork has more advanced support for 

OpenMP offloading
● Features come here before being upstreamed
● Not everything is upstreamed



  

Building flang from source
cmake \
  -G Ninja \
  -DCMAKE_BUILD_TYPE=Release \
  -DCMAKE_INSTALL_PREFIX=$INSTALLDIR \
  -DCMAKE_CXX_STANDARD=17 \
  -DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
  -DCMAKE_CXX_LINK_FLAGS="-Wl,-rpath,$LD_LIBRARY_PATH" \
  -DLLVM_ENABLE_ASSERTIONS=ON \
  -DLLVM_TARGETS_TO_BUILD='X86;AMDGPU' \
  -DLLVM_LIT_ARGS=-v \
  -DLLVM_ENABLE_PROJECTS='clang;mlir;flang;lld' \
  -DLLVM_ENABLE_RUNTIMES='compiler-rt;openmp;offload;flang-rt' \
  -DRUNTIMES_amdgcn-amd-amdhsa_LLVM_ENABLE_RUNTIMES='libc;openmp' \
  -DLLVM_RUNTIME_TARGETS='default;amdgcn-amd-amdhsa' \
  -DLLVM_CCACHE_BUILD=ON \
  -DLLVM_ENABLE_PER_TARGET_RUNTIME_DIR=ON \
  ../llvm-project/llvm



  

Building the flang runtime for GPUs
CXXFLAGS='-mcode-object-version=5' cmake ../llvm-project/runtimes/ \
  -DCMAKE_BUILD_TYPE=Release \
  -DLLVM_ENABLE_RUNTIMES=flang-rt \
  -DFLANG_RT_EXPERIMENTAL_OFFLOAD_SUPPORT="OpenMP" \
  -DCMAKE_C_COMPILER=clang \
  -DCMAKE_CXX_COMPILER=clang++ \
  -DFLANG_RT_DEVICE_ARCHITECTURES='gfx90a' \
  -DFLANG_RT_INCLUDE_TESTS=OFF



  

Building flang and runtime
● Might be possible to build the GPU runtime in 

one go with the rest
● Easier to add flags only for the runtime when 

compiling it separately



  

Building software
● flang -fopenmp --offload-arch=gfx90a -mcode-object-version=5

● Code object version needs to be manually set 
to 5 if a rocm version older than 6.3 is used

● Newer devicelibs is required to compile with 
code object version 6 and some other libraries 
to run the binaries



  

Building software
● Libraries need to be rebuilt for flang
● For Orb5 these are mpi and hdf5



  

Debugging?
● Still work in progress
● CPU debugging is useful
● GPU debugging not yet
● If a GPU kernel is crashing, the kernel name 

might be printed. It can be useful to get 
backtrace with gdb



  

Compiler limitations affecting Orb5
● Data mapping used to be an issue
● Optional arguments can’t be used in device 

code
● Some intrinsics don’t work on device. bessel_jn 

for example is not implemented for GPUs. Can 
be worked around by calling jn from C, clang 
knows



  

Compiler limitations affecting Orb5
● OpenMP atomics are faster with clang for some 

reason
● Operations on arrays are slow on device, better 

to change an element at a time
● Performance of GPU code in general not very 

good yet



  

Profiling on AMD GPUs
● Rocprof
● Omnitrace / ROCm Systems Profiler
● Omniperf / ROCm Compute Profile



  



  

Bugs
● Sudden slowdown a few weeks ago
● Better the next day without changing anything
● Last week the program again became 

unexpectedly slow
● The results come out clearly wrong



  

Bugs
● Debugging shows problems start with the push 

kernel



  

Bugs



  

Bugs
● work1_loc(ip,S_PIC)   = work1_loc(ip,S_PIC)   + basic%dt*dvardt(S_PIC)

● First value is right, but then the second

● work1_loc(ip,S_PIC)   = 0 + 100 * -3.236E-07 = -6.472E-05

● The following values seem to be even more off

● Does the loop body execute more than once per particle?



  

Example



  

Expected output



  

Push loop 



  

Counts for push



  

Causes?
● Library compatibility?
● Driver compatibility?
● Compiler bug?



  

Thank you!
● Questions?
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