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) spPA-2025 - Overview
=

7

SP A.1 Synergistic Load Studies of

Focus on damage evolution of

Plasma-Facing Materials for ITER & ITER-like MBs
DEMO (including WEST MBs)

=  Recrystallisation evolution in W
SP A.2 High Particle Fluence (incl. modelling)
Exposures of Plasma-Facing =  Focus on ITER-like MBs testing

under multiple seeding, species,
ELMs, and He

Components for ITER

SP A.3 Advanced Materials under - Plasma qualification of new
thermo-mechanical and plasma materials for DEMO and other
loads toroidal facilities (e.g. W7-X)

=  Disruption-like loading for DEMO
SP A.4 High Temperature (incl. OLMAT)
performance of Armour Materials:
Recrystallization and Melting =  Melting of MBs => MEMETO

modelling)

SP A.5 Compass-U =  KIPT as possible during
cicumstances

3 Jan Willem Coenen | WPPWIE Meeting | 24th March



() sPA-2026 - Overview
&

SP A.1 Synergistic Load Studies of =  Focuson ITER

Plasma-Facing Materials for ITER & =  Finalizing of work until 2027
DEMO =  Deliverables soon to be defined

SP A.2 High Particle Fluence
Exposures of Plasma-Facing
Components for ITER

SP A.3 Advanced Materials under

thermo-mechanical and plasma

loads

SP A.4 High Temperature
performance of Armour Materials:

Recrystallization and Melting

4 Jan Willem Coenen | WPPWIE Meeting | 24th March
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Report for 2025 & Overview

This work has been carried out within the framework of the EUROfusion Consortium, funded by
the European Union via the Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Commission.
Neither the European Union nor the European Commission can be held responsible for them.



ﬁ) Synergistic Load Studies of Plasma-Facing Materials for ITER &
= DEMO

Deliverable Owner m Deliverable (Team)

(Mwitz [l 4 D001 (M. Gago, D. Dorow-Gerspach*) *  Establish a test matrix for Materials utilized in WEST and ITER with respect to updated
DIEFER 4 D002, (T. Morgan) load specifications. in the available devices (DIFFER, FZJ, MPG)

CIEMAT 6 D003 (D. Alegre) *  Study the impact of synergistic loads on ITER and DEMO relevant baseline Materials
| H.Greuner ~ [¥I6 3 D004 (H. Greuner, H. Maier, J.Riesch) (tungsten, W-FGMs on Steel) and new materials developments with Laser (Laser at PSI-2)
I.Garkusha [N 15 D005 (I. Garkusha) and e-beam (JUDITH) as well as steady-state plasma exposure (He, H). A special focus will
32 be the qualification of these materials under high cycle numbers and seed-impurities
| Device | Beneficiary [ Days | RelatedDeliverabe exposure. (FZ)

m FZ) 10 D001 . Post-mortem analysis will characterize the induced surface modifications and damages as
Fz) 15 D001 well as investigate changes of the materials properties due to e.g. recrystallization
Fz) 3 D001 jointly with SPA 3/SPA 4 behavior and/or surface morphology changes. (FZJ, MPG, DIFFER, KIPT)

m MES 5 et . Determine underlying mechanisms of evolution of crack propagation in materials for ITER
| MAGNUM-PSI JBITZE > RO02 and current day devices. (FZJ, DIFFER, KIPT, MPG, CIEMAT)

NN DIFFER 5 D002

CIEMAT 10 D003 . Qualify W materials for use in W7-X. (MPG, FZJ)

- i i - MAGNUM-PSI, OLMAT i
Deliverable ID | Deliverable Title Synergy effects from sequential stationary (PSI-2 / GNU SI, O ) and transient

Damage threshold for different W materials at varying loading conditions in (QSPA) plasma loads. (DIFFER, MPG, FZJ, KIPT, CIEMAT)

matrix form / Understanding the damage mechanisms and changes in material Studies of fatigue cracks formation in deformed/re-crystalized W, fatigue damage of Wy/W
properties and changes in the retention behavior (FZ)) wires, latticing W etc. (FZ))

“Evaluation of redeposited tungsten microstructure and evolution under

transient loading” (DIFFER) — with focus on Properties under synergistic Combination of pulsed and steady state loading (e.g. behavior of QSPA pre-damaged
Loading targets in PSI-2, JUIDTH compared with reference samples). (FZJ, KIPT)

Exploitation of OLMAT as HHF facility — Testing of baseline and advanced materials  o1\,qy the Behavior of pre-cracked samples under edge loading conditions - links to HHF

— Laser & OLMAT exposures (CIEMAT) facilities such as JUDITH and WEST. (DIFFER, Fz))
D004 Qualification of W-Heavy Alloys for use in W7-X in conjunction with test on new

tungsten mock-ups (WPMAT) and PFUs for WEST (WPTE) (MPG)
Analysis of material properties after sequential HHF transient and steady-state

plasma loading (KIPT).
6 Jan W. Coenen 2024.11.20
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PWIE-SP A.A1.T-TO04-D005

Analysis of material properties after sequential HHF transient and steady-
state plasma loading (KIPT)

7 QSPA team| SPA Final update | 07 November 2025
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PWIE-SP A.A1.T-T004-D005: Conditions of sequential loads

(

* Samples
We received 12 conventional tungsten samples from DIFFER.
12x12 mm square samples with a 2 mm thickness were cut from ITER-grade tungsten produced by
PLANSEE.

* Samples were exposed in the Upgraded Pilot-PSI (UPP) and Magnum-PSI (Magnum) at DIFFER. In UPP,
fluence and temperature scans were performed, exposing samples to temperatures 400-500-600-700 K
and fluences of 10%° - 102 - 102’ m~2 to successive D - H -D plasma. In Magnum, the same temperature
scan was performed at a fluence of 102’ m=2.

e Post-mortem and in-situ ion beam analysis between
plasma exposures were performed to analyze retention
in the samples.

 Samples W3;W4; W13; W14; W1, W2, W6, W7
were irradiated with 10 QSPA plasma pulses of 0.9 MJ/m?

https://pure.tue.nl/ws/portalfiles/portal/319778422/0952393 - Elenbaas_J.K. - MSc_thesis_Thesis - NF.pdf

8 QSPA team| SPA Final update | 07 November 2025
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(@ PWIE-SP A.A1.T-T004-D005: Magnum + QSPA
Magnum-PSI

num-PSI + QSPA

Pl o TV
'’ "'{.‘)4 & A

» After Magnum-PSI exposure: >

T =600 C, 102’ m™2

» Surface relief typical for >
physical sputtering >
» Blisters in the hundred-
nanometer range >

After QSPA Kh-50 exposure: T=RT, 10 pulses, surface
heat load of 0,9 MJ/m?2 and a duration of 0.25 ms.
Surface melting, re-solidified layer

Cracking (large (network up to 0.4 mm) and intergranular
(network up to 40 um) cracks), cracks width up to 1 um.
Pores resulting from blister cap ruptures ??7?

9 QSPA team| SPA Final update | 07 November 2025



© PWIE-sP A.ALT-T004-D005: UPP + QSPA
Upgraded Pilot-PSI Upgraded Pilot-PSI + QSPA

» After QSPA exposure: T=RT, 10 pulses, surface heat load of
0,9 MJ/m? and a duration of 0.25 ms.

» Surface melting, re-solidified layer

» Cracking (large (network up to 0.4 mm) and intergranular
(network up to 40 um) cracks), cracks width up to 1 um.

» After UPP exposure:
T =500 C, 10%’ m*2
» Surface relief typical for
physical sputtering

10 QSPA team| SPA Final update | 07 November 2025
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(O) PWIE-SP A.A1.T-T004-D005: Summary

11

Analysis of material properties after sequential HHF transient
and steady-state plasma loading (KIPT)

Summary 2025

» Samples were initially exposed in the Upgraded Pilot-PSI (UPP) and Magnum-PSI in
collaboration with Thomas Morgan

» Additional QSPA exposure (T=RT, 10 pulses, 0.9 MJ/m?) was performed

» Observed effects include surface melting, cracking (large and intergranular cracks), pore
formation

> A paper on the performed work has been submitted as a contribution to the 20" PFMC (19-
23 May 2025, Ljubljana, Slovenia)

» Post-mortem analyses using XRD and cross-sectional studies are currently in progress in
collaboration with Wolfgang Pantleon (DTU)

QSPA team| SPA Final update | 07 November 2025




SPA1 DIFFER task and activities

Deliverable: “Evaluation of redeposited tungsten microstructure and evolution under
transient loading”

Goal

* Create “realistic” W redeposits with a sputtering & redeposition setup in Magnum-
PSI

* Determine how W redeposited layers impact the divertor

Activities 2025
* Characterize layers grown in 2024

* Exposure 2024 layers to ELM-like (laser) loading combined with H-plasma loading to
evaluate layer stability



Overview of activity

Q

XRD (crystallite size, phase, crystallinity)
shows mainly nanocrystalline alpha-phase
W

scratch testing (coating adhesion) shows
that plasma interaction regions had better
film-substrate adhesion than shadowed
regions

ELM-like loading showed flaking of
previously adhered deposits for thicker
layers, with melting at edges of
delaminated regions.

Strongly substrate dependent: rough
substrates increase adhesion, leading to
cracking through to substrate

Flaking

buckling  cracking chipping

Better-defined
track

~1 um thick, polished
substrate, position H2

Cracking

cracking
buckle delamination

=1 pm thick; rough
substrate, position H2




Publications related to SPA 2020-2025

Publications

J. Hargreaves, H.E. Tipping, S. Moore, D. Kumar, D. J. Harding, H. Dominguez-Andrade, C. Bell, P.D. Hanna, H. Dawson, T. L. Martin, The transient thermal ageing of Eurofer 97 by
mitigated plasma disruptions , Materials and Design , 244 (2024) 113207

Y. Li, J. Hou, V. Shah, Y. Huang, J. A. W. van Dommelen, W. J. Lu, Q. Zhu, T. W. Morgan , Amorphous and anisotropic surface relief formation in tungsten under repeated high-flux
hydrogen plasma loads , Nuclear Materials and Energy , 37 (2023) 101544

Y. Li, T. Vermeij, J.P. M. Hoefnagels, Q. Zhu, T. W. Morgan , Influence of porosity and blistering on the thermal fatigue behavior of tungsten , Nuclear Fusion , 62 (2022) 076039

Y. Li, T. W. Morgan, T. Vermeij, J. W. M. Vernimmen, T. Loewenhoff, J.P. M. Hoefnagels, J. A. W. van Dommelen, M. Wirtz, G. De Temmerman, K. Verbeken , et al. , Recrystallization-
mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating , Nuclear Fusion, 61 (2021) 046018

T.W. Morgan, Y. Li, M. Balden, S. Brezinsek, G. De Temmerman , Combined high fluence and high cycle number transient loading of ITER-like monoblocks in Magnum-PSI , Nuclear
Fusion, 61 (2021) 116045

Z.Chen, Y. Li, L. Cheng, Z. Wang, Y. Lian, X. Liu, F. Feng, J. Wang, Y. Tan, T. W. Morgan, et al. , Recent progress of thick tungsten coating prepared by chemical vapor deposition as the
plasma-facing material,, Nuclear Fusion, 61 (2021) 126024

V. Shah,J.T.S. Beune, Y. Li, T. Loewenhoff, M. Wirtz, T. W. Morgan, J. A. W. van Dommelen , Recrystallization behaviour of high-flux hydrogen plasma exposed tungsten , Journal of
Nuclear Materials , 545 (2021) 152748

Y. Li, T. W. Morgan, J. van den Berg, J.W. Genuit, G. De Temmerman, J.P. M. Hoefnagels, J. A. W. van Dommelen, K. Verbeken, M.G. D. Geers , Power deposition behavior of high-density
transient hydrogen plasma on tungsten in Magnum-PSI , Plasma Physics and Controlled Fusion , 63 (2021) 085016

Y. Li, T. W. Morgan, J. van den Berg, J.W. Genuit, G. De Temmerman, J.P. M. Hoefnagels, J. A. W. van Dommelen, K. Verbeken, M.G. D. Geers , Power deposition behavior of high-density
transient hydrogen plasma on tungsten in Magnum-PSI , Plasma Physics and Controlled Fusion , 63 (2021) 085016

A. Litnovsky, J. Schmitz, F. Klein, K. De Lannoye, S. Weckauf, A. Kreter, M. Rasinski, J. W. Coenen, C. Linsmeier, T. W. Morgan , et al. , Smart Tungsten-based Alloys for a First Wall of
DEMO, Fusion Engineering and Design, 159 (2020) 111742

K. L. Li,Y.Li, W.Q.Chen, C.Zhao, Y. Yuan, L. Cheng, T. W. Morgan, W. Liu, Z. J. Shen , Effect of Ta addition on the fuzz formation of additively manufactured W based materials , Nuclear
Fusion, 60 (2020) 064004

Y. Li, T. W. Morgan, D. Terentyev, S. Ryelandt, A. Favache, S. Wang, M. Wirtz, J. P. M. Hoefnagels, J. A. W. van Dommelen, G. De Temmerman, et al. , Three mechanisms of hydrogen-
induced dislocation®iagning intgngsien, Nuclear Fusione 80 £2020) 086015

N
'M. Balden;S!'Elget, T.'W.-Morgan, S. Brezinsek, G. De Temmerman , Scanning electron microscopy analyses of an ITER plasma-facing unit mockup exposed to extreme ion fluences in
Magnum-PSI, Physica Scripta , 95 (2020) 014026

T.W. Morgan, M. Balden, T. Schwartz-Selinger, Y. Li, T. Loewenhoff, M. Wirtz, S. Brezinsek, G. De Temmerman , ITER monoblock performance under lifetime loading conditions in
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Overview of main results DIFFER SPA (2020-2025)

&

SPAT
* Evaluated lifetime of pre-damaged surfaces under fatigue (ELM-like loading)

* Evaluated the mechanical properties and adhesion of re-deposited tungsten under steady and
transient loading

SPA2

* Evaluated performance of tungsten (monoblocks) under “slow transient” conditions with and without
ELM-like loading and impurity Seeding

* Evaluated fatigue behaviour of tungsten under “strikepoint sweeping” conditions
SPA3

* Evaluated performance under high flux (transient) loading of advanced materials
« CVD-W
« Smart alloys
« EUROfer

SPA5
* Evaluated performance of different W grades under repeated COMPASS-U divertor loading conditions




Using Optical Spectroscopy at GLADIS for the investigation of

tungsten alloys
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Max-Planck-Institut fur Plasmaphysik | H. Maier

Testing of tungsten coatings from new suppliers

« Securing and widening the range of tungsten coating suppliers for the operation of ASDEX Upgrade wrt coating method/thickness/substrate

» High Heat Flux Testing: Cyclic loading at various power densities

1 n 12 13 14 15 16 7 18 BRSO ee 23 24 25 26 27
; 7?7 g g g ° 2 1 o 1 2 3 4 5 ] g 8 9 10 " A

5 4 8

2
8

VPS coating on steel for central column: 2 PVD coating on graphite for upper divertor: 10

MW/m?2 MW/m?2 e
(O, Provider KIT, test successful Provider IPP CZ, test ongoing



SP A.1 Synergistic Load Studies of Plasma-Facing Materials for ITER & DEMO: CIEMAT O

= DO003: Exploitation of OLMAT as HHF facility — Testing of baseline and advanced materials — Laser & OLMAT exposures
OLMAT summary

» Successful commissioning of OLMAT device

» Successful upgrades applied:
1. High-energy laser for disruptions (0.1-3 GW/m?) and small-ELMs regimes (<475 MW/m?2, 50-2000 Hz, 10%-107 pulses)
2. Large holder: up to 75 samples exposed at a Gaussian power density distribution 1-40 MW/m?

» Results summary:

NBI

¥ b
|l A -
. /7 orl v/
75 o i
3 ‘

475 NIW/m2; F 6.7 MW/m?s0
500 Hz, 10° pulses 650 °C

EHT =15.00 kv Signal A= SESI Mag= 500X Height =171 ym 20 pm” EHT=1500kV Signal A= SESI Mag= §00X Height =172 ym | 00KV Signal A= SESI Mag= 180K X 10 pm*

11.2 MW/m2; F,;r 3.5 MW/m?2s0.5

10 pm™
— > - ;
SEM WD = 97 mm Signal B = SESI FIB Lock Mags = No Width = 229 um | sEM _ WD=85mm  SignalB=inLens  FIBLockMags=No  width=220pm i mm Signal B=InLens FIB Lock Mags = No

EHT=1600kvV Signal A=SESI
ciOEM oo WOEAOSWM:..  SignaiBoSESL. . e nrety s SOOI

SEM WD = 86 mm Signal B=InLen

Multiple voids appear at grain borders (and a few cracks) Different spot sizes (0.6-6 mm) while maintaining flat top
when close to damage threshold (cracks found above it). profile of laser beam: converging lens and fiber size

Both in ITER-like W and PoMA W{/W Analyzing cracking threshold in disruptions and small-ELMs




SP A.1 Synergistic Load Studies of Plasma-Facing Materials for ITER & DEMO: CIEMAT
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= DO003: Exploitation of OLMAT as HHF facility — Testing of baseline and advanced materials — Laser & OLMAT exposures

Publications 2020-2025 for SPA

> Articles:

D. Alegre, E. Oyarzabal, D. Tafalla, M. Liniers, A. Soleto, F. L. Tabares, “Design and Testing of Advanced Liquid Metal Targets for DEMO Divertor: The OLMAT Project”, J. Fusion Energy, 6, 411,
(2020), DOI: 10.1007/s10894-020-00254-5.

F L Tabarés, K.J. McCarthy, D Tafalla, [...], D. Alegre et al., “Spectroscopic Characterization of Ablation Plasmas in the OLMAT HHF Facility”, Conference paper in 49th IEEE International Conference
on Plasma Science (ICOPS), DOI: 10.1109/ICOPS45751.2022.9813313

F. L. Tabarés, E, Oyarzabal, D. Alegre, D. Tafalla et al, “Commissioning and First Results of the OLMAT facility”, Fusion Engineering and Design, 187 (2023) 113373. DOI:
10.1016/j.fusengdes.2022.113373.

E. Oyarzabal, A. De Castro, D. Alegre, D. Tafalla, et al. "Overview of the OLMAT high heat flux facility activities testing liquid and solid metal targets for their use as divertor materials", Conference
paper in 29th FEC, IAEA-CN-316/2012

D. Alegre, D. Tafalla, A. De Castro, M. Gonzalez et al., “First thermal fatigue studies of tungsten armor for DEMO and ITER at the OLMAT High Heat Flux facility”, Nuclear Materials and Energy 38
(2024) 101615. https://doi.org/10.1016/j.nme.2024.101615.

J. Gdmez Manchédn, P. Ferndndez-Mayo, A. De Castro, D. Alegre, F. Martin, D. Tafalla, E. Oyarzdbal, Beam power density and spatial distribution characterization using calorimetry and IR
thermography at OLMAT, Fusion Engineering and Design 222 (2026) 115499. https://doi.org/10.1016/j.fusengdes.2025.115499

> Conferences:

Talk: P. Fernandez-Mayo, D. Alegre, A. de Castro, | Rivera, D. Tafalla, E. Oyarzabal et al. “OLMAT: a HHF facility for testing liquid metal and solid PFCs under extreme thermal loads” , 2nd AM2F in
Cambridge, USA. 2025

Poster: F. L. Tabarés, E. Oyarzabal, M. Liniers, D. Alegre et al. “OLMAT. A new Facility for testing materials under DEMO-relevant Heat Loads”, 38th Reunidn Bienal de la Real Sociedad Espafiola de
Fisica in Murcia (Spain). 2022

Poster: F L Tabarés, K.J. McCarthy, D Tafalla, [...], D. Alegre et al., “Spectroscopic Characterization of Ablation Plasmas in the OLMAT HHF Facility”, 49th ICOPS, in Seattle (USA) 2022

Poster: F. L. Tabarés, E. Oyarzabal, M. Liniers, D. Alegre et al., “The OLMAT Facility: Commissioning and First Results”, 25th PSI, online. 2022

Poster: E. Oyarzabal, A. De Castro, D. Alegre, D. Tafalla, et al. "Overview of the OLMAT high heat flux facility activities testing liquid and solid metal targets for their use as divertor materials", 29th
IAEA fusion conference (FEC-2023) in London (UK) 2023

Poster: D.Alegre, E. Oyarzabal, A. De Castro, D. Tafalla et al. “Disruption simulation at leading edges of ITER-relevant materials with the high-energy CW laser at the OLMAT High Heat Flux facility”
19th PFMC in Bonn (Germany). 2023

Poster: D.Alegre, D. Tafalla, A. De Castro, P. Ferndndez Mayo, et al. "Testing of advanced materials, solid W and liquid metals, for future nuclear reactors at OLMAT High Heat Flux facility" 33rd
SOFT-2024, Dublin, Ireland 2024

Poster: D.Alegre, P. Ferndndez-Mayo, D. Tafalla, A. De Castro, et al. "Thermal fatigue study of different advanced tungsten materials at a wide Gaussian power density distribution at the OLMAT
high heat flux facility", 20th PFMC in Ljubjana (Slovenia) 2025



&) JULICH
ﬁ'{?\; EUROfusion J Forschungszentrum

=7

WP PWIE SPA 2

Report for 2025 & Overview

This work has been carried out within the framework of the EUROfusion Consortium, funded by
the European Union via the Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Commission.
Neither the European Union nor the European Commission can be held responsible for them.



High Particle Fluence Exposures of Plasma-Facing Components
C) for ITER

Deliverable Owner m Deliverable (Team)

DIFFER 5 D001 (T. Morgan)
MPG 2 D002 (5. Elget) = Recrystallization behavior of DEMO tungsten grades

/ under high flux/fluence plasma loading with

Devie | Beneficiary | Days | Related Deliverable | impurity seeded deuterium plasmas (DIFFER)
W DIFFER 8 D001

LT DiFFeR 5 D001 " Pre- and post-analysis of materials and components
(MPG)
Further analysis linked to facilities and staffing in SP B

D001 Fatigue cracking and creep evolution of W samples and W-monoblocks
exposed to strike point sweeping (DIFFER)

m Pre- and post-characterization of samples (MPG)

21 Jan W. Coenen 2024.11.20



SPA2 DIFFER task and activities

Deliverable: “Fatigue cracking and creep evolution of W samples and W-monoblocks
exposed to strike point sweeping”

Goal

* Generate data on fatigue behaviour of tungsten (monoblocks), particularly at high
temperatures - understand impact of “strike point sweeping” approach for DEMO

* Evaluate influence of H and He plasma on fatigue behaviour

Activities 2025
* Advance fatigue testing method in Magnum-PSI
* Evaluate effect of prior H implantation on fatigue lifetime.



Overview of activity

* Fatigue testing approach by time-
varying plasma loading in

Magnum-PSI demonstrated : } u ui u u UU U u U“

Ginc (MW m™2)

* Prior implantation of H (2.2x1026 e
m-2 at 573K) lead to delay in g .. M/VVVV\/\M
intergranular cracking 3 Yy -

* Himplantation forms blisters, o 7 2z 3+ 5 s 7 5 5w
increasing dislocation density in e
near-surface region- delay in » SO ] O Noporn
persistent slip band formation and o

in crack initiation

T I 1 1
0 150 300 450 600
N (cycles)



(ﬁ) SP-A.2: High Particle Fluence Exposures of Plasma-Facing
=' Components for ITER

Work done in 2020 - 2025:
Pre- and post-analysis of three W monoblock mockups
Aim 1: Effect of high-flux high-fluence high cycle number transient loading

Aim 2: Determination of erosion by noble gas seeding - validation of assumption for
calculation of impurity impact energy for high flux/fluence

% Aim 3: Progression of study of synergy of ELM-like events to plasma exposure

L/ L/ L/
000 000 000

Highlight: Determine erosion by pym-ruler s s
cutting and analyzing by FIB a At 2%

Paper in 2020 - 2025:

/

< None

M. Balden | WP-PWIE SP-A.2
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Neither the European Union nor the European Commission can be held responsible for them.
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Beneficiary | PM | Deliverable (Team) |
5

FZ) D001 (M. Wirtz, J.W. Coenen, A. Litnovsky)
DIFFER 3 D005
| 1.Garkusha [ 15 D004
D. Terentyev LPP- 4 D003
ERM/KMS
J.Riesch WVl 2 D002, DOOS ( S. Elgeti)
o 2

Related Deliverable

FZ) 8 D001
D001
MPG 5 D002, D003, D006
MPG 12 D002, D003, D006
KIPT 10 D004
DIFFER 5 D005
DIFFER 5 D005

Deliverable Title

Analysis of Material behavior under Plasma and heat loading regarding mechanical

JUDITH

n
N
=
o

Accelerator

Deliverable ID

properties e.g. cracking, embrittlement, and microstructure. Link to SP A4 (FZJ)
Performance of advanced materials under high heat loads and their microstructural
characterization (MPG)

Results from tests of small-scale samples of W and other advanced materials and
components (LPP-ERM/KMS)

D004 Investigation of advanced materials and coatings under ELM-like/disruption transient
loading and subsequent analysis.(KIPT)

“Effect of ELM loading on microstructure evolution of W coated RAFM steels”
(DIFFER)

D006 Effect of energetic ion irradiation on the strength of W wire (MPG)

26 Jan W. Coenen 2024.11.20

Advanced Materials under thermo-mechanical and plasma

. Plasma qualification of new materials (WPMAT) and components (WPDIV) for DEMO:

Thermal shock and plasma synergistic loading of advanced material including exposures in
Magnum-PSI (KIPT, DIFFER, FZ))

] Exposure of advanced materials e.g. W¢/W (WPPRD), SMART alloys (WPMAT), additively
manufactured components (WPDIV) and others to heat loads and/or plasma loads for
assessment of their PWI properties and exploration of limits of their application (FZJ, MPG)

] Study of basic thermo-mechanical properties for advanced materials for divertor
applications including reference material properties for comparison with neutron-
irradiated sample in future (LPP-ERM/KMS, MPG)

o  Establish experimental techniques

o  Mechanical testing of W-yarns up to very high temperatures, subsequent
microstructural characterization (link to neutron irradiation of W vyearns &
subsequent mechanical testing) (SCK-CEN as part of RU LPP-ERM/KMS)

o  Establish experimental basis by e.g. self or proton damage (MPG, FZJ)

o  Effect of fusion environment on the mechanical properties of W wire (MPG/
SCKCEN)

] Exposure in plasma devices to study the interplay of recovery, recrystallization, plasma
and ELM-like loading on surface cracking and fatigue lifetime (FZJ, KIPT, DIFFER)

Post-mortem analysis to characterize the induced surface and microstructure modifications as
well as changes of the materials properties due to e.g. recrystallization behavior and/or surface

morphology changes (FZJ, MPG)
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Investigation of advanced materials and coatings under ELM-
like/disruption transient loading and subsequent analysis (KIPT)

27 QSPA team| SPA Final update | 07 November 2025
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O PWIE-SP A.A3.T-T004-D004: Summary

Investigation of advanced materials and coatings under ELM-like/disruption transient loading
and subsequent analysis (KIPT)

Summary 2025

» Analysis of surface modification of fusion-relevant materials caused by repetitive transient
plasma pulses has been performed for samples exposed to QSPA loads near the W cracking
threshold.

» Exposition of LPPS-W samples did not cause any coating delamination. After QSPA loads
near the W evaporation threshold, networks of large and intergranular cracks were
observed, with characteristic cell sizes of approx. 0.5 mm and 0.05 mm, and crack widths of
up to 5 um. The destroyed crack edges could be a potential source of ejected particles. The
damage observed in the LPPS-W coatings is similar to that in bulk W material.

» lIrradiation of EBM-W samples was also performed. Network of large cracks was observed,
with a cell size of about 0.4 mm and crack widths of up to 1 um. The damage of EBM sample
is similar to that in bulk W material.

» Next steps: FIB cuts and metallographic cross-sections of samples irradiated in 2024 are
currently in progress in collaboration with M. Wirtz (FZJ)

QSPA team| SPA Final update | 07 November 2025



SPA3 DIFFER task and activities

Deliverable: “Effect of ELM loading on microstructure evolution of W coated RAFM steels”

Goal

* Goal to evaluate changes to microstructure and properties of EUROfer under
disruption loading to find out if disruptions will affect first wall structural materials

Activities 2025

* Use transient loading by laser plus heating with plasma to simulate a disruption
load on EUROfer coated with W



Overview of activity

O

EUROfer samples coated with 0.5-
T mmW

Base temperature of 500 °C
generated by H plasma

AT=1100-2500 °C from 3-4 ms
laser pulse, leading to max 950 °C
at EUROfer surface

Laser spot shows strong
recrystallization and morphology
changes

Analysis of cross sections ongoing

Sole plasma
exposed region

polished
recrystallised
centre

Laser spot with @
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deuterium plasma
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Higher mass loss for pure W

1). Schmitz Ph.D. Thesis, FZJ, Univ. of Bochum and Univ. of Gent, 2020
2A. Litnovsky et al., Metals 11 (2021) 1255

0-
0

Highlight result Plasma performance: sputtering resistance?'?

Mass loss, microgram

B Smart Alloy
I Purew

Surface recession
W vs. SMART
210 nm: 220 nm
260 nm : 260 nm

1 2'3'4'5'// 10 1920
DEMO operation days

Identical sputtering of W and SMART
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Low Pressure Plasma Spraying (LPPS) of tungsten (W) on different substrates
EUROFusion Engineering Grant 2023
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Brezinsek, S., Linsmeier, Ch., Guillon, O., Mauer, G. - Optimizing Plasma Spraying
Process Parameters for Tungsten Coatings Used in Fusion Reactors. J Therm Spray Tech
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Nucl. Mater. 691, 619:156267, (2026).
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Experimental setup
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Implantation setup
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Carbon dependent ductility
of tungsten
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@) High Temperature performance of Armour Materials:
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Recrystallization and Melting

Deliverable Owner m Deliverable (Team)
W Richos [l 9 0001

W. Pantleon DTU 9 D002

S. Ratynskaia VR 12 DO0O03 (S.Ratynskaia, P.Tolias,K. Paschalidis, T.
Rizzi, A. Kulachenko)
KIPT 30 D004
FZ) 4 DOO05 ( M. Rasinski, A. Kreter, M. Vogel)
Prof. Hidding HHU 6 D006
Total 70
| Device | Beneficiary [ Days | Related Deliverable |
FZ) 3 D005
KIPT 10 D004

Accelerator VR 5

Deliverable ID Deliverable Title

Assessment of plasma impact on material properties linked to ITER relevant

PFUs (CEA)
Annealing of chosen tungsten-based materials and quantification of

recrystallization kinetics (DTU)
Development of MEMENTO and MEMENTO + GEANT 4 including RE - Damage

VR
I(nflu)ence of plasma pre irradiation with heat loads near surface recrystallization
on surface damaging with heat loads above the melting threshold (KIPT)
Analysis of PSI-2 exposed materials, focusing on funding the relevant regime for
fuzz formation in AUG He campaign (FZJ)
D006 Simulation of Runaway Impact by Electron Beam at 10-100MeV

44 Jan W. Coenen 2024.11.20

] Characterization of microstructural changes caused by plasma exposure. Tungsten-based material
exposed to different plasma conditions will be investigated in terms of mechanical and
microstructural depth profiles. Heterogeneities will be traced in hardness and orientation maps
and the locally dominating restauration mechanism identified. (DTU)

] Tungsten material exposures in the QSPA under giant ELMs or disruptions with pronounced
surface melting (KIPT). Characterization of dust in QSPA experiments: size analysis, influence of B
field on trajectories. Stick effects at the surface.

] Plasma heat loads which causes surface recrystallization and changes in Microstructure and melt
threshold (QSPA/PSI-2/GLADIS) (KIPT, CEA, VR)

] Assessment of effect of H and He on W recrystallization with links to WP TE (FZJ, DTU, CEA)
] Joint activities with WP TE on damaged components (e.g. melting) (VR)
] Experiments on Recrystallization in PSI-2 linked with SP Al (FZJ, DTU)

] Further application of MEMENTO modelling to melt flows across castellated PFCs (link with WPTE
experiments ).

] Further development of the MEMENTO + Geant4 code chain for RE-induced bulk melting
assessments.

] Further development of thermomechanical modelling of RE-induced PFC brittle failure (Geant4 +
COMSOL).

Initial development of full thermomechanical modelling of RE-induced explosions of brittle PFCs
including fragmentation (Geant4 + LS-DYNA)"




MINES
Saint-Etienne

PWIE-SP A.4.T-T004-D001

Assessment of plasma impact on material
properties linked to ITER relevant PFUs (CEA)

A. Durif!, A. Flament!, M-F. Barthe?, S. Kalacska3, N. Peillon3, M. Lenci3, M. Mondon3, M. Diez!, G. Kermouche3,
Y. Corre!, M. Richou', and the WEST team

1CEA, IRFM, F-13108, Saint-Paul-lez-Durance, France
2CEMHTI/CNRS, Université d’Orléans, 3A rue de La Férollerie, 45071 Orléans CEDEX 2, France,

3Mines Saint-Etienne, CNRS, UMR 5307 LGF, Centre SMS, Saint-Etienne F - 42023, France
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Investigations on-going - 2 topics (9pm as 2024) 3% %

m Topic A: Top surface cracking investigation

m Perform an overview highlighting the crack networks distribution at the
WEST divertor (Phase Il) =2 follow up (cf leading edge study)

m Investigate the rational: Are these cracks resulting from manufacturing
stress release or PWI? Is a common link between leading edge and top
surface (impact of the manufacturing route?)

m Perform post-mortem analysis (microscopy, SEM, XRD) on the tungsten
top surface

m Topic B: Assessment of plasma impact on material properties linked to ITER

relevant PFUs

m Perform He implantation study to characterize defects generated and assess the
evolution of mechanical props based on multi-scale approach (+ comparative study with
WEST samples)

@ A. DURIF et al — Midterm meeting (WPPWIE) — 20/08/2025 4



L2 R 2% 2.0 2.
Conclusions & prospects for 2025 W

m Topic A: WEST crack network investigations
m Prospect for 2025:
m Rational related to the crack network opening is still under investigation
Tests under thermal loads in HADES under progress
Brittle cracking suspected (discrimination of plasticity) =» focus on tungsten toughness
Focus on crack characterization (depth...)
Perform SEM and XRD on WEST samples with crack network (comparative analysis before and after WEST plasma)

m Topic B: Assessment of plasma impact on material properties

m Samples prepared and characterized + 3He implantation done + First post-implantation analyses started (PAS, micropillar) to
characterize defects generated & assess the evolution of thermomechanical properties of tungsten

m Prospect for 2025:

m Pursue the post-implantation analysis and perform comparative study (before and after 3He implantation) in terms of
thermochanical properties

E 7
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Prospects for 2026-27 W

m Follow-up (topic A & B) strengthening the current investigations :
m Finalize crack understanding for actively cooled W divertor (HADES testing ?)

m Perform a second 3He campaign with various conditions (material, implantation
temperature, self-irradiation) and related characterizations

m Perform FEM modeling considering the impact of the evolution of the tungsten thermo-
mechanical properties due to presence of light impurities (H, He) (FEM + T-REX
modelling?)

m Additional topic : W limiters - Provide a preliminary feedback regarding WEST operation

EUROfusion support expected (9 pm in 2025): 12pm/year in 2026-27 + 1 Week/year of HADES
HHF tests):

438
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PWIE-SP A.A4.T-T004-D004

Influence of plasma pre-irradiation with heat loads near surface
recrystallization on surface damaging with heat loads above
the melting threshold (KIPT)

49 QSPA team| SPA Final update | 07 November 2025




(\) PWIE-SP A.A4.T-T004-D004: Analysis of re-melted W layers
ATM W under QSPA load above the W melting threshold

50

15kV X100 100pm 0103 ATMO

QSPA team| SPA Final update | 07 November 2025

X1,000

10pm

0102

After QSPA exposure: T=RT,
10 pulses, surface heat load
of 0.9 MJ/m? and a duration
of 0.25 ms.

Re-solidified layer are
observed on affected surface
Network of large cracks (cell
sizes up to 0.5 mm)
Intergranular network of
cracks with cell size up to
0.05 mm

Cracks width up to 1 um.
Fine cellular structure in re-
solidified layer along the
crack edges?



(\ ) PWIE-SP A.A4.T-T004-D004: Analysis of re-melted W layers

ALMT W under QSPA load above the W meltlng threshold

» After QSPA exposure: T=RT,
10 pulses, surface heat load
of 0.9 MJ/m? and a duration
of 0.25 ms.

Re-solidified layer are
observed on affected surface
Network of large cracks (cell

sizes up to 0.4 mm)
Intergranular network of
cracks with cell size up to
0.04 mm

Cracks width up to 3 um.
Pores?

X100 100pm 0101 ALMTO

X20,000 1um 0006 ALMTO

51 QSPA team| SPA Final update | 07 November 2025



(‘\) PWIE-SP A.A4.T-T004-D004: Analysis of re-melted W layers

IGP tungsten with re- crystallzed grain under QSPA load above the W melting threshold

» After QSPA exposure: T=RT,
10 pulses, surface heat load
of 0.9 MJ/m? and a duration
of 0.25 ms.

» Re-solidified layer are
observed on affected surface

» Network of large cracks (cell
sizes up to 0.5 mm)

» Intergranular network of
cracks with cell size up to
0.05 mm

» Cracks width up to 1 um.

» Fine cellular structure with
typical cell size of 150...250
nm in re-solidified layer

. 15kV  X7,500 2uym 0007 RVi4 15kV  X50,000 0.5pm
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(O) PWIE-SP A.A4.T-T004-D004: Summary

7

Influence of plasma pre-irradiation with heat loads above the melting threshold on surface
damaging with heat loads near surface recrystallization (KIPT) (the title some modified in
compare with 2024)

Summary of 2025:
» SEM studies of various exposed tungsten samples revealed crack formation contributing to
surface profile evolution.

» A network of large cracks was observed, with cell sizes up to 1 mm and crack widths of up to
5um
» Intergranular network of cracks with cell sizes up to 100 um was detected.

» Surface modification resulted in the formation of a fine cellular structure within the re-
solidified layer, with a typical cell size of 150...250 nm, as well as pores along the cracks.
Gradient T and o led to the formation of a pronounced pattern along the crack edges during
the solidification of the molten layer

» FIB cuts and metallographic cross-sections of samples irradiated in 2024 are currently in
progress in collaboration with FZJ

53 QSPA team| SPA Final update | 07 November 2025
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©) Publication KIPT 2020-2025 within SPA

1. V A Makhlai, S S Herashchenko, | E Garkusha, et. al. Damaging of inclined/misaligned castellated tungsten surfaces
exposed to a large number of repetitive QSPA plasma loads Phys. Scr. T171 (2020) 014047

2. S.S. Herashchenko, O.V. Byrka, V.A. Makhlaj, et. al. Damaging of pure tungsten with different microstructure under
sequential QSPA and LHD plasma loads problems of atomic science and technology. 2020, Ne 6. (130), p. 78-82.

3. V A Makhlai, | E Garkusha, S S Herashchenko, et. al. Contribution of leading edge shape to a damaging of castellated
tungsten targets exposed to repetitive QSPA plasma loads Phys. Scr. 96 (2021) 124043

4. N. Mantel, I.E. Garkusha,... V.A. Makhlai,et. al. Development and testing of an additively manufactured lattice for
DEMO limiters Nucl. Fusion 62 (2022) 036017 (7pp)

5.J.H. You, ..., l.E. Garkusha, S. Gerashchenko, V.A. Makhlai et. al. Limiters for DEMO wall protection: Initial design
concepts & technology options Fusion Engineering and Design 174 (2022) 112988

6. V.A. Makhlai, S.S. Herashchenko, Yu.V. Petroy, et. al. The effect of a small helium addition on the plasma-surface
interaction in QSPA Problems of Atomic Science and Technology. 2023. Ne1(143). p. 63-66

7. V.A. Makhlai, I.E. Garkusha, S.S. Herashchenko, et. al. Effect of transient layers on plasma energy transfer to
different surfaces under QSPA exposures Problems of Atomic Science and Technology. 2023. Ne 6(148), p. 101-105
8. |LE. Garkusha, V.A. Makhlai, S.S. Herashchenko, et. al. Influence of Ar injection on shielding layer properties and
surface protection from transient high heat loads under the QSPA plasma exposures Nucl. Fusion 64 (2024) 056010

9. V. A.Makhlai, I. E. Garkusha, S. S. Herashchenko, et. al. Erosion and modification of tungsten surfaces under
sequential steady-state and high heat fluxes transient plasma impacts Proc. 20th International Conference on Plasma-
Facing Materials and Components for Fusion Applications.19-23 May 2025, Book of abstract p. 101, poster Ne POA-28
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Analysis of PSI-2 exposed materials, focusing on funding the
relevant regime for erosion in AUG Ne seeded campaign

M. Rasinski, S. Brezinsek, A. Kreter, M. Gago, M. Wirtz

Forschungszentrum Julich, IFN-1

This work has been carried out within the framework of the EUROfusion Consor tium, funded by
the European Union via the Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Commission.

Neither the European Union nor the European Commission can be held responsible for them.
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@) Plans for 2025

56

Based on the first exposure to 94% D + 5% He + 1% Ne plasma plus laser loading

further experiments with plasma exposure to mixed D+He+Ne plasma with various fractions of
Ne (0; 1and5 % of Ne) to explore its influence on the structure and morphology of W.

The goal of the experiment is to help assess the influence of seeding gases foreseen for ITER
with relevant ELM like laser loading in the PSI-2 on the morphology changes of exposed W.

For each exposure samples exposed only to mixed plasma as well as plasma and laser will be
investigated. Multi sample holder in PSI-2 allows simultaneous exposure up to 8 samples.

Samples will be characterized by means of electron microscopy techniques — SEM, FIB and TEM

Marcin Rasinski | WP PWIE SP A.4 - Midterm | 2025
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@) Experiment

2 samples for each PSI-2 exposure

PSI-2 exposure

Base temperature ~ 900 °C

lon Flux~ 2-2.5x10*'m2s?
Fluence ~ 1.0 x 102 m™
Energy ~ 60eVand 175 eV

Plasma composition:
D 5% He 0% Ne

D 5% He 1% Ne 175 eV 4
D 5% He 5% Ne

£
D 5% He 1% Ne 60 eV £

—
Laser ) 10 ] PSI-2 sample holder with samples mounted before plasma
100 MW/m?, 0,5 ms, 200 Hz mm exposure

Sample geometry

57 Marcin Rasinski | WP PWIE SP A.4 - Midterm | 2025




Erosion normalized to Ne flux
/:@) Results
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@) Conclusions

59

W samples exposed to mixed plasma containing 0, 1 and 5 % of Ne at 60 and 175 eV in PSI-2 (D + 5%He
+ Ne)

Erosion rates estimated based on the FIB prepared cross-sections

Erosion strongly dependent on Ne content - following the sputtering data of W by Ne

For two exposures -low energy exposures (60eV) as well as for 0 % Ne early stage of fuzz formation is
observed

Nano-bubble formation on and under the surface for samples exposed to simultaneous plasma and

laser loading

Sample exposed to simultaneous plasma and laser loading exhibit visible larger erosion rate compared

to sample without laser

Marcin Rasinski | WP PWIE SP A.4 - Midterm | 2025




{©) overview of 2020-2025 Work

2020 — 2021 Analysis for PSI-2 exposed materials, focusing on recrystallization
Samples with transversal grain oriented exposed to D plasma at elevated temperature
1310-1390 °C for 1, 2 and 5h.

®  Major factor responsible for recovery and recrystallization is temperature.

" Influence of D loading at elevated temperature on W recrystallization is negligible

®  Calculated activation energy is with good agreement with literature studies and confirms grain boundary diffusion mechanism.

2022 - 2024 Analysis for PSI-2 exposed materials, focusing on funding the relevant regime for fuzz formation in AUG He campaign

®  Fuzz formation during AUG He campaign very non-uniform and strongly dependent on surface temperature

®  Relatively good agreement between PSI-2 and AUG He W fuzz morphology for samples exposed to high frequency laser loading in PSI-2

®  Linear device can be a good proxy for mimicking the fuzz formation in tokamaks. Fuzz structures and bubble formation present after AUG
He might be reproducible by simultaneous laser and plasma loading

" Visible recrystallization of W in the laser spot position. Small grains still present beneath the fuzz — He effect on retarded recrystallization

2024 - 2025 Analysis of PSI-2 exposed materials, focusing on funding the relevant regime for erosion in AUG Ne seeded campaign
® W samples exposed to mixed plasma containing 0, 1 and 5 % of Ne at 60 and 175 eV in PSI-2 (D + 5%He + Ne)

®  Erosion strongly dependent on Ne content - following the sputtering data of W by Ne

®  For two exposures -low energy exposures (60eV) as well as for 0 % Ne early stage of fuzz formation is observed
®  Nano-bubble formation on and under the surface for samples exposed to simultaneous plasma and laser loading

"  Sample exposed to simultaneous plasma and laser loading exhibit visible larger erosion rate compared to sample without laser

60 Author | Event | dd Month yyyy




@) Publications related to SPA
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Rasinski, M., Brezinsek, S., Kreter, A., Dittmar, T, Krieger, K., Balden, M., de Marne, P, Dux, R., Faitsch, M., Hakola, A., Likonen, ].,
Tsitrone, E., Rohde, V,,

FIB line marking as a tool for local erosion/deposition/fuzz formation measurements in ASDEX Upgrade during the He campaign.
Nuclear Materials and Energy 37, 101539,

61 Author | Event | dd Month yyyy




Summary: 2020-2025 (VR)

Modelling of macroscopic metallic melt motion
Research line on modelling of the thermoelectric MHD response of PFCs to transient heat loads brought to maturity
v MEMOS-U physics model implemented in the modern computational tool MEMENTO.
v MEMENTO utilizes non-uniform and adaptive meshing along with sub-cycling in time enabled by the AMReX
open-source framework.
MEMENTO utilizes the AMReX built-in parallelization capabilities.
Numerical algorithms and benchmarking exercises documented in open access publications.
Multiple WPTE experiments with novel experimental constraints carried out in AUG and WEST have been
successfully modelled by MEMENTO providing further model validation and predictive capabilities

A NEANERN

Modelling of runaway-electron induced damage
New research line initiated on modelling of the thermomechanical response of PFCs to runaway electron impacts
v’ Rapid progress in the modelling of the volumetric heat loading by REs including the escaping particles.
v’ Rapid progress in the full thermomechanical modelling of RE-induced damage on brittle subliming PFCs: basic

linear thermoelastic physics model supplemented by brittle failure criteria and fracture dynamics.
v’ Successful validation against deliberate DIII-D (graphite) and accidental WEST (boron nitride) experiments.
v’ Predictive thermal modelling for WEST and AUG to assist the design of novel W damage experiments.
v" Modelling of the first controlled RE-induced damage experiment on W tiles in WEST (April 2025) is initiated.

2026-2027 activities will focuse on expanding modelling of RE-induced damage to W PFCs



@) SPA-related VR publications 2020-2025
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1. Wall damage due to oblique high velocity dust impacts 11. Infrared detection of tungsten cracking on actively cooled ITER-like component during
P. Tolias, M. De Angeli, D. Ripamonti, S. Ratynskaia et al, Fus. Eng. Des., submitted, 2025 high power experiment in WEST

available at arXiv:2509.18794. Q. Tichit, A. Durif, J. Gaspar, Y. Anquetin et al., Nucl. Mater. Energy 37, 101537 (2023).

2. Modeling of runaway electron induced damage on boron-nitride tiles in WEST 12. Testing of ITER-grade plasma facing units in the WEST tokamak:

T. Rizzi, S. Ratynskaia, P. Tolias, et al., Nucl. Mater. Energy, submitted, 2025, available at arXiv:2509.15821.

3. Roadmap: Runway electron-induced plasma facing component damage in tokamaks Y. Corre, M. Aumeunier, A. Durif, J. Gaspar et al., Nucl. Mater. Energy 37, 101546 (2023).
13. Melt dynamics with MEMENTO—code development and numerical benchmarks

S. Ratynskaia, M. Hoelzl, E. Nardon plus 30 authors, accepted to Plasma Phys. Control. Fusion (2025), currently

available at arxiv:2506.10411. K. Paschalidis, S. Ratynskaia et al., Nucl. Mater. Energy 37, 101545 (2023).
4. Scrape-off layer and divertor physics, Chapter 5 of special issue: On the path to tokamak burning plasma 14. Wall cratering upon high velocity normal dust impact
operation,

P. Tolias, M. De Angeli, D. Ripamonti et al., Fus. Eng. Des. 195, 113938 (2023).
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Modelling of brittle material fragmentation

Linear thermo-elastic response successfully modelled to
predict onset of failure in DIlI-D experiment with graphite.
Workflow: KORC + Geant4 + COMSOL.

S. Ratynskaia et al, Nucl. Fusion Letter 65 (2025)

Now developing full nonlinear response model capable of
predicting also release of debris
Work-flow : Geant4 + LS-DYNA.

LS-DYNA simulations are based on FEM + SPH approach
(SPH: Smoothed Particle Hydrodynamics)

MC (Geant4) + FEM / SPH (LS-DYNA)
work-flow calculations of the DIII-D
ATJ graphite sample response to REs

Blown-off
volume

DIlI-D experiment




Modelling of brittle failure: BN in WEST

The developed work-flow is successfully applied
to BN tiles in WEST (accidental damage)

$

Modeling of runaway electron induced
damage on boron-nitride tiles in WEST

T. Rizzi et al, submitted to NME 2025
arXiv:2509.15821
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Modelling of accidental W damage on WEST

RE impact parameters & loading : REs
RE energies: 1 MeV, 10 MeV or exp. distrib. RE pitch: zero Outer ’

B field inclination - see the sketch bumpers
Wetted area: to match experimental damage (C9)
Energy loaded: scan 10-25 kdJ per apex, over 1 ms
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Overview of work on thermal stability 2021 to 2025

Rolled tungsten from <% A.L.M.T. Corp.
 Thermal stability of rolled tungsten (IGW, CLW, CHW)
« Qualification of new baseline material

i A

We/W composites by CVD waxeuncemstimore ()
 Single fiber: microstructural evolution during annealing
« Multifibre: microstructure and bending tests

Powder metallurgical W¢/W composites from 'J JULICH

Forschungszentrum

« Continuous vs. short fibers in dense vs. porous matrix
» Microstructural evolution during annealing
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Report for 2025 & Overview

This work has been carried out within the framework of the EUROfusion Consortium, funded by
the European Union via the Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Commission.
Neither the European Union nor the European Commission can be held responsible for them.
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() Compass-U

&

Deliverable Beneficiary Deliverable (Team) Task under SP A5 include the preparatory work on assessing and analysing the material candidates for
Owner COMPASS-U this includes particularly heat flux performance as well as material evolution on

Renaud IPP.CR 16 D001 (J.Mtejicek, microstructure, and surface condition. The work is based on a comprehensive pre-characterization of
Dejarnac A.Rednyk,R.Dejarnac,P.Vondracek,J).Caloud,K.Patocka, the 9 candidate W materials (IPPCR) with a potential down-selection to main suppliers, Plansee, ALMT,

: R ol o T o R ot AT AT&M. Exposures will be performed in JUDITH, PSI-2(FZJ), OLMAT (CIEMAT) and Magnum (DIFFER). As
RS CIEMAT 2 EAOOZ (:‘ ,T_:egre’,z.Shlzk,DD.gaf:IIa, P.dF:rgandezt-) ) an example, disruption simulation on the surface and at edges of COMPASS-U W armor will be
ayo, 1., Anernandez, A. De Lastro an . Oyarzaba . . 4
U 4 D003 perforrr'1ed at OLM'AT. Th.e' damage threshold in terms of p?wer density and ‘n.umber of pulszes \{VI” be
—— BIFEER > D004 determl‘ned, espeuall}/ critical at edges. Thfe damage.at ma>‘<|rnum pqwer d‘en5|t'|es, 7 GW/m?, will also
e be studied to determine the damage of mild or partially mitigated disruptions in DEMO (expected at a
ENEA 2 DOOS (lafrati, Pedroni, Ghezzi, De Angeli) minimum of 30 GW/m?).
Laguardia Pre- and post-Characterization including various techniques as highlighted in the deliverables will be
FZ) 1 D006 L . . .
performed (FZJ, CIEMAT, DIFFER, ENEA, IPPLM). A new addition here is particular the detection of nano-
Elzbieta IPPLM 6+6 D007

cracking in the surface layer of the first wall as it can be crucial for reducing D/T fuel retention in the
oy wall. CW IR laser heating and IR camera scanning of heated area allows the rapid detection of nano-
alesna . , , . . . . .
UKAEA 4 D008, D009 cracking in the top layer of the first wall (CU). Comparative analysis for the various materials will be
39 performed also including comparing multiple analysis techniques

Fortuna-

[GIF  comprehensive pre-characterization of the 9 candidate W materials
Fast transient simulation on COMPASS-U W armor by a CW laser at OLMAT
Nanocracking detection studies on sxposed materials from PSI-2, Magnum, OLMAT,

[Device | enefcary | Days | Related Daierabl
OLMAT CIEMAT 4 D002

DIFFER 2 D004 JUDITH
F7) 2 D006 ELM-like loading effe.cts on different W grades
Post Mortem Analysis , and TDS
JUDITH-2 FZ) 8 D006

Studies on Materials supplied for COMPASS U in on HHF

Comparative Microscopy studies on samples exposed in PSI-2, MAGNUM, JUDITH &
OLMAT

Establish a round robin test with other HHF Test Facilities to Benchmark HIVE
(UKAEA without EUROfusion funding)

Tungsten High Temperature testing.

= Microscopy — 10+10 k€ - IPPLM
" Hive + Lab — 75k€ - UKAEA
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A few comments

This work has been carried out within the framework of the EUROfusion Consortium, funded by
the European Union via the Euratom Research and Training Programme (Grant Agreement No
101052200 — EUROfusion). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Commission.
Neither the European Union nor the European Commission can be held responsible for them.
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©) Future Plans for 2026-2027 KIPT

Works to be performed in 2026-2027 (A1)
* The influence of sequential steady-state plasma and transient loading on cracking/melting
thresholds will be studied for preheated tungsten surfaces.
* The main damage mechanisms of exposed surfaces will be identified and evaluated.

Works to be performed in 2026-2027 (A3)

* |nvestigations will focus on advanced materials (various types of tungsten, etc.) subjected to high-
flux transient plasma loads.

* High-flux testing of different coatings (including boron) deposited on materials such as austenitic
and RAFM steels, copper, tungsten, etc. will be carried out, followed by surface analysis.

Works to be performed in 2026-2027 (A4)
* The influence of melt motion on surface damage and modification of reference materials will be
studied.
* The evaluation of tungsten surface damage at heat loads near the recrystallization threshold will be
carried out for samples that exhibit melt motion effects after the pre-damaging stage.

72 QSPA team| SPA Final update | 07 November 2025




7
©) Prospects for 2026-27 CEA

m Follow-up (topic A & B) strengthening the current investigations :
m Finalize crack understanding for actively cooled W divertor (HADES testing ?)

m Perform a second 3He campaign with various conditions (material, implantation
temperature, self-irradiation) and related characterizations

m Perform FEM modeling considering the impact of the evolution of the tungsten thermo-
mechanical properties due to presence of light impurities (H, He) (FEM + T-REX
modelling?)

m Additional topic : W limiters - Provide a preliminary feedback regarding WEST operation

EUROfusion support expected (9 pm in 2025): 12pm/year in 2026-27 + 1 Week/year of HADES
HHF tests):




) General Remarks
=

* Deliverables will be defined soon — some input already

* Part Continuation
* Part concentration

74 Jan W. Coenen 2024.11.20
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