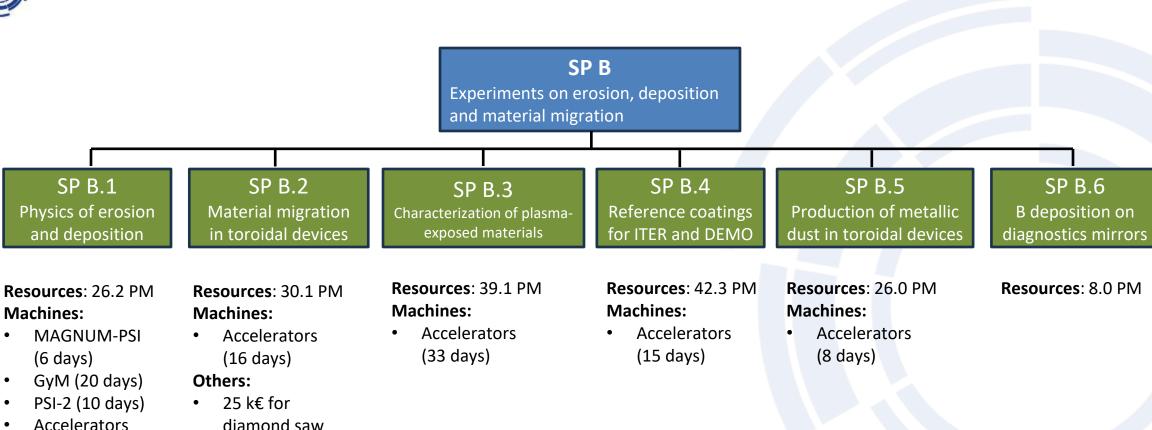


WPPWIE Review Meeting, Jülich, 17-21 November, 2025

SP B status report 2025

Antti Hakola

On behalf of the SP B team and task holders



This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Introduction – overview of SP B in 2025

- Huge number of tasks and deliverables (altogether 53) most of them will be completed by the end of 2025
- In many cases the work will continue in 2026-2027 within new tasks, with the scope and volume being re-adjusted

(11 days)

cutting

Overview of SP B in 2025 – high-level status of activities

Progress has been made in the following activity areas as follows

- SP B.1: Physics of erosion and deposition focus on cross-machine investigations
 - ✓ Several B samples exposed to plasmas (PSI-2, MAGNUM-PSI, GyM) to study physical and chemical erosion; W programme proceeding more slowly
 - ✓ Erosion rates at varying incident angles measured for W and B reference layers, exposure of W layers to dust impacts scheduled
- SP B.2: Material migration in toroidal devices concentrate on samples from boronization studies and WEST monoblocks
 - ✓ Results from WEST Phase 1 tiles and samples extensively reported (PFMC 2025), cutting of samples from Phase 2 PFUs ongoing
 - ✓ Several samples from AUG and WEST boronizations (uniform and non-uniform) analysed
 - ✓ Analysis of cavity samples from W7-X completed, measurements of divertor manipulator samples from AUG started
- SP B.3: Characterization of plasma-exposed materials samples coming from SP B.1 and SP B.2 (+ SP B.4)
 - ✓ Focus on WEST samples as well as samples from boronization experiments
- SP B.4: Reference coatings for ITER and DEMO production of B and W layers
 - ✓ Large programme to compare B layers produced by different labs by different techniques all except VTT samples available (pure B layers)
 - ✓ W layers produced for targeted activities, highest interest for layers emulating re-deposits
- SP B.5: Production of metallic dust in toroidal devices re-scoping to primarily deal with dust analyses
 - √ W7-X dust samples available and their characterization chain agreed
 - ✓ Formation studies of B and W dust particles continued; this subtask will be largely finished by the end of 2025
- SP B.6: B deposition on diagnostics mirrors
 - ✓ Mirrors exposed to AUG and W7-X boronizations/plasmas, analyses partly ongoing

In addition, meetings organized on (i) dust activities and analyses (March and September), (ii) production and analysis programme for B and W samples (July), and (iii) WEST analysis meeting (September)

Overview of SP B in 2025 – selected highlights per activity area

SP B.1: Physics of erosion and deposition

- ✓ Thick B layers produced (MAGNUM-PSI) and their erosion (incl. chemical erosion) investigated
- ✓ Erosion of nano-columnar W samples shows different dynamics than bulk W or W fuzz samples

SP B.2: Material migration in toroidal devices

- Very thick deposited layers observed on WEST PFUs (up to 350 μm if never cleaned), erosion can reach values up to 20 μm (18 h of plasma)
- ✓ Both on AUG and WEST, boronization layers show D/B fractions in the range of 0.1–0.3; B and D depleted upon exposure to air but at lower rates for the WEST samples

SP B.3: Characterization of plasma-exposed materials

✓ WEST data shows consistent picture for the complex structure for the deposited layers after Phase 1 and Phase 2 operations

SP B.4: Reference coatings for ITER and DEMO

✓ Pure B layers can be produced (impurity concentrations overall <10 at.%) but thicker ones required for linear machine experiments

SP B.5: Production of metallic dust in toroidal devices

- ✓ Several elements already identified on the analysed W7-X dust samples, including (besides C) B, Fe, Cr, W, Ti, Ni, and Cu; large (mm-sized) and thick flakes of deposits with varying morphology and layered structure observed on the samples
- ✓ Of the studied seeding gases, Kr is most efficient in producing W dust; collected dust contains both nanoparticles and larger agglomerates

SP B.6: B deposition on diagnostics mirrors

✓ Reflectivities noticed to change following exposures, especially on the AUG case

High-level deliverables and milestones for SP B in 2025

- Erosion and deposition patterns at the divertor and main-chamber structures of toroidal fusion devices following operations with and without boronizations
- Reporting the role of fluence and pulse length in the erosion-deposition balance in toroidal fusion devices under reactor-relevant operational conditions

WMxx	SP B	Erosion rates of co-deposited/re-deposited W layers at reactor-relevant particle fluxes and fluences determined. (ITER+DEMO)	31.12.2025
WMxx+1	SP B	Material migration pathways elucidated for W and B in toroidal devices (AUG, WEST, W7-X) during and after boronizations. (ITER)	31.12.2025
WMxx+2	SP B	Erosion and deposition patterns on PFUs removed after Phase 1 and Phase 2 operations on WEST compared. (ITER)	31.12.2025
WMxx+3	SP B	Co-deposited boron layers with varying oxygen contents and surface morphologies delivered and characterized. (ITER)	31.12.2025
WMxx+4	SP B	W dust samples from toroidal fusion devices (AUG, WEST, W7-X) characterized and extrapolations made towards fusion reactors. (DEMO)	31.12.2025
WMxx+5	SP B	B contamination determined on diagnostics mirrors after AUG and W7-X boronization experiments. (ITER)	30.06.2025

SP B.1 - Physics of erosion and deposition

SP B.1 deliverables 2025

Activity	Deliverable ID(s)	Title
SP B.1	D001	Erosion rates of W/B model systems and re-deposited W with different morphologies and compositions as well as the
	3 PM	formation and erosion rates of thick re-deposits in MAGNUM-PSI with flux and fluence (DIFFER)
SP B.1	D002	Erosion rates of W/B model systems and re-deposited W with different morphologies and compositions in GyM with flux
	4 PM	and fluence (ENEA)
SP B.1	D003	Erosion rates of W/B model systems and re-deposited W with different morphologies and compositions in PSI-2 with
	7 PM	flux and fluence (FZJ)
SP B.1	D004	Erosion rates of co-deposited W- and B-based model systems following exposure to controlled ion beams (ÖAW)
	5 PM	
SP B.1	D005	Erosion rates following high-energy dust impacts on W model systems and comparison to data from tokamaks (ENEA)
	1 PM	

SP B.1: Production and erosion of thick re-deposition layers (DIFFER)

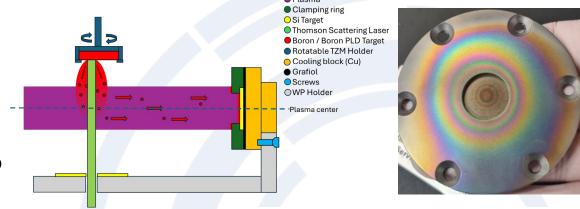
Task and questions to be addressed

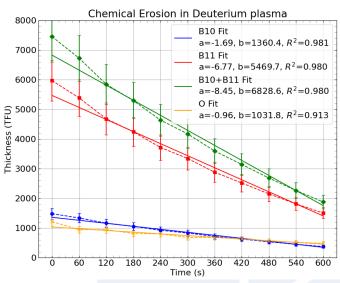
- 1. Production of thick re-deposited B-containing layers as expected in ITER
- 2. Investigate chemical erosion of B

Approach

- 1. Use in-house developed plasma-assisted pulsed laser deposition (PLD) to grow thick B layers
- 2. Use lab-grown (PoliMo) 1-um thick B layers to study chemical erosion

Results


- 1. Using He plasma demonstrated for growing thick (~1 μm) B layers
 - i. Studied as a function of the deposition energy, pressure, and B-field
 - ii. Impurity content ~20% O, some C and N
- 2. Chemical erosion dominant at low E_{ion}
 - i. Erosion rate for $E_{ion} = 5$ eV determined as 0.75 nm/s, $Y=2.34\times10^{-3}$
 - ii. Erosion as function of ion energy experiments Nov 2025


Deliverable: PWIE-SP B.B1.T-T005-D001

Status: ongoing (to be completed Dec 2025)

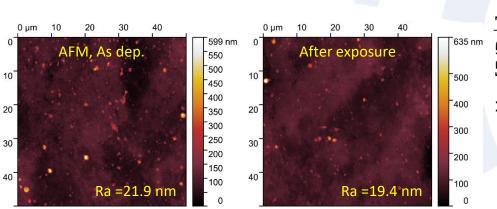
Facilities: Magnum-PSI 6 days, UPP 3 days (0 granted), Accelerator 13 days

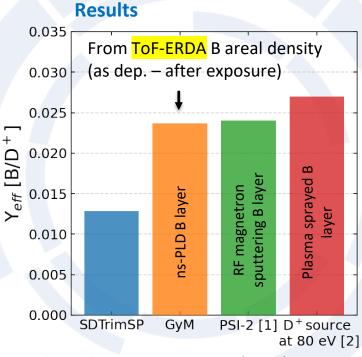
Linked WP or TSVV: SP B.4

T.W. Morgan, J.G.A. van Kesteren, C.J.D. Robben, B. Tyburska-Pueschel

SP B.1: Erosion rates of W/B model systems and re-deposited W with different morphologies and compositions in GyM with flux and fluence (ENEA-CNR)

Task aims to broaden the understanding of W and B erosion physics, using linear device GyM. The work focuses on assessing erosion characteristics of different W or B-based materials or reference layers.


Task and questions to be addressed: Determine erosion characteristics of B films mimicking boronisation layers deposited on PFCs


Approach

- D plasma exposure of 3 ns-PLD 100 nm-thick compact B films at Γ = 3.4e20 D⁺ m⁻²s⁻¹
- E_{ion} =76 eV according to PSI-2 experiments [1]
- Φ =4e23 D+m⁻² (t_{exp} =20 min) chosen based on $Y_{D\to B,SDTrimSP}$, to avoid full erosion of B films

Characterisations

- Y_{eff} from mass loss: **done**
- Surface topography by AFM: done
- Surface composition by
 - Tof-ERDA, EBS+NRA+PIXE, Tof-MEIS
 - ✓ at Uppsala University: **done** (see E. Pitthan's slide)
 - SIMS at CIEMAT: ongoing
 - Raman and XPS at Aix Marseille Université: ongoing

[1] M. Sackers, et al., Nucl. Mater. Energy **45** (2025) 102003

[2] E. Hechtl, et al., J. Nucl. Mater. **196-198** (1992) 713-6

Deliverable: PWIE-SP B.B1.T-T005-D002

Status: completed

Facilities: GyM (20 days)

Linked WP or TSVV: SP B.4, SP D.1, SP D.3

A. Uccello, A. Cremona, F. Ghezzi, M. Pedroni, G. Alberti, D. Dellasega, M. Passoni

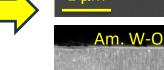
SP B.1: Erosion rates of W/B model systems and re-deposited W with different morphologies and compositions in GyM with flux and fluence (ENEA-CNR)

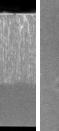
Task aims to broaden the understanding of W and B erosion physics, using linear device GyM. The work focuses on assessing erosion characteristics of different W or B-based materials or reference layers.

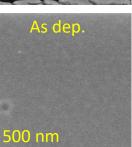
Task and questions to be addressed:

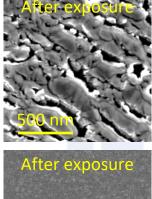
Determine the impact of plasma flux and sample morphology in erosion characteristics of W model systems (cross-machine experiment)

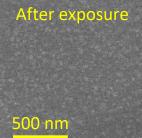
Approach

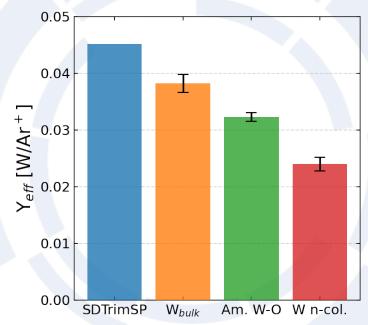

- Ar plasma exposure at $\Gamma = 1.5e20 \text{ Ar}^{+}\text{m}^{-2}\text{s}^{-1}$
 - Φ =5.4e23 Ar⁺m⁻² and E_{ion} =90 eV, of:
 - Compact W films on Si w/ pyramids
 - W nano-columns
 - Amorphous W-O films (PoliMi)
 - W-O films (IAP)
- Y_{eff} from mass loss: **done**
- Surface topography by AFM: done
- Surface structure by SEM: done










W n-col.

Main result

W nano-columns $Y_{\text{eff}} \cong 40\% \text{ W}_{\text{bulk}} Y_{\text{eff}} \leftarrow \text{Microscale morphology modelling with ERO2.0 carried out under SP D.3 (see G. Alberti's talk)}$

Deliverable: PWIE-SP B.B1.T-T005-D002

Status: completed

Facilities: GyM (20 days)

Linked WP or TSVV: SP B.4, SP D.1, SP D.3

POLITECNICO DI MILANO

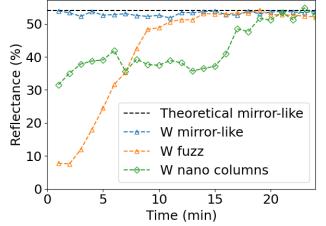
A. Uccello, A. Cremona, F. Ghezzi, M. Pedroni,

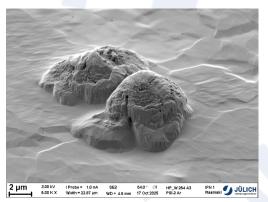
G. Alberti, D. Dellasega, M. Passoni

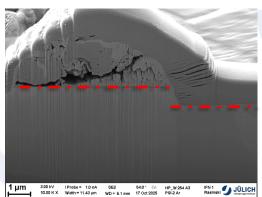
SP B.1: Erosion rates of W/B model systems and re-deposited W with different morphologies and

compositions in PSI-2 with flux and fluence (FZJ)

Task and questions to be addressed


Establish the erosion rates for nano-columnar W coatings


Approach


- Exposure of nano-columnar W coated samples in PSI-2 to Ar plasma for
 25 min
- Measurement of erosion rate by spectroscopy studies
 - Variation in intensity sputtering yield
 - Variation in reflectance optical properties

Results

 Lower erosion rate of the coating compared to bulk W, confirmed by spectroscopy as well as post-mortem SEM/FIB analysis

SEM image of the surface and cross-section after PSI-2 exposure. Spot with coating leftover presents lower erosion rate as compared to bulk surrounding.

Deliverable: PWIE-SP B.B1.T-T005-D003

Status: completed

Facilities: PSI-2 (2 days)

Linked WP or TSVV: SP B.4

O. Marchuk

SP B.1: Erosion rates of co-deposited W- and B-based model systems following exposure to controlled ion beams (ÖAW)

Boronizations produce mixed tungsten-boron layers on plasma-facing surfaces, thereby influencing the erosion properties of the first wall

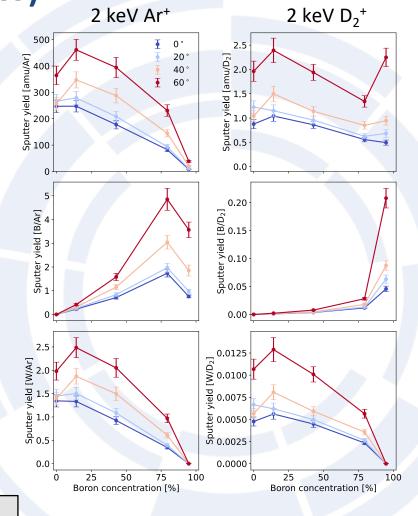
Task and questions to be addressed

 Assess the erosion characteristics of co-deposited W- and B-based model systems upon exposure to different ion beams under laboratory conditions

Approach

■ Utilization of a Quartz Crystal Microbalance (QCM) to perform angle-dependent sputter yield measurements of samples with different tungsten-boron mixing ratio (W:B \approx 1:0, 4:1, 1:1, 1:4, 0:1) under 2-keV Ar⁺ and 2-keV D₂⁺ irradiations

Results


- General decrease in sputtered mass for increasing boron concentration for 2 keV Ar⁺ and 2 keV D₂⁺ irradiation
- Decrease in sputtered tungsten particles and increase in sputtered boron particles with increasing boron concentration for 2-keV Ar⁺ and 2-keV D₂⁺ irradiation

Deliverable: PWIE-SP B.B1.T-T005-D004

Status: completed

Facilities: -

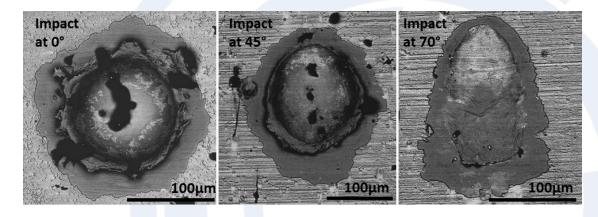
Linked WP or TSVV: ENR-MAT.02.VR

- R. Gurschl, M. Fellinger,
- B. Burazor Domazet, J. Brötzner,
- G. Nagy, R.A. Wilhelm, F. Aumayr

SP B.1: Erosion patterns on W model systems at high-energy dust impacts (ENEA)

Following the previous studies on the erosion patterns and material migration of W model systems upon dust impacts for normal impacts (i.e. at 0°), this task focuses on the erosion patterns at different dust impact angles.

Task and questions to be addressed


 Determine the erosion and morphology of W systems impacted by highspeed dust at different angles

Approach

- Shoot dust at three velocities (1, 2, 3 km/s) and three different impact angles (0, 45, 70°) on W model systems on Mo substrates
- Analyse the damaged surfaces

Preliminary results

- The eroded surface at 0° impacts are in line with previous investigations
- The eroded surface is larger for samples 45° tilted respect to normal incidence
- The eroded surface decreases at shallow dust impact angles

SEM images showing examples of delaminated surfaces of W model systems upon dust impacts for different impact angles. Dark color: Mo substrate and impurities; light color: W deposit.

Deliverable: PWIE-SP B.1.T-T005-D005

Status: ongoing (to be completed by the end of 2025)

Facilities: -

Linked WP or TSVV: SP B.4

M. De Angeli (ENEA), D. Ripamonti (ENEA), G. Daminelli (ENEA), P. Tolias (VR)

SP B.2 - Material migration in toroidal devices

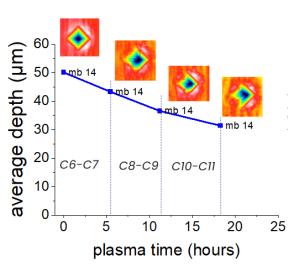
SP B.3 - Characterization of plasma-exposed materials

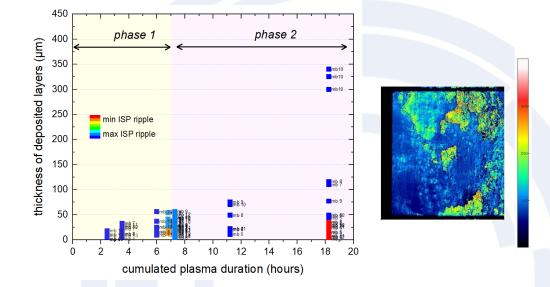
SP B.2 deliverables 2025

Activity	Deliverable ID(s)	Title
SP B.2	D001	WEST campaigns: erosion and deposition patterns on PFUs after WEST Phase 1 (C1-C5) and Phase 2 (C6-C10) operations
	6 PM	and thickness profile of layers originating from boronizations (CEA)
SP B.2	D002	WEST campaigns: microscopy investigations of He-exposed PFUs after Phase 1 and Phase 2 operations on WEST (CEA)
	2 PM	
SP B.2	D003	WEST campaigns: detailed investigation of selected PFUs, including side faces of marker tiles, for their erosion,
	2 PM	deposition, and surface-modification patterns at different locations with respect to magnetic ripple (MPG)
SP B.2	D004	AUG manipulator experiments: pre- and post characterization of samples exposed to AUG plasmas and/or boronizations
	5 PM	on AUG for their erosion and surface-modification patterns as well as boron deposition profiles (MPG)
SP B.2	D005	AUG manipulator experiments: deposition profiles of B and D on samples exposed to AUG plasmas and/or boronizations
	3 PM	on AUG at high spatial and depth resolution (VTT)
SP B.2	D006	AUG campaigns: deposition profiles on samples originating from boronizations on AUG (RBI)
	2 PM	
SP B.2	D007	AUG campaigns: changes in the surface properties of samples exposed to AUG plasmas and/or boronizations on AUG
	2 PM	(FZJ)
SP B.2	D008	W7-X manipulator experiments: erosion and deposition characteristics on manipulator and other samples exposed to
	2 PM	OP2 plasmas on W7-X (FZJ)
SP B.2	D009	W7-X manipulator experiments: erosion and deposition patterns on manipulator samples and wall components from
	3 PM	OP2 experiments and/or boronizations on W7-X (MPG)

SP B.3 deliverables 2025

Activity	Deliverable ID(s)	Title
SP B.3	D001	Depth profiles and surface morphology of selected B or W layers (CIEMAT)
	2 PM	
SP B.3	D002	Surface modifications and fuel content of selected AUG, WEST, W7-X, and PSI-2 samples (FZJ)
	4 PM	
SP B.3	D003	Composition of layers on selected WEST monoblock samples (IAP)
	2 PM	
SP B.3	D004	Surface modifications of selected WEST, W7-X, MAGNUM-PSI, PSI-2, and GyM samples (IPPLM)
	3 PM + 2 PM (AR)	
SP B.3	D005	Composition and fuel content of layers on selected WEST monoblock samples and on SP B.1 or SP X samples (IST)
	3 PM	
SP B.3	D006	Micro- and macroscale composition of layers on selected AUG, WEST, MAGNUM-PSI, PSI-2, and GyM samples (JSI)
	3 PM	
SP B.3	D007	Surface modifications and erosion/deposition profiles of samples and wall tiles from AUG, WEST, and W7-X (MPG)
	2 PM	
SP B.3	D008	Surface modifications and composition of layers on selected WEST, MAGNUM-PSI, PSI-2, and GyM samples (NCSRD)
	5 PM	
SP B.3	D009	Micro- and macroscale composition of layers on selected AUG, WEST, MAGNUM-PSI, PSI-2, and GyM samples (RBI)
	2 PM	
SP B.3	D010	Erosion and deposition patterns on selected WEST samples as well composition of plasma-exposed B and W layers (VR)
	1.5 PM	
SP B.3	D011	Depth profiles and composition of deposited layers of selected samples from AUG, WEST, W7-X, MAGNUM-PSI, PSI-2, and GyM (VTT)
	2 PM	
SP B.3	D012	Depth profiles for layers on selected WEST monoblock samples (UT)
	2 PM	




SP B.2: WEST analysis: erosion and deposition patterns on PFUs (CEA)

Task and questions to be addressed

Assess erosion of divertor PFUs phase 2

Approach

- Fiducials on the surface of 4 PFUs (CEA)
- Measurement of their depth using confocal microscopy monitoring after each campaign (CEA)
- FIB analyses of the fiducials (MPG)

Results

- Fiducials clearly modified by plasma (change of depth, change of shape)
- **Erosion might reach 20 μm at ISP after 18h of plasma**

Deliverable: PWIE-SP B2.T-T005-D001

Status: completed

Facilities: **20 k€ consumables** Linked WP or TSVV: **WPTE**

M. Diez et al.

Task and questions to be addressed

Evaluate deposition behaviour on PFUs during phase 2

Approach

 Confocal microscopy on PFUs after C9 and C11 to determine thickness of deposited layers

Results

- Layers > 100 μm during phase 2
- If no cleaning is carried out, layers can even grow up to 350 μm

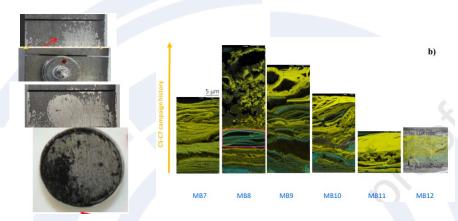
SP B.2: WEST analysis: analysis after the high-fluence campaign (CEA)

Task and questions to be addressed

■ Investigate/compare impact of high fluence campaigns (C7 and C12) on divertor targets

High fluence campaigns in WEST (C7, 2023 vs C12, 2025)

- Dedicated to reach particle fluence of ITER shots (W erosion /migration expected)
- Repetitive long discharges and 100s of pulses
- Cumulated plasma time 5 h 30 min (C7)


Characterization plan and results

- In-situ collection of deposits on 2 PFUs using sticky pads after C7 and analysis using SEM/EDX/FIB (CEA/AMU) 2023/2024 → Dense W layers of 5-40 μm thickness [1]
- Identification of 1 PFU exposed to C7 and cutting into segments (CEA) 2025 done Plan: retention, morphology and thickness of deposits, cracks, morphology of flakes
- Identification of 1 PFU to be exposed to C12
 Pre-characterization using confocal microscopy (CEA/AMU) 2025 done

Deliverable: PWIE-SP B2.T-T005-D001

Status: completed

Facilities: **20 k€ consumables** Linked WP or TSVV: **WPTE** [1] C. Martin et al., Nucl. Mater. Energy **41** (2024) 101764

SP B.2: Microscopy investigations of He-exposed PFUs after WEST Phase 1 (CEA) SP B.3: Surface analyses of selected WEST monoblocks (RBI)

Task and questions to be addressed

- Carry out ion-beam analyses for samples exposed to the helium plasma operations on WEST and determine accumulation of He and B on the PFUs
- Investigate changes in the surface state of the He-exposed PFUs

Approach

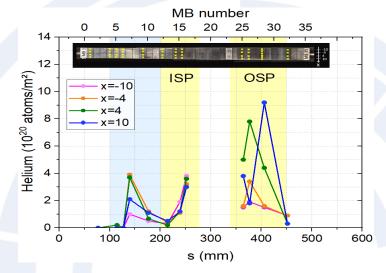
- TOF-ERDA analyses for samples from standard WEST Phase 1 PFUs as well as from 12 monoblock samples of the ITER-like PFU WECN001
- SEM/FIB/TEM analyses on the same samples after the TOF-ERDA measurements

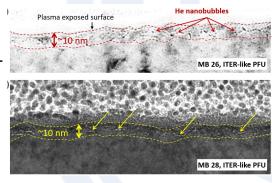
Results

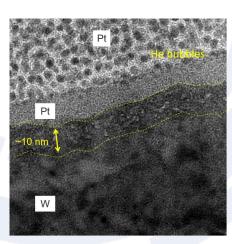
- Maximum He content found on SP (up at 10 at.%) on the standard tiles and ITERlike PFU
- Maximum He content on leading edge
- Evidence of *He bubbles* found on the standard tiles and ITER-like PFU
- → Paper to be submitted before the end of the year

Deliverable: PWIE-SP B.B3.T-T005-D009

Status: completed


Facilities: **accelerator 4 days**Linked WP or TSVV: **WPTE**


Deliverable: PWIE-SP B2.T-T005-D002


Status: completed

Facilities: -

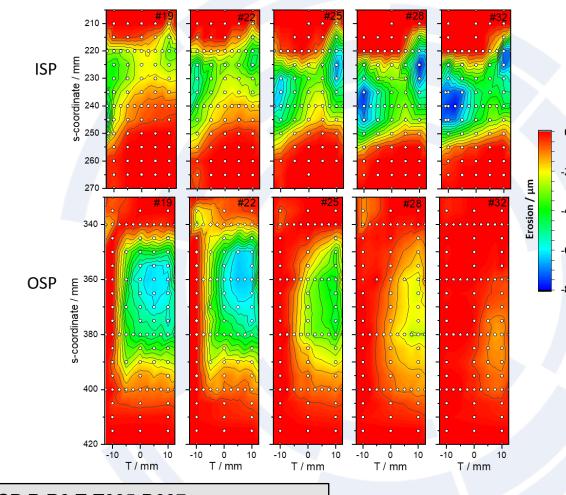
Linked WP or TSVV: WPTE

I. Bogdanovic Radovic et al.

C. Martin et al.

SP B.2: Analyses of (entire) WEST tiles (MPG) SP B.3: Erosion/deposition profiles on samples from WEST (MPG)

Task and questions to be addressed


 Detailed investigation of selected PFUs from WEST, including side faces of marker tiles, at different locations with respect to magnetic ripple + IBA measurements of boronization samples

Approach

- SEM and IBA measurements performed on marker and standard tiles after
 C3, C4, C5 campaigns (Phase 1)
- First analysis of partial boronization (GDB) samples from WEST

Results

- Standard tiles dismounted after C5 from different positions in respect to the ripple in WEST - 2D erosion pattern determined (PFMC)
 - Some ~5-10 times different erosion rates between minima and maxima of the ripple and with strong local variations
 - Highest erosion on each tile is not at the toroidal central line due to the beveling and shadowing of the tiles
- Gap sides of marker tiles analyzed (SEM, IBA): no conclusive results achieved

Deliverable: PWIE-SP B.B2.T-T005-D003

Status: completed

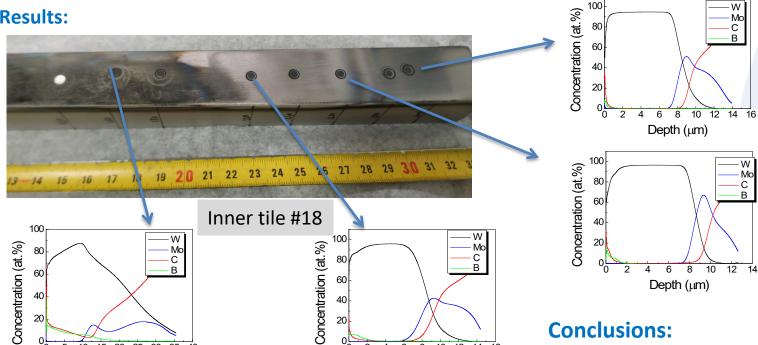
Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

Deliverable: PWIE-SP B.B3.T-T005-D007

Status: completed

Facilities: Accelerator 3 days Linked WP or TSVV: WPTE

M. Balden et al.


SP B.3: Composition of layers on WEST monoblock samples (IAP)

5 ISP and **5 OSP** W coated tiles from different toroidal locations analyzed by *GDOES*

Task and questions to be addressed

Elemental depth profiles and erosion/deposition patterns evaluated

Results:

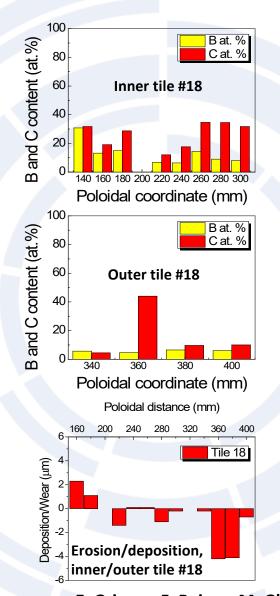
6 8 10 12 14 16

Depth (µm)

Deliverable: PWIE-SP B.B3.T-T005-D003

10 15 20 25 30 35 40

Depth (µm)


Status: completed

Facilities: -

Linked WP or TSVV: -

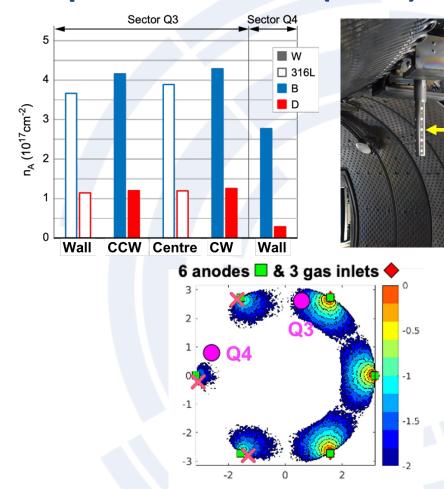
Conclusions:

- B detected on all tiles, peaks on the inner side
- Erosion/deposition patterns for W also available

E. Grigore, F. Baiasu, M. Gherendi

SP B.2: Analyses of (entire) WEST tiles (MPG) SP B.3: Erosion/deposition profiles on samples from WEST (MPG)

Task and questions to be addressed


 Detailed investigation of selected PFUs from WEST, including side faces of marker tiles, at different locations with respect to magnetic ripple + IBA measurements of boronization samples

Approach

- SEM and IBA measurements performed on marker and standard tiles after
 C3, C4, C5 campaigns (Phase 1)
- First analysis of partial boronization (GDB) samples from WEST

Results

- Samples (W, 316L steel) exposed during partial GDB by two manipulators
- Deposition rate lower in sector Q4 but much smaller effect than predicted (×2.5 vs ×100)
- No angular dependency of deposition on samples inside glow discharge
- D/B fraction at Q4 factor 3 lower than at Q3 near active gas inlet

Deliverable: PWIE-SP B.B2.T-T005-D003

Status: completed

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

Deliverable: PWIE-SP B.B3.T-T005-D007

Status: completed

Facilities: Accelerator 3 days

Linked WP or TSVV: WPTE

K. Krieger et al.

SP B.3: Surface modifications and composition of layers on selected WEST, MAGNUM-PSI, PSI-2, and GyM samples (NCSRD) Boron

Motivation: In the initial phase of ITER operations (SRO), the boronization will be toroidally non-symmetric

Non uniform boronization performed at WEST

(20 samples from 2 sample holders, 4 sides and 3 positions were analyzed after)

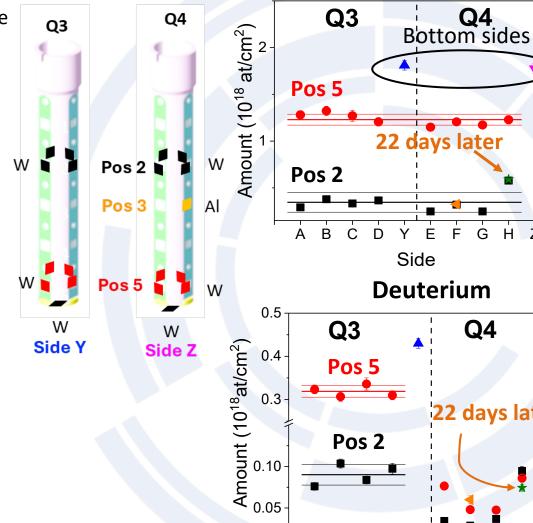
Task and questions to be addressed

- How uniform is the B layer formation after non-uniform boronization?
- What is the modification of elemental composition after air exposure?

Methodology

RBS/NRA with d beam (1.4 MeV)

Results


- **Boron: No dependence on probe & side; dependence** on vertical position (~3.5 × more B in pos 5 than in pos 2); No change after 22 days in air
- Deuterium: Dependence on probe; dependence on vertical position only for Q3 (~3.5 × more D in pos 5 than in pos 2); 22% decrease after 22 days in air

Deliverable: PWIE-SP B.B3.T-T005-D008

Status: completed

Facilities: Accelerator 4 days Linked WP or TSVV: WPTE

P. Tsavalas, K. Mergia, A. Lagoyannis, M. Axiotis

Q4

22 days later

Side

SP B.3: Ion Beam Analysis of boronization samples from WEST (VR)

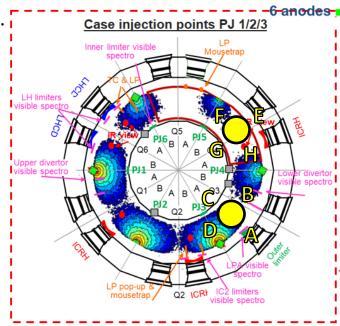
Non-uniform boronization performed at WEST (PJ 1-3 out of 6).

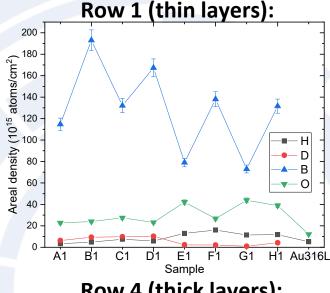
Evaluate the uniformity of B layers in WEST:

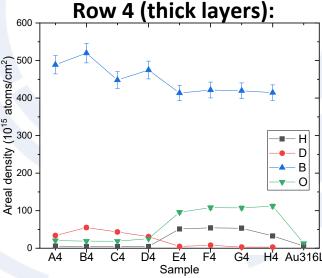
- Homogeneity in toroidal position and vertical direction.
- Homogeneity in 4 toroidal directions.
- Amount of oxygen trapped in the boron layers.
- Presence of He in layers? Stability of layers in air?

Approach

- Samples received: Au/boron layer/316L.
- Combination of different ion beam techniques (performed on different days, study ageing effect)

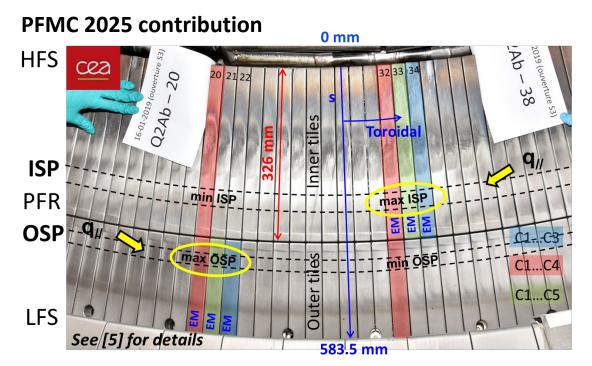

Results


- Vertical direction: Boron layer in row 4 (A4-H4) significantly thicker than row 1 (A1-H1).
- **Toroidal Position:** Higher oxygen + hydrogen and lower deuterium in E-H samples, further from PJ 1-3.
- Oxygen trapped: Inverse correlation between boron and oxygen.
- Future step: Compare with uniform boronization (PJ 1-6).


Deliverable: PWIE-SP B.B3.T-T005-D010

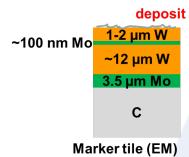
Status: completed

Facilities: **Accelerator 2 days** Linked WP or TSVV: **WPTE**



E. Pitthan, P. Petersson, M. Dhar, D. Gautam, M. Rubel, D. Primetzhofer

SP B.3: Composition of deposited layers on WEST during Phase 1 (VTT)



- 5 campaigns carried out in Phase 1 more than
 7 h of plasma exposure
- Boronizations started during C3 and most of them (13) carried out in C4

Deliverable: PWIE-SP B.B3.T-T005-D011

Status: completed

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

- Altogether 8 marker tiles installed on the WEST divertor before Phase 1 and sequentially removed after C3, C4, and C5
- <u>This work</u>: data reported from 6 tiles (HFS and LFS regions) around the maxima of the toroidal ripple

	Plasma disch.	Cumulative time (s)	Disruptio ns	W _{LH} total (MJ)	W _{IC} total (MJ)	# Boro
C2						
Nov17-Feb18	716	1553	282	95.5	0	0
C3						
July-Dec18	1076	7329	796	4947	105	3
C4						
July-Nov19	1442	12669	1042	12123	1142	13
C5						
Nov20-Jan21	655	4630	460	2625	182	2

A. Hakola et al.

SP B.3: Composition of deposited layers on WEST during Phase 1 (VTT)

PFMC 2025 contribution

Little deposit

Thin deposits

Thin deposits

S = 326 mm

Erosion - ISP

From the second seco

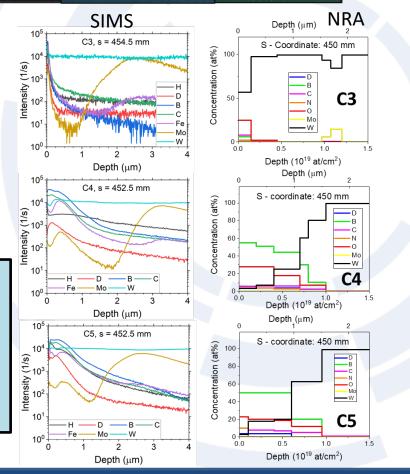
THIN DEPOSITS (see figures)

- Thickness considerably increases from C3 to C4 and a bit more to C5; surface layers strongly oxidized
- Sublayers identified: (i) B-rich layer <0.5 μm, (ii) metallic impurities ~0.5-1 μm, (iii) Mo marker at ~1.5 μm

EROSION AREAS

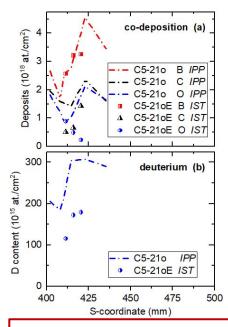
- Mixture of different elements, no clear deposition peaks
- Erosion amplified from C3 to C5

Deliverable: PWIE-SP B.B3.T-T005-D011


Status: completed

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

THICK DEPOSITS


- Thickness increases from ~3 μm to >10 μm from C3 to C5 – all elements show relatively flat profiles
- B at the top, metallic impurities deeper down ($^{\sim}1.5\text{-}3~\mu\text{m}$), and D levels lower than on thin deposits
- Layers mainly consist of B, O, and C as well as W
- Especially "thin deposits" show clear sublayers rich in B+C+O and/or metallic elements while stratified structures identified in the "thick deposits"

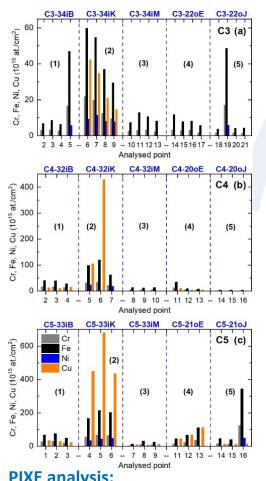
A. Hakola et al.

SP B.3: Composition and fuel content of layers on WEST samples (IST)

D, B, C, O content after the C5 campaign at s ~ 415 mm (OSP region):

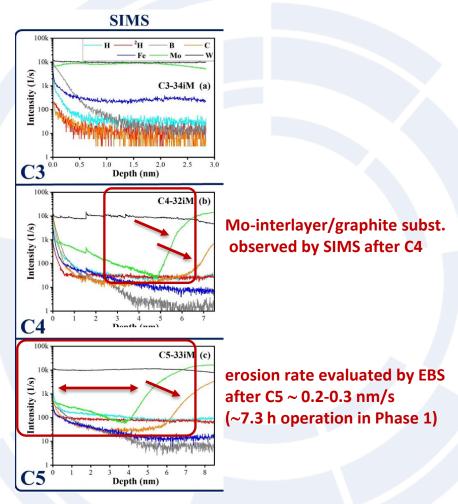
 significant deposition behaviour (confirm the results from entire C5-210 tile (at IPP)

Main conclusions


- Erosion rate of 0.2-0.3 nm/s at ISP in Phase 1
- Thick deposits after C4-C5 difficult to find in the disks by IBA (stability of B-rich layers?)

Deliverable: PWIE-SP B.B3.T-T005-D005

Status: completed


Facilities: Accelerator 5 days

Linked WP or TSVV: -

PIXE analysis:

- Fe:Cr:Ni ratios → stainless steel
- PIXE and IBA agree with each other

Detailed SIMS + EBS analysis at $s \sim 238$ mm (ISP)

R. Mateus, N. Catarino, E. Alves

SP B.3: Depth profiles for layers on selected WEST samples (UT)

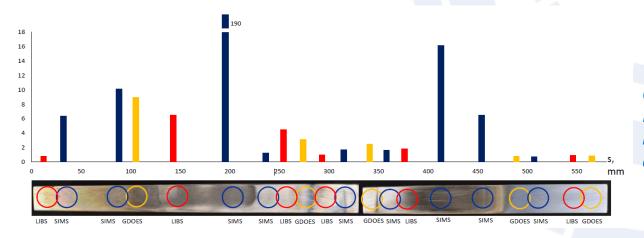
Task and questions to be addressed

Perform surface analyses (including LIBS) for selected WEST samples

Approach

- Use ns-LIBS method for the composition analysis of the samples of interest, unfortunately the applied ns laser is now broken beyond repair
- The scope of the task was therefore changed to more detailed analysis of the existing data and reporting the results in PFMC 2025

Results


- LIBS allows determining the main elements of (W, Mo, C) + impurities (B) on C4 erosion marker tiles
- Strongest B I lines near 250 nm overlap with W II lines but their influence can be accounted for by using the intensities of adjacent W II lines
- LIBS depth profiles reproduced the layered structure on the erosion marker tiles similarly to SIMS, GDOES and other methods
- Different methods give generally consistent B depth profiles and integral amounts with some outstanding cases on the thick deposits → most likely due to high ablation rate for porous co-deposits

Deliverable: PWIE-SP B.B3.T-T005-D012

Status: completed

Facilities: -

Linked WP or TSVV: -

Combination of data by LIBS, SIMS, and GDOES for integrated B content on the analyzed C4 marker tiles

I. Jõgi, P. Paris

SP B.3: Surface modifications of selected WEST samples (IPPLM)

General Information

Examined samples: (i) WEST monoblock MB28, and (ii) 16 boronization samples from WEST

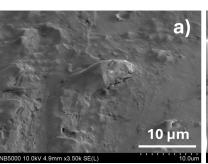
Task and questions to be addressed

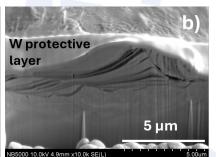
(i) assess surface modifications of the samples and (ii) co-deposits formed, including boron layers

Approach

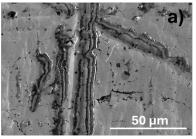
- Microscopic surface observations, EDX analysis, as well as FIB cross-sections and observations using optical profilometer studies
- On each boronization sample, FIB cross-sections made to assess the thickness of the boron layers

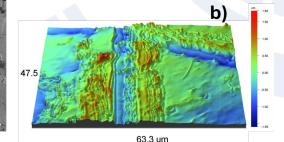
Results - MB28


- Only a small part of the surface covered with deposits (outer divertor region), mostly in shadowed areas. Deposits contain oxygen, boron, nitrogen, iron and copper
- Numerous elongated objects/outgrowths with welldefined/specified directions and layered structure observed


Deliverable: PWIE-SP B.B3.T-T005-D004

Status: completed


Facilities: -


Linked WP or TSVV: -

SEM image of the outgrowth (a) and its FIB cross-section (b).

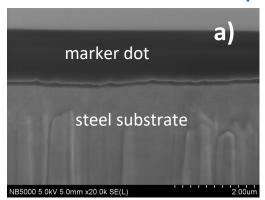
SEM image of the morphology of deposits (a) and its 3D map (b).

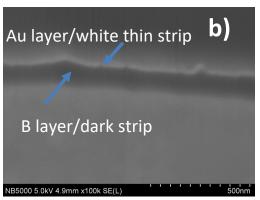
E. Fortuna-Zaleśna

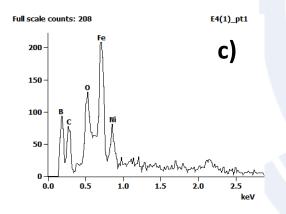
SP B.3: Surface modifications of selected WEST samples (IPPLM)

General Information

Examined samples: (i) WEST monoblock MB28, and (ii) 16 boronization samples from WEST


Task and questions to be addressed


(i) assess surface modifications of the samples and (ii) co-deposits formed, including boron layers


Approach

- Microscopic surface observations, EDX analysis, as well as FIB cross-sections and observations using optical profilometer studies
- On each boronization sample, FIB cross-sections made to assess the thickness of the boron layers

Results – boronization samples

SEM cross-section across the layer, sample E4 (a, b), and the corresponding EDX spectrum (c)

- Protective Au layer on top
- Presence of B in a thin layer between the steel substrate and the Au layer
- Considerably thicker B layer on the A →H4 samples than on the A → H1 samples

Deliverable: PWIE-SP B.B3.T-T005-D004

Status: completed

Facilities: -

Linked WP or TSVV: -

E. Fortuna-Zaleśna

SP B.2: Analyses of samples from AUG (MPG)

General Information

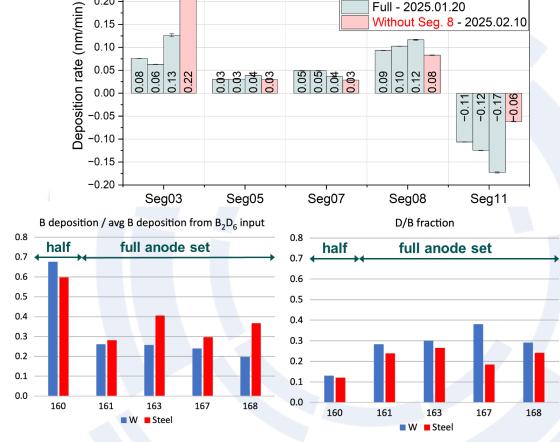
- Samples with Pt marker layers (as proxy for W) and FIB-created depth markers on bulk W exposed to dedicated AUG discharges with Ne seeding
- Boron layers created during boronisations (GDB) studied by exposing witness samples during and immediately following GDBs

Task and questions to be addressed

- Erosion and prompt redeposition of tungsten (and proxies to it)
- Spatial distribution, properties, deposition rates and D-retention of boron layers created by GDB

Approach

Samples characterised by ion beam methods (RBS, NRA, PIXE) and SEM analysis before and after exposure


Results

- Deposition efficiency of AUG boronisations using partial and full set of glow anodes assessed and compared to in situ QMBs
- Erosion-deposition patterns of W in the divertor studied following the L- and H-mode experiments

Deliverable: PWIE-SP B.B2.T-T005-D004

Status: completed

Facilities: Accelerator 5 days Linked WP or TSVV: WPTE

Top: Deposition on QMBs shows significant toroidal variations and indicates that GDB not only deposits but also erodes material Bottom: In contrast to QMB, higher B deposition on samples with half-GDB and lower D/B ratio

NB! B&D depletion by exposure to air with lower rate compared to the WEST GDB layers \rightarrow attributed to higher T_{wall}

0.20

M. Balden, K. Krieger et al.

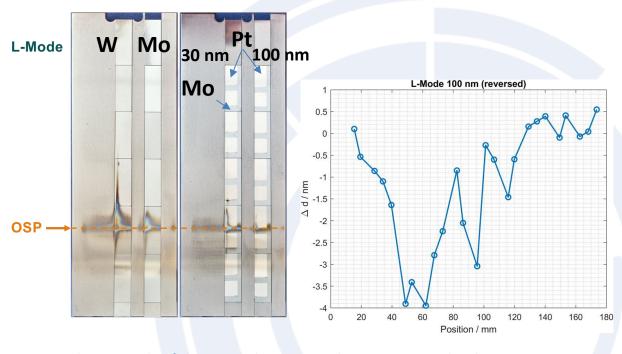
Full - 2024.11.18 Full - 2025.01.07

SP B.2: Analyses of samples from AUG (VTT) SP B.2: Deposition profiles on samples from AUG (RBI)

General Information

 Samples with Pt marker layers (as proxy for W) and FIB-created depth markers on bulk W exposed to dedicated AUG discharges with Ne seeding

Task and questions to be addressed


 Erosion and prompt redeposition of Pt as well as other elements on the samples, both macroscopically and in the μm scale

Approach

 Samples characterised by ion beam methods (RBS, NRA, PIXE, TOF-ERDA) following their exposure to L- and H-mode discharges

Results

- Large difference in the erosion characteristics of Pt markers after the
 L- and H-mode experiment
- Deposition observed for the first time also between the markers, elemental composition still to be clarified

Photograph of divertor tiles exposed to AUG L-mode plasma discharges and poloidal erosion/deposition profile for the 100-nm thick Pt markers.

Deliverable: PWIE-SP B.B2.T-T005-D005

Status: completed

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

Deliverable: PWIE-SP B.B2.T-T005-D006

Status: ongoing (to be completed in the end of 2025)

Facilities: Accelerator 2 days Linked WP or TSVV: WPTE

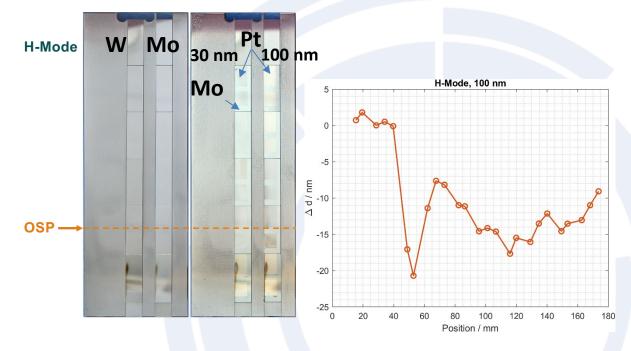
A. Hakola, S. Saari

SP B.2: Analyses of samples from AUG (VTT) SP B.2: Deposition profiles on samples from AUG (RBI)

General Information

 Samples with Pt marker layers (as proxy for W) and FIB-created depth markers on bulk W exposed to dedicated AUG discharges with Ne seeding

Task and questions to be addressed


• Erosion and prompt redeposition of Pt as well as other elements on the samples, both macroscopically and in the µm scale

Approach

 Samples characterised by ion beam methods (RBS, NRA, PIXE, TOF-ERDA) following their exposure to L- and H-mode discharges

Results

- Large difference in the erosion characteristics of Pt markers after the
 L- and H-mode experiment
- Deposition observed for the first time also between the markers, elemental composition still to be clarified

Photograph of divertor tiles exposed to AUG H-mode plasma discharges and poloidal erosion/deposition profile for the 100-nm thick Pt markers.

Deliverable: PWIE-SP B.B2.T-T005-D005

Status: completed

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

Deliverable: PWIE-SP B.B2.T-T005-D006

Status: ongoing (to be completed in the end of 2025)

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPTE**

A. Hakola, S. Saari

SP B.2: Changes in the surface properties of samples exposed on AUG (FZJ)

before

after

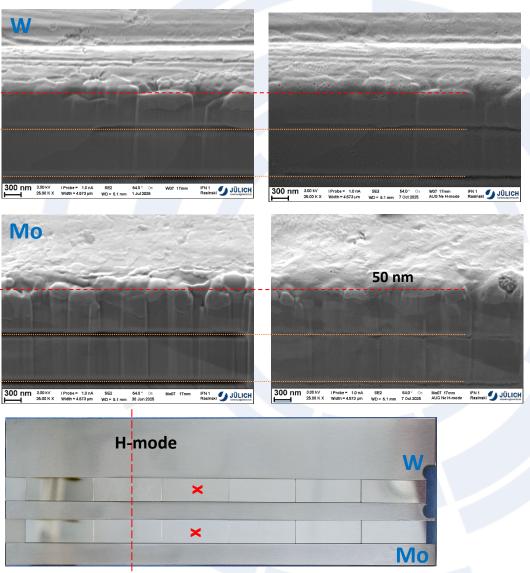
Task and questions to be addressed

 Analysis of W and Mo samples exposed in AUG to L-mode and H-mode plasmas with Ne seeding

Approach

- Set of samples were pre-characterized and prepared for the AUG exposure (FIB cross-sections for erosion/deposition studies)
- After AUG exposures samples were characterized by means of electron microscopy techniques

Results


- Low erosion spotted for Mo samples exposed to H-mode AUG plasma (at most 50 nm).
- Erosion below 50 nm of W samples exposed to H-mode AUG plasmas
- No visible erosion of both Mo and W exposed to L-mode AUG plasmas

Deliverable: PWIE-SP B.B2.T-T005-D007

Status: completed

Facilities: -

Linked WP or TSVV: WPTE

SP B.3: Analyses of wall tiles originating from AUG (MPG)

General Information

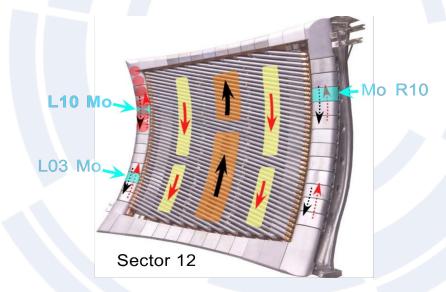
Determine erosion and deposition patterns on various plasma-exposed tiles

Task and questions to be addressed

Perform surface analyses for erosion, deposition and surface-modification patterns on wall components retrieved from AUG

Approach

SEM and IBA measurements performed at many analysed spots on several exposed tiles


Results

- Erosion patterns on AUG ICRH limiter marker tiles determined: maximum erosion of Mo-coated graphite tiles below 1 μm → provides feedback to the dedicated ICRH experiment under WPTE
- Thickness of deposits with respect to boron deposition determined on many longterm samples as well as on 8 pre-characterised tiles, exposed only during one campaign

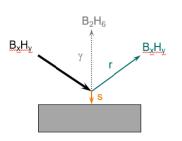
Deliverable: PWIE-SP B.B3.T-T005-D007

Status: completed

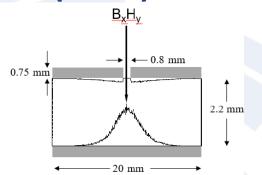
Facilities: **Accelerator 3 days**Linked WP or TSVV: **WPTE**

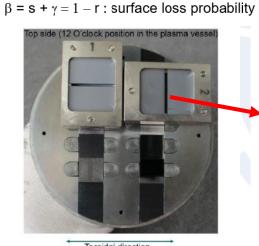
SP B.2: Analyses of W7-X samples (MPG) SP B.3: Erosion/deposition profiles of samples from W7-X (MPG)

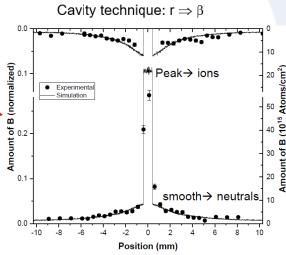
Task and questions to be addressed


 Determine erosion and deposition patterns on manipulator samples from OP2 experiments and boronizations on W7-X with the focus on the amount of B on selected locations

Approach


- IBA measurements for all the available W7-X samples
 - Cavity samples to assess sticking of B (radicals)
 - B erosion and deposition rates during/after boronizations


Results


- Surface loss probability β measured for boron radicals during boronizations on W7-X and AUG
 - Ions: $\beta \approx 0.2$ Neutrals: $\beta \approx 1.0$
- Open question: Which ion/radical species: B+, BH+, BH2+, ... B2H6+?

s: sticking coefficient r: reflection coefficient γ: reaction probability

Deliverable: PWIE-SP B.B2.T-T005-D009

Status: completed

Facilities: Accelerator 3 days Linked WP or TSVV: WPW7X Deliverable: PWIE-SP B.B3.T-T005-D007

Status: completed

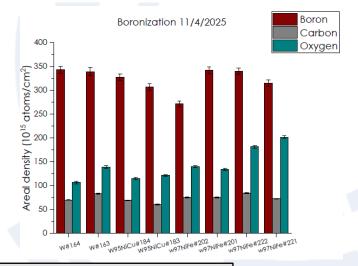
Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPW7X**

M. Mayer, C.P. Dhard

SP B.2: Analyses of W7-X samples (MPG) SP B.3: Erosion/deposition profiles of samples from W7-X (MPG)

Task and questions to be addressed

 Determine erosion and deposition patterns on manipulator samples from OP2 experiments and boronizations on W7-X with the focus on the amount of B on selected locations


Approach

- IBA measurements for all the available W7-X samples
 - Cavity samples to assess sticking of B (radicals)
 - B erosion and deposition rates during/after boronizations

Results

- No correlation between the substrate material or surface roughness and the boron layer thickness
- Thicker boron layers present lower C/B and O/B ratios
- Higher carbon concentrations in OP2.3 than in OP2.2

	OP2.2							
Sample Name	Boron layer thickness		Carbon layer thickness			Oxygen layer thickness		
	average 10 ¹⁵ atoms/cm², nm	1921	average	std. dev (%)	C/B		std. dev (%)	O/B
13.09.2024	93.2, 7.1	12.2	atoms/cm²	15.1	0.49	atoms/cm²	4.4	0.8
21.10.2024	80.2, 6.1	4.0	36.5	43.1	0.35	68.1	6.1	0.8
	OP2.3							
14.02.2025	152.6, 11.7	4.9	48.8	14.3	0.32	109.6	16.9	0.72
11.04.2025	323.0, 24.7	7.2	73.5	9.9	0.23	142.2	21.7	0.44

Deliverable: PWIE-SP B.B2.T-T005-D009

Status: completed

Facilities: Accelerator 3 days Linked WP or TSVV: WPW7X Deliverable: PWIE-SP B.B3.T-T005-D007

Status: completed

Facilities: **Accelerator 2 days**Linked WP or TSVV: **WPW7X**

M. Mayer, C.P. Dhard

SP B.2: Analyses of samples from W7-X manipulator experiments (FZJ) SP B.3: Surface modifications and fuel content of selected W7-X samples (FZJ)

Task and questions to be addressed

- Investigate erosion and surface modification of various samples exposed to W7-X plasmas
- Perform surface analyses for erosion, deposition, fuel-retention, and surface-modification patterns on wall components and samples (including LIBS) retrieved from W7-X

Approach

Preparation and pre-characterization of W and Mo samples before W7-X OP2.3 exposures and post-exposure analyses using SEM, EDX,
 FIB, NRA, and LIBS after OP2.3

Results

- All samples were pre-characterized, prepared and successfully exposed in W7-X using the MPM manipulator
- Post characterization ongoing, to be continued in 2026

Deliverable: PWIE-SP B.B2.T-T005-D008

Status: completed

Facilities: Accelerator 2 days Linked WP or TSVV: WPW7X Deliverable: PWIE-SP B.B3.T-T005-D002

Status: completed

Facilities: **Accelerator 1 day**Linked WP or TSVV: **WPW7X**

M. Rasinski, T. Dittmar

SP B.4 - Reference coatings for ITER and DEMO

SP B.4 deliverables 2025

Activity	Deliverable ID(s)	Title Title
SP B.4	D001	W- and B-based coatings with pre-defined composition and morphology for experiments in linear plasma facilities (ENEA)
	3 PM	
SP B.4	D002	W-based coatings with pre-defined composition and morphology for experiments in linear plasma facilities (IAP)
	4 PM	
SP B.4	D003	B reference layers with pre-defined composition and morphology for comparison with data from tokamaks (IAP)
	6 PM	
SP B.4	D004	Raman analyses of selected B reference samples (CEA)
	2 PM	
SP B.4	D005	SEM and SIMS analyses of selected B and W reference samples (CIEMAT)
	1 PM	
SP B.4	D006	LIBS and SEM analyses of selected B reference samples (FZJ)
	2 PM	
SP B.4	D007	Microscopy investigations of selected B and W reference samples (IPPLM)
	2 PM + 1 PM (AR)	
SP B.4	D008	Ion-beam analyses of selected B and W reference samples (IST)
	5 PM	
SP B.4	D009	XPS and TDS analyses of selected B reference samples (JSI)
	4 PM	
SP B.4	D010	Ion-beam and structural analyses of selected B and W reference samples (NCSRD)
	5 PM	
SP B.4	D011	TOF-ERDA analyses of selected B and W reference samples (RBI)
	1 PM	
SP B.4	D012	Ion-beam analyses of selected B reference samples (VR)
	1.5 PM	
SP B.4	D013	SIMS measurements and ion-beam analyses of selected B and W reference samples (VTT)
	1 PM	

SP B.4: W-based reference coatings for linear-machine experiments (IAP)

Production of W coatings (5μm) on Mo substrate for experiments in linear plasma facilities


- 6 Samples deposited on 30 mm diameter Mo substrates (#1mm)
- 4 Samples deposited on 12x15 mm Mo substrates (#1mm)

Results:

- GDOES data (for chemical composition and thickness) indicates: thickness 5 μm; no contaminants within the coating
- XRD analyses (for phase investigations) suggest:
 W monophasic structure with no preferential orientation

Conclusions:

- W coatings with a thickness of 5 μm deposited and sent to different RUs for further experiments in linear plasma devices
- W-N, W-O and W-N-O coatings already delivered to different RUs

Deliverable: PWIE-SP B.B4.T-T005-D002

Status: completed

Facilities: -

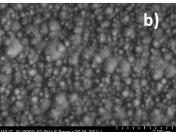
Linked WP or TSVV: SP B.1

E. Grigore, F. Baiasu, M. Gherendi

SP B.4: Microscopy investigations of selected B and W reference samples (IPPLM)

General Information

Examined samples:


- Reference W coatings (IAP): (i) W-N-O deposit on Mo, (ii) W-O deposit on Mo, and (iii) W-N deposit on Mo
- Reference B layers 100 nm (IAP)

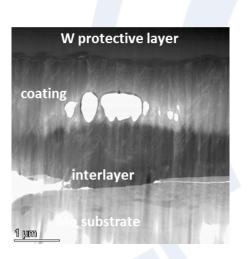
Approach

- On each sample, microscopic surface observations, EDX analysis, and profilometry were carried out.
- STEM/TEM studies were applied to examine their internal structure.

Results – W-N-O coatings (similar results for other coatings)

SEM images of the surface (a-b)

Surface roughness
 R_a~ 0.4 μm, granular
 morphology



Deliverable: PWIE-SP B.B4.T-T005-D007

Status: completed

Facilities: -

Linked WP or TSVV: -

STEM HAADF-BF image of a thin foil from the sample

 Thickness of the interlayer ~ 400 nm, coating ~ 2.1 μm.

TEM images of the interlayer

- Interlayer nanocrystalline with a columnar structure
- Coating itself amorphous

E. Fortuna-Zaleśna

SP B.4: Ion-beam analyses of selected B and W reference samples (IST)

Task and questions to be addressed

 Carry out IBA and XRD for selected W reference samples to determine their surface composition and structure

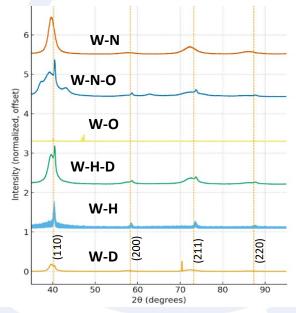
Approach

- simultaneous ERDA + RBS / 2.0 MeV ⁴He⁺ incident beams / for H , D analysis
- simultaneous RBS + NRA / 1.75 MeV ³He⁺ incident beams / for D analysis
- EBS / 1.75 MeV / 2.15 MeV ¹H⁺ incident beams / W, N, O, Mo analysis

Results

- Main elemental depth composition achieved by IBA
- The dominant phase across all the coatings is bcc W
- Complementary diffraction patterns: (W-H vs. W-D) and (W-N vs. W-O)
- H and D acts as interstitial species, leading to minor lattice distortions
- O promotes the formation of oxide phases (mainly W₁₈O₁₉)
- No crystalline W-nitride formation

Deliverable: PWIE-SP B.B4.T-T005-D008


Status: completed

Facilities: Accelerator 5 days

Linked WP or TSVV: -

Table 2. W coatings deposited on Mo produced at INFLPR for IBA and XRD.

#	Reference	Nominal comp.	Nominal thick.	Substrate	Producer
1	EU2-208-4	W+D	~5 µm	Mo	INFLPR
2	EU2-204-4	W+H+D	~4 µm	Mo	INFLPR
3	EU2-203-7	W+H	~4.5 µm	Mo	INFLPR
4	EU2-180-2	W+O	~2 µm	Mo	INFLPR
5	EU2-942-5	W+N	~2 µm	Mo	INFLPR
6	EU2-210-5	W+N+O	~3 µm	Mo	INFLPR

Overlay of W-based diffractograms (normalized; vertical offset)

R. Mateus, S. Magalhães

SP B.4: XPS and TDS analyses of B and W reference samples (JSI)

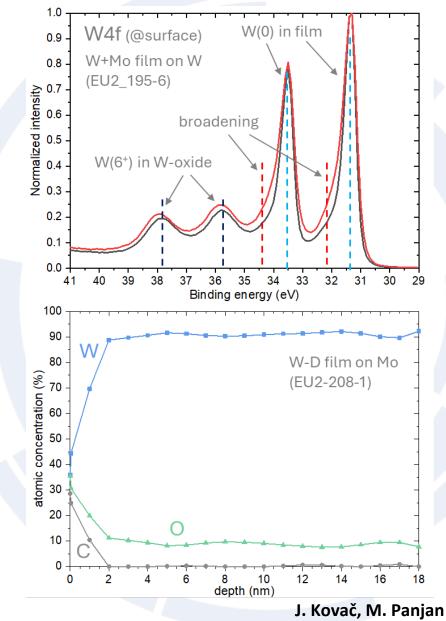
Task and questions to be addressed

■ XPS analysis of W+Mo film on W and W-D film on Mo, film thickness ~5 µm

Approach

■ XPS spectrometer (Genesis, Physical Electronics). Surface analysis 0.1 mm in diameter and depth of ~4 nm. A depth profile was performed by sputtering with Ar-ion beam of 3 keV over 3×3 mm² (~2.0 nm/min)

Results


- Surface analysis:
- Similar surface composition for both samples: 33 at.% of W, 33 at.% of O, 30 at.% of C (contamination) and 4 at.% of N.
- Small degree of oxidation of W-atoms on the surface (25% oxidized of W-oxide phase and 75% of W-metallic phase on the surface).
- Broadening of the W 4f surface spectra at energy 32 eV and 34.5 eV indicates the disorder/defects induced by D in the subsurface region
- **Depth profiles**: Depth profiles (down to 20 nm) show concentrations of W and O: 90% and 10% for W-D, 85% and 15% for W+Mo

Deliverable: PWIE-SP B.B4.T-T005-D009

Status: completed

Facilities: -

Linked WP or TSVV: -

SP B.4: Production of W and B reference coatings (ENEA-PoliMi)

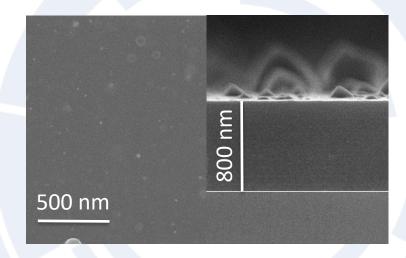
Task and questions to be addressed

 Production of W and B reference coatings, multilayer structures, and proxies for re-deposited layers with varying composition, morphology, and grain structure for laboratory experiments and exposures in linear plasma devices

Approach

- B coatings produced via Pulsed Laser Deposition (PLD), from 100 nm to 1 μm
- Nanocolumnar W and compact W produced via HiPIMS
- Porous W-O deposited via PLD
- Polishing of PSI-2 geometry W substrates at PoliMi

Results


- B coatings (14 on W PSI-2 geometry and 8 on Si 10x10 mm²) done
- 5 nanocolumnar W on Mo disks done
- 16 nanocolumnar W on W PSI-2 geometry 12 done, 4 planned by the end of November
- 6 nanocolumnar W on Mo flat 10x10 mm² done
- 11 porous W-O on Mo disks 5 done, 6 planned by the end of November
- 14 compact W on Mo disks done
- 4 amorphous W done

Deliverable: PWIE-SP B.B4.T-T005-D001

Status: completed

Facilities: -

Linked WP or TSVV: SP B.1, SP D

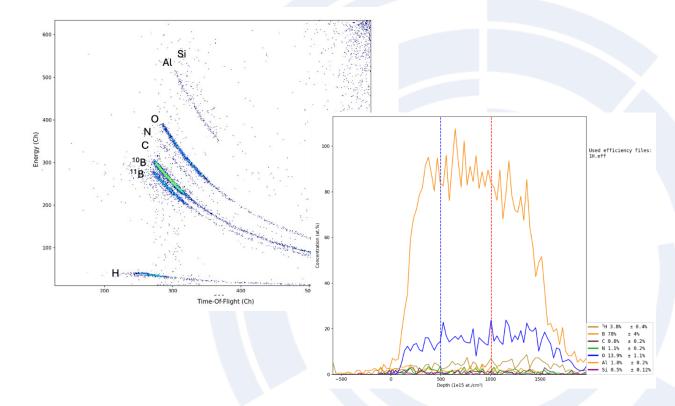
Example of a boron coating

- D. Dellasega, L. Bana, G. Alberti, D. Vavassori,
- D. Vassallo, M. Pedroni, A. Uccello, M. Passoni

SP B.4: TOF-ERDA analyses of selected B reference samples (RBI)

Boron sample (100 nm on W), obtained from ENEA

Task and questions to be addressed


 Determine composition and depth profiles of elements in the sample as well as layer thickness

Approach

TOF-ERDA with 23 MeV ¹²⁷I⁷⁺ beam

Results

- Sample composition: H 3.8 at.%, B 78 at.%, C 0.8 at.%, N 1.0 at.%,
 O 13.8 at.%, Al 1.8 at.%, Si 0.5 at.%
- Sample thickness: 1600×10¹⁵ cm²

2D E-TOF map and depth profiles of all elements found on the studied sample

Deliverable: PWIE-SP B.B4.T-T005-D011

Status: completed

Facilities: Accelerator 4 days

Linked WP or TSVV: -

Z. Siketić, I. Bogdanović Radović

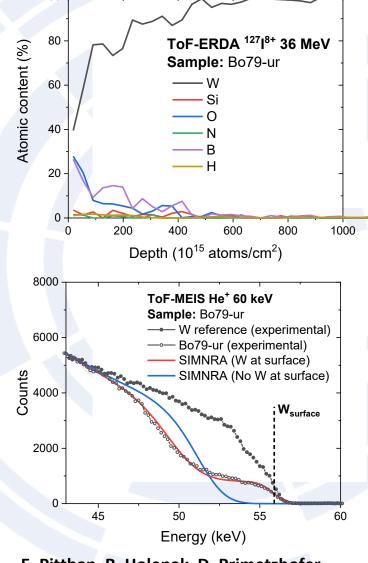
SP B.4: Ion-beam analyses of selected B reference samples (VR)

Boron films deposited on tungsten by PoliMi exposed to the deuterium plasma of the linear device GyM (E_{ion} = 76 eV, Fluence = 4×10²³ m⁻²), received from Andrea Uccello (CNR)

Aim: Investigation of chemical composition and atomic distribution on the sample surface

Approach

- ToF-ERDA: identification and depth profile of all isotopes
- EBS+NRA+PIXE using H⁺ 2.6 MeV: higher sensitivity to B
- ToF-MEIS (medium-energy ion scattering): High-resolution W surface distribution:
 - ToF-MEIS depth resolution corresponds to 1.4 nm for W at the surface


Results

- The presence of B, O, N, and H was identified at the surface. No deuterium observed
- Boron areal density corresponds to 3.7 nm, assuming the density of pure boron (2.351 g/cm³)
- Presence of W at the surface confirmed by ToF-MEIS analysis:
 - Results indicate incorporation of W within the B–O layer at the surface and/or incomplete coverage of surface layer.

Deliverable: PWIE-SP B.B4.T-T005-D012

Status: completed

Facilities: Accelerator 3 days Linked WP or TSVV: SP B.1

E. Pitthan, R. Holenak, D. Primetzhofer

SP B.4: Production of B-based reference coatings (IAP)

Task and questions to be addressed

 Production of B reference coatings, multilayer structures, and proxies for redeposited layers with varying composition, morphology, and grain structure for laboratory experiments and exposures in linear plasma devices

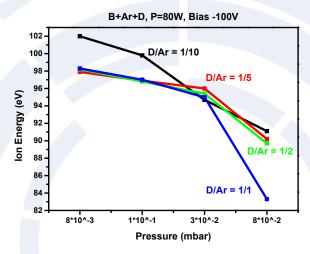
Approach

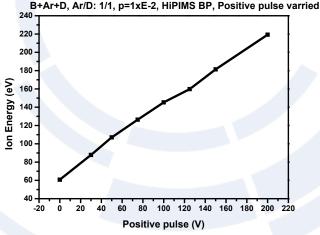
 Development of production recipes in dedicated setups to understand the formation of B layers under different conditions

Results

For each condition we now know – useful for fine-tuning the recipes

- ion energy
- deposition rate (Particle flux)
- D/B ratio by TDS


Deliverable: PWIE-SP B.B4.T-T005-D003


Status: completed

Facilities: -

Linked WP or TSVV: -

Ion energy dependence versus various plasma parameters

C. Porosnicu, P. Dinca, B. Butoi, O. G. Pompilian, C. Staicu, B. Solomonea, C. P. Lungu

SP B.4: Production of B-based reference coatings (IAP)

Task and questions to be addressed

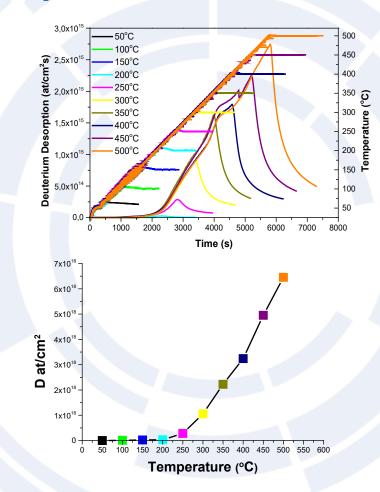
 Production of B reference coatings, multilayer structures, and proxies for redeposited layers with varying composition, morphology, and grain structure for laboratory experiments and exposures in linear plasma devices

Approach

 Development of production recipes in dedicated setups to understand the formation of B layers under different conditions

Status report of layers produced in 2025

- B layers with controlled D inclusions (10 at%) Completed Febr/Mar 2025
- B layers with a nominal thickness of 100 nm and 5 μm Completed Feb/Mar 2025
- B and B+D₂ (10 at%) layers with a nominal thickness of 100 nm and 5 μm on special substrates (W, $12 \times 15 \text{ mm}^2$) ongoing
- Deposition of B (5 μ m) on Mo (Ø30 mm) with different roughnesses <u>target Dec 2025</u>
- B+D₂ (10 at%) layers with annealing at temperatures of 50 500°C target Dec 2025


Deliverable: PWIE-SP B.B4.T-T005-D003

Status: completed

Facilities: -

Linked WP or TSVV: -

Preparation of 5×5 mm² W samples coated with $B+D_2(10\%)$, thermal treatment up to 500°C

C. Porosnicu, P. Dinca, B. Butoi, O. G. Pompilian, C. Staicu, B. Solomonea, C. P. Lungu

SP B.4: TOF-ERDA analyses of selected B reference samples (RBI)

Boron samples with D from IAP (C. Porosnicu)

Task and questions to be addressed

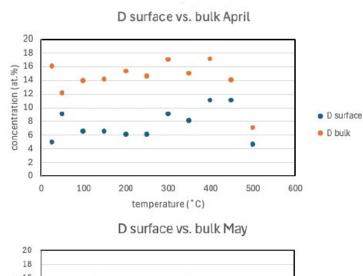
B samples with D at different temperatures, from RT to 500°C

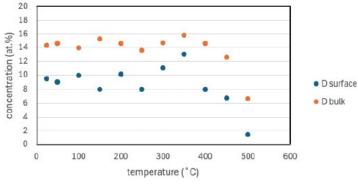
- to determine composition and depth profiles of thin B+D films as a function of temperature
- to study changes in the sample composition in the near surface region by measuring samples left on ambient conditions after one month

Approach

- TOF-ERDA with 23 MeV ¹²⁷I⁷⁺ beam
- Samples first analyzed on April 22, 2025 following storage in vacuum and Ar, second analysis following aging in ambient conditions on May 19, 2025; concentration calculated for near surface and bulk

Results


- In general, thickness of the surface oxide layer slightly increased in samples measured in May
- In some samples D concentration near the surface increased


Deliverable: PWIE-SP B.B4.T-T005-D011

Status: completed

Facilities: Accelerator 4 days

Linked WP or TSVV: -

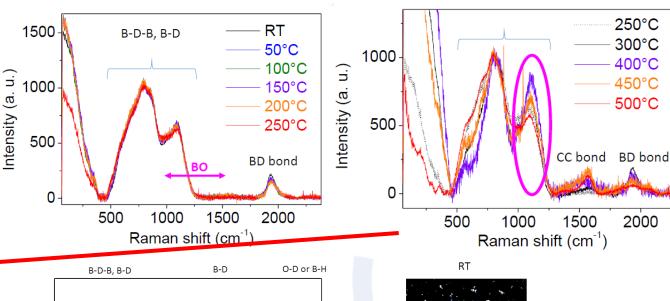
Concentration of D (at.%) near the sample surface (blue) and in the bulk (yellow) as a function of temperature in April and May

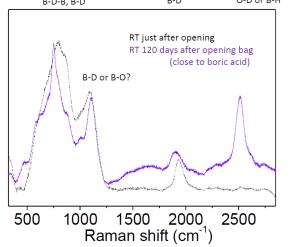
Z. Siketić, I. Bogdanović Radović

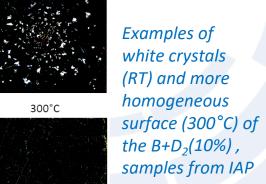
SP B.4: Raman analyses of different B reference layers (CEA)

This task covers Raman measurements for B layers provided by IAP, ENEA, and VR (supplemented by optical microscopy)

Results


- B layers annealed at different temperatures (IAP)
 - White crystals found when T_{ann} < 200°C upon exposure to air \rightarrow appear to be B(OH)₃
 - Outside of the crystals: boron structure remains stable when T_{ann} < 250°C but evolves above 250°C \rightarrow due to contamination? Due to oxidization?
 - Outside of the crystals: strong changes in spectrum after exposure to air \rightarrow formation of BO or BH compounds?
- Thin B layers (100 nm) (ENEA and VR) show a-B-like **spectra** but are generally thin and require further investigations


Deliverable: PWIE-SP B.B4.T-T005-D004


Status: completed

Facilities: -

Linked WP or TSVV: -

250°C

300°C

400°C

450°C

500°C

2000

C. Pardanaud, C. Martin, G. Giacommetti

SP B.4: Ion-beam and structural analyses of B reference samples (NCSRD)

Analysis of B+D $_2$ (10%) 5 μ m thick layers on W annealed in the temperature range 50–500 °C

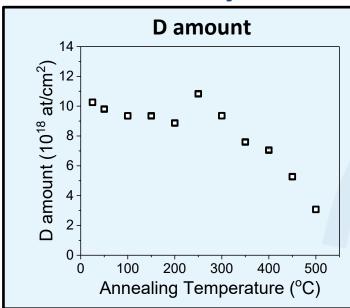
Task and questions to be addressed

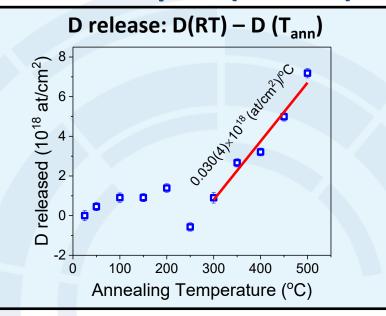
- Determination of deuterium release
- Determination of structural and surface modifications

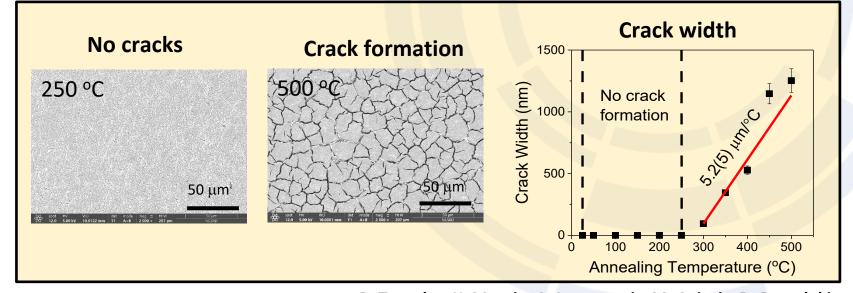
Methodology

d beam RBS/NRA; XRD at grazing incidence;
 SEM/EDX analyses

Results


- D release increases almost linearly with T_{ann} for $T_{ann} \ge 300$ °C
- Crack formation for T_{ann} ≥ 300°C; crack width increases almost linearly with T_{ann}


Deliverable: PWIE-SP B.B4.T-T005-D010


Status: completed

Facilities: Accelerator 3 days

Linked WP or TSVV: -

P. Tsavalas, K. Mergia, A. Lagoyannis, M. Axiotis, D. Papadakis

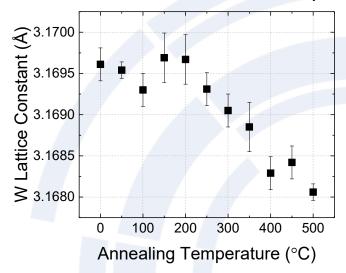
SP B.4: Ion-beam and structural analyses of B reference samples (NCSRD)

W lattice constant (probed depth ~2 μm)

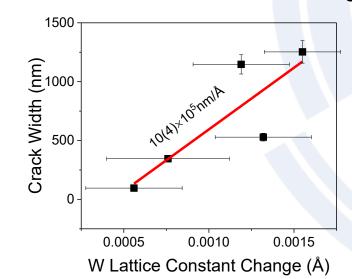
Task and questions to be addressed

- The cause for crack formation (see previous slide)
- Correlation between D release and crack formation

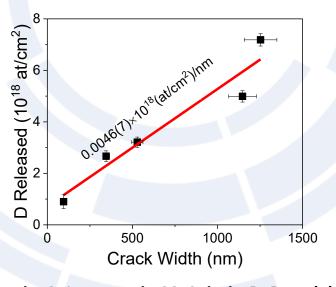
Results


- W lattice constant decreases almost linearly with T_{ann} for $T_{ann} \ge 250$ °C
- Almost linear correlation between crack width and W lattice constant change
- Almost linear correlation between D release and crack width
- The W substrate is strained during B deposition (unstrained W lattice constant 3.1648 Å) → changes the strain at the interface with the B layer leading to crack formation?
- Crack formation may contribute to D release

Deliverable: PWIE-SP B.B4.T-T005-D010


Status: completed

Facilities: Accelerator 3 days


Linked WP or TSVV: -

Crack width vs W lattice constant change

D release vs crack width

P. Tsavalas, K. Mergia, A. Lagoyannis, M. Axiotis, D. Papadakis

SP B.4: XPS and TDS analyses of B and W reference samples (JSI)

Eurofer

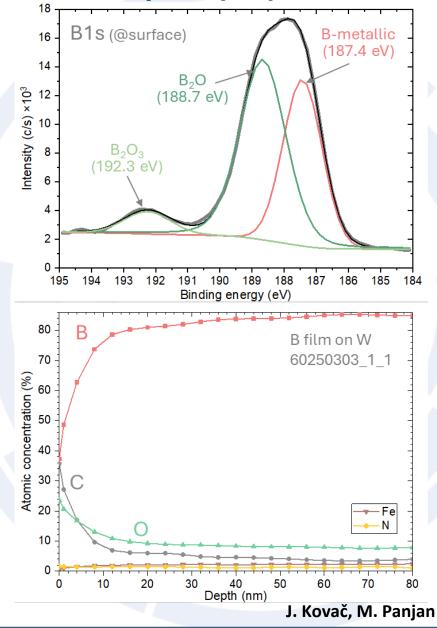
Task and questions to be addressed

■ XPS analysis of B films on W and Eurofer, film thickness ~5 µm

Approach

■ XPS spectrometer (Genesis, Physical Electronics). Surface analysis 0.1 mm in diameter and depth of ~4 nm. Depth profiles performed by sputtering with Ar-ion beam of 3 keV over 3×3 mm² (~2.0 nm/min)

Results


- Both samples show similar composition and depth profiles
- Surface analysis:
 - 37.7 at.% of B, 35.5 at.% of C and 22.5 at.% of O, 1.9 at.% of N and 1.0 at.% of Fe.
 Traces of Na, Si, In were detected
 - B 1s spectrum shows three chemical states metallic phase (187.4 eV), B_2O (188.7 eV) and B_2O_3 (192.3 eV)
- *Depth profiles*: Uniform distribution of elements B (85 at.%), O (8 at.%), C (5 at.%), Fe (2 at.% metallic), Cr (1 at.%, metallic) and N (1 at.%). B 1s peak shows dominance of metallic state (187.9 eV), there is only small presence of B₂O₃ phase in the film (2% of total B).

Deliverable: PWIE-SP B.B4.T-T005-D009

Status: completed

Facilities: -

Linked WP or TSVV: -

SP B.4: XPS and TDS analyses of B and W reference samples (JSI)

Task and questions to be addressed

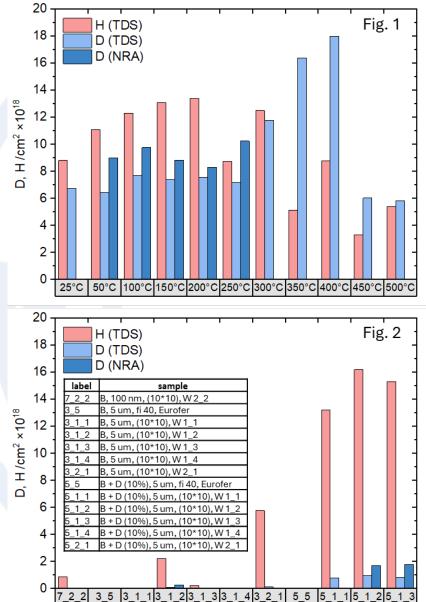
■ TDS should provide complementary data on bonding of D in 5 µm thick B films

Approach

 Samples with various amount of D in B films (altogether 24 samples) analysed by TDS and 9 of them by NRA (i.e. before TDS measurement)

Results

- Key findings are temperature of max D₂/HD release (not presented here)
- Total released amount expressed as D/cm² and H/cm² for comparison
 - Fig. 1: amount of H, D for 11 differently preheated samples
 - **Fig. 2**: amount of H, D of 13 samples with B deposited at various deposition parameters (see inner table)
- The amount of D by TDS matches well to NRA results. Sensitivity of quadruple mass spectrometer is lower at weak signals which is not applied in the evaluation
- The amount of H is rather high but its origin is not well traced to deposition parameters

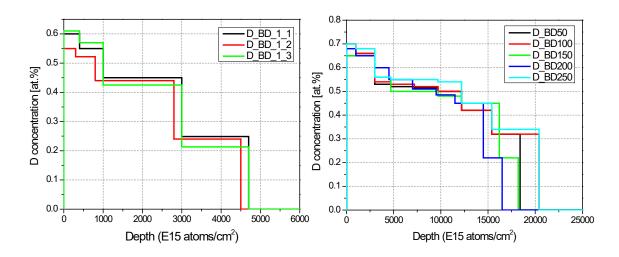

Deliverable: PWIE-SP B.B4.T-T005-D009

Status: completed

Facilities: -

Linked WP or TSVV: -

V. Nemanič, M. Žumer, A. Kurtishaj-Hamzaj



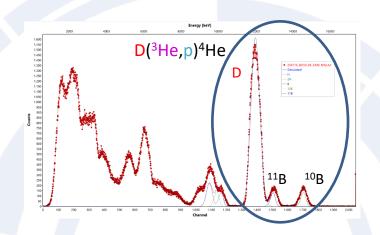
SP B.3: Micro- and macroscale composition of layers on selected samples (JSI)

Task scope re-directed to deal with the analysis of B reference samples

- Deuterated boron samples* from Romania measured in the INSIBA chamber
- A 3 He $^{2+}$ beam with an energy of 3.3 MeV was used. Two detectors were employed to simultaneously collect the RBS (150°) and NRA (135°) signals. The accumulated dose for each measurement was 3.4 μ C.
- Deuterium depth profiles:

250 200 150 106 50

Sample holder with 5 of 9 samples analysed


Deliverable: PWIE-SP B.B3.T-T005-D006

Status: **completed**

Facilities: Accelerator 7 days

Linked WP or TSVV: -

*samples were also analysed by TDS by Vincenc Nemanič

 10 B(3 He, $p_{1,3}$) 12 C 11 B(3 He, $p_{0,1,2,3}$) 13 C 11 B(3 He, d_{0}) 12 C

diation Physics and Chemistry 226 (2025) 11229

Contents lists available at ScienceDirect

Radiation Physics and Chemistry

journal homepage: www.elsevier.com/locate/radphyschem

Study of $^{\rm nat}{\rm B}(^3{\rm He},\,{\rm p})$ reactions cross sections using a novel setup for $^3{\rm He}\text{-NRA}$ micro analyses

Toni Dunatov^a, Georgios Provatas^{a,*}, Stjepko Fazinić^a, Varvara Foteinou^b, Fotios Maragkos^b, Karla Ivanković Nizić^a, Maja Mičetić^a

Ruder Bošković Institute, Zagreb, Croatia RUBION. Zentrale Einrichtung für Janenstrahlen und Radionuklide. Ruhr-Universität Bochum. Germa

S. Markelj, E. Punzón Quijorna

SP B.4: Ion-beam analyses of selected B and W reference samples (IST)

Task and questions to be addressed

 Carry out ion-beam analyses for selected B reference samples to determine their surface composition

Table 1. B coatings deposited on W produced at INFLPR and at ENEA for IBA.

#	Reference	Nominal comp.	Nominal thick.	Substrate	Producer
1	60250303_2_3	В	5 μ m	W	INFLPR
2	60250305_2_3	B+D	5 μ m	W	INFLPR
3	60250227_2_1	В	100 <u>nm</u>	W	INFLPR
4	Bo76B	В	100 nm	W	ENEA

Approach

- Elemental composition of thin B samples films (~100 nm):
 - RBS analysis / 1000 keV ⁴He⁺ ion beams to enhance energy loss
 - NRA analysis / 11 B(p, α_1)2 α , $E_r \approx 650$ keV 700 keV 1 H+ ion beams
- Elemental composition of thick B samples: EBS + NRA analysis

Results

- Easy measurement of composition and thickness of B layers
- Evidence of fast oxidation of B layers over time at room temperature

Deliverable: PWIE-SP B.B4.T-T005-D008

Status: completed

Facilities: Accelerator 5 days

Linked WP or TSVV: -

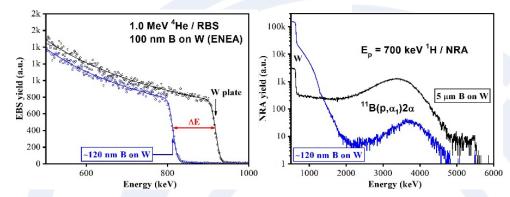


Fig. 1 - Analysis of thickness and composition of thin B films

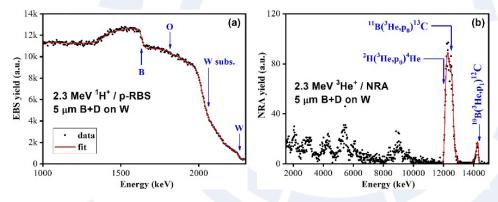


Fig. 2 - Analysis of thickness and composition of thicker B films

Future work / collaboration between IST and IAP

Title of a PhD work plan:

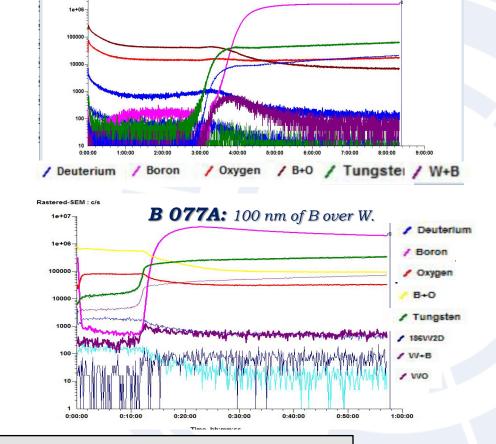
Oxidation behaviour of boron coatings for nuclear fusion applications (collaboration with INFLPR)

R. Mateus, N. Catarino, R. Silva

SP B.3: Depth profiles and surface morphology of selected B or W layers (CIEMAT) SP B.4: SEM and SIMS analyses of selected B and W reference samples (CIEMAT)

Boron samples analyzed as received as well as 1 and 3 months after storage in air

Task and questions to be addressed


 Determine the composition and properties of the difference B layers from other labs (ENEA, IAP,...)

Approach

SIMS and SEM if required

Results

- Analysis completed, data interpretation ongoing
- Strange B signal behavior: on some samples, pure B only appears when the W substrate is reached while the layer shows
 B+O & W+B signals
- All samples have similar O levels oxidized during shipping?
 - ✓ Pure B sheets purchased as standards to disentangle

W 2 4: 5 um of B over W.

Deliverable: PWIE-SP B.B3.T-T005-D001

Status: ongoing (to be completed in the end of 2025)

Facilities: -

Linked WP or TSVV: -

Deliverable: PWIE-SP B.B4.T-T005-D005

Status: ongoing (to be completed in the end of 2025)

Facilities: -

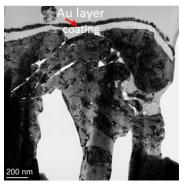
Linked WP or TSVV: -

D.Alegre, G. Delgado, M. González-Viada

SP B.4: Microscopy investigations of selected B and W reference samples (IPPLM)

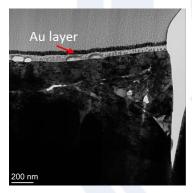
General Information

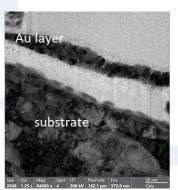
Examined samples:

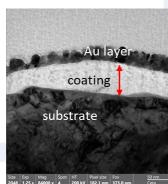

- Reference W coatings (IAP): (i) W-N-O deposit on Mo, (ii) W-O deposit on Mo, and (iii) W-N deposit on Mo
- Reference B layers 100 nm (IAP)

Approach

- On each sample, microscopic surface observations, EDX analysis, and profilometry carried out
- STEM/TEM studies were applied to examine their internal structure


Results – reference B layer





STEM HAADF images of a thin foil cut from the sample

 Heavily damaged area near the surface, cracks and spalling visible

TEM images of the coating.

The coating is amorphous and has a thickness of ~70 nm

Deliverable: PWIE-SP B.B4.T-T005-D007

Status: completed

Facilities: -

Linked WP or TSVV: -

E. Fortuna-Zaleśna

SP B.4: Ion-beam analyses of selected B reference samples (VR)

Investigation of boron layers prepared by different groups (round robin exercise).

Comparative analysis/characterization of boron layer preparation by different groups

- Preparation (sputter deposition), characterization (IBA), and distribution of boron layers for further characterization.
- IBA characterization of other layers received (POLIMI and IAP).

Approach

- Boron on W (polished disks) and Si(100) substrates (substrate effect).
- 1000°C annealing before deposition.
- Sputter deposition in Ar of boron layers for 4 hours (100 nm from internal QCM).

Results

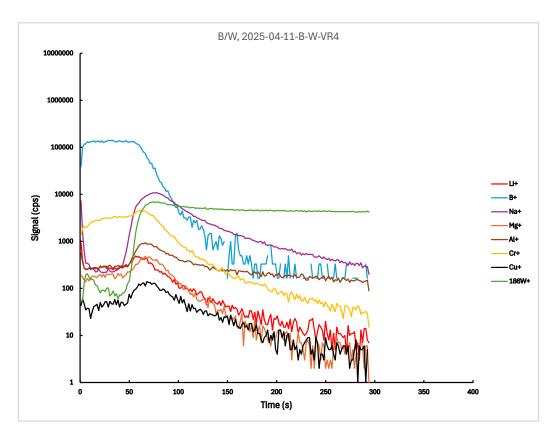
- Presence of H, O, Ar, C, N (< 7 at.%), and Cr+Fe (<0.5at.%) observed in agreement with SIMS (VTT).
- Higher concentration of oxygen in the B/W interfacial region (both UU-VR and POLIMI).
- No significant change in composition from longer periods of air exposure.

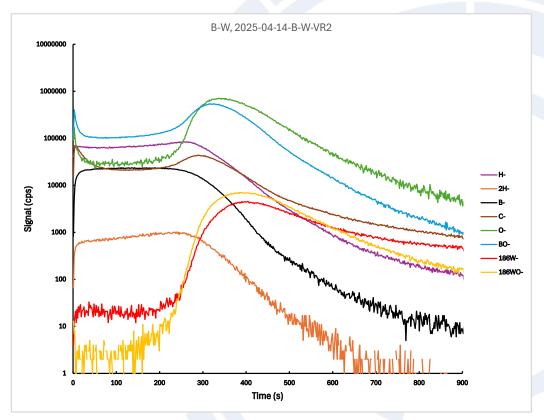
Deliverable: PWIE-SP B.B4.T-T005-D012

Status: completed

Facilities: Accelerator 3 days

Linked WP or TSVV: ENR-MAT.02.VR




E. Pitthan, P. Petersson, D. Gautam, M. Rubel, D. Primetzhofer

SP B.4: SIMS analyses of selected B reference samples (VTT)

First application of the new VTT TOF-SIMS device for extracting depth profiles of B reference layers – studying ageing of the samples

- Deliverable: PWIE-SP B.B4.T-T005-D013
- Status: completed
- Facilities: Accelerator 1 day

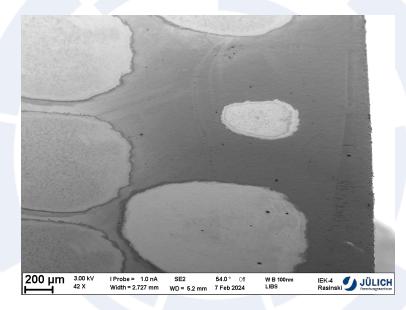
Linked WP or TSVV: -

- TOF-SIMS measurements using positive and negative secondary ions for VT samples
- Layers contain several impurities
- Notable O concentrations on the samples and the interface peak becomes flat and strong when repeating the measurements after 2 months → oxidization of the samples with time

A. Hakola, J. Likonen

SP B.4: LIBS and SEM analyses of selected B reference samples (FZJ)

Task and questions to be addressed


Characterization of B layers after manufacturing and after PSI-2 exposures

Approach

- Each sample used in PSI-2 experiment within SP B.1 D003 was characterized by SEM and FIB. Selected samples will be investigated by LIBS by the end of the year.
- Considering continuation of B layer exposures in PSI-2 the surface analysis will be also continued

Results

- First LIBS measurements for B layers on W substrates:
 - Laser parameter study, good signals
 - ~ 60...80 nm depth resolution
 - Further optimize the setup to improve the detection limit and try to get absolute B quantification
- FIB analysis enabled to assess the erosion rate of B layers in PSI-2 D₂ plasma exposures

LIBS measurement spots on a B-W sample

Deliverable: PWIE-SP B.B4.T-T005-D006

Status: ongoing (to be finished by the end of 2025)

Facilities: -

Linked WP or TSVV: SP B.1

R. Yi, M. Rasinski

SP B.5 - Production of metallic dust in toroidal devices

SP B.5 deliverables 2025

Activity	Deliverable ID(s)	Title Title
SP B.5	D001	Database of the characteristics of produced W dust particles in the presence of different gas mixtures and
	1.5 PM	comparison with data from tokamaks (IAP)
SP B.5	D002	Database of the characteristics of produced B dust particles in the presence of different gas mixtures and
	1.5 PM	comparison with data from tokamaks (IAP)
SP B.5	D003	Surface analyses of dust generated on AUG, WEST, and W7-X and comparison to the data originating from
	2 PM	laboratory experiments (MPG)
SP B.5	D004	Report on surface properties of boron dust on plasma-facing components and assessment for heat balance for
	2 PM	boron powder injected into AUG plasmas (VR)
SP B.5	D005	Ion-beam analyses of dust samples originating from AUG, WEST, and W7-X (RBI)
	4 PM	
SP B.5	D006	Microscopy and LIBS analyses of dust samples originating from AUG, WEST, and W7-X (FZJ)
	2 PM	
SP B.5	D007	Ion-beam analyses of B dust originating from AUG, WEST, and W7-X (VR)
	4 PM	
SP B.5	D008	Microscopy analyses of B dust originating from WEST and W7-X (IPPLM)
	4 PM	
SP B.5	D009	Report on the properties, composition, and amounts of dust produced on WEST during the Phase 1 operations
	1 PM	(CEA)
SP B.5	D010	Fracture and strentgh properties of B and W reference layers on W (UKAEA)
	2 PM	

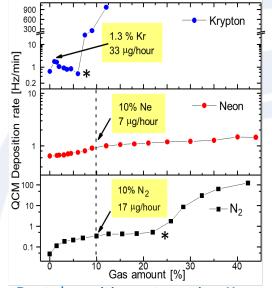
SP B.5: Production of W dust in toroidal devices (IAP)

- Assessing the amount of dust that will be produced in toroidal devices.
- **TASK:** W dust generation by MSGA in the presence of gases relevant for radiative cooling:
 - i) Kr, Ne (dust synthesis rate, morphology, chemical composition, and D₂ retention); **DONE**
 - ii) Exploratory parametric study regarding the synthesis of dust in H_2/N_2 discharges.
 - Question: Is dust produced in N₂/H₂? YES.
 - Evaluation of the dust production rate and properties (morphology, chemical composition) upon the $\rm N_2$ content in the discharge. **DONE**

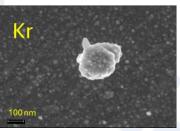
Approach

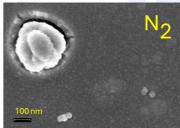
- Deposition rates were measured by QCM, increasing the amount of gas up to 40%;
- A transition to high rates appears for N₂ (25 %) and Kr (5%); not for Ne up to 40%;
- For sample deposition were selected 10 % of N₂ and Ne, and 1.3 % of Kr;
- The collected dust was investigated by SEM, XPS, and TDS.

Results:

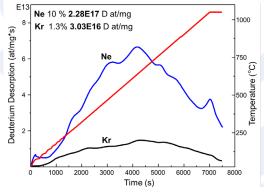

- Kr is most efficient in producing W dust;
- The collected dust contains NPs (up to 20 nm) and larger agglomerated particles;
- It appears that Ne deposited dust retains more D₂ compared to the Kr case;
- XPS results prove the presence of WN in the dust samples deposited with N₂.

Deliverable: PWIE-SP B.5.T-T003-D001


Status: completed


Facilities: -

Linked WP or TSVV: TSVV 7



Dust deposition rates using Kr, Ne, and N_2 in the discharges.

SEM images of samples deposited in Kr/D_2 and N_2/D_2 .

D₂ retention in Ne and Kr deposited dust samples (TDS)

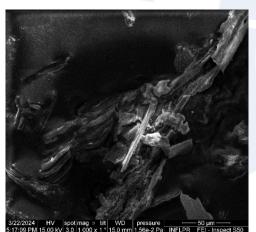
T. Acsente, G. Dinescu

SP B.5: Production of B dust in toroidal devices (IAP)

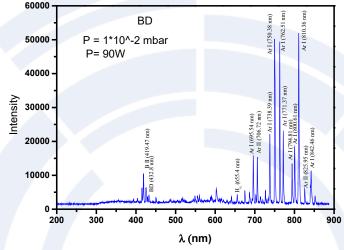
 Database of the characteristics of produced B dust particles in the presence of different gas mixtures and comparison with data from tokamaks

Task and questions to be addressed

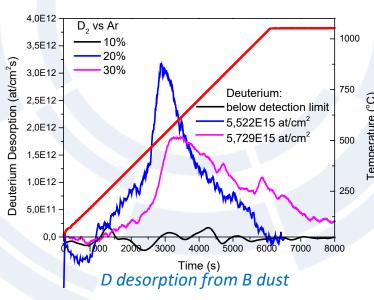
Production and analysis of B dust/ particles


Approach

- Vacuum chamber, working pressure: 1×10⁻² mbar
- B target (1 inch)
- W tip (1 mm)
- DC source
- Ar/D₂ atmosphere


Results

- SEM measurements: particle diameters
- OES measurements: peak identification
- TDS measurements: desorption temperature and D amount



OES imaging of B dust using W disharges

C. P. Lungu, C. Staicu, P. Dinca, B. Solomonea

Deliverable: PWIE-SP B.5.T-T003-D002

Status: completed

Facilities: -

Linked WP or TSVV: TSVV 7

SP B.5: Boron-dust interactions in fusion plasmas (VR)

Routine boronization in an all-W ITER \rightarrow important to understand the survivability of boron dust (in situ from layer delamination or artificially injected as powder) \rightarrow strong dependence on plasma-surface interactions and intrinsic boron properties that are external input to dust dynamic codes

Boron properties central for dust survivability studies

Electron-boron interactions, ion-boron interactions, intrinsic thermal properties, intrinsic optical properties

Electron-boron interactions (0-5 keV electron energies)

- Secondary electron emission. Analytical description of the SEE yield (incident energy / angular dependence) and mean electron exit energy based on reliable experimental results from Bronshtein & Fraiman.
- **Electron backscattering.** Analytical description of the EBS yield (incident energy / angular dependence) and mean electron exit energy based on the results of dedicated **Geant4 Monte Carlo simulations**.

Ion-boron interactions (0-5 keV H,D,T,3He,4He,B,Ne,W atom energies)

- Physical sputtering. Analytical description of the sputtering yield (incident energy / angular dependence) based on the results of SDTrimSP6 Monte Carlo simulations by the ERO team.
- **Ion backscattering.** Analytical description of the particle and energy reflection coefficients (incident energy / angular dependence) based on the results of **SDTrimSP6 Monte Carlo simulations** by the ERO team.
- Potential electron emission. Analytical description of the PEE yield (incident energy and angle independent) and mean electron exit energy based on established semi-empirical formulas in absence of dedicated experiments.
- Kinetic electron emission. Generally negligible.

Deliverable: PWIE-SP B.5.T-T003-D004

Status: completed

Facilities: -

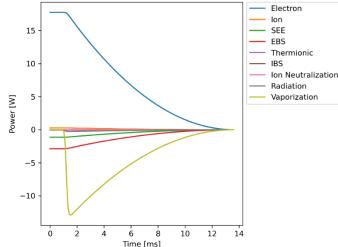
Linked WP or TSVV: WPTE

P. Tolias, S. Ratynskaia, L. Boccaccia, T. Rizzi

Many thanks to Dmitry Matveev and the ERO team for sharing their SDTrimSP6 boron data!

SP B.5: Boron-dust interactions in fusion plasmas (VR)

Intrinsic thermal properties


- **Evaporative cooling.** Analytical description of the vapor pressure based on *experimental results*.
- Thermionic cooling. Analytical description based on the *Richardson-Dushman formula*.
- Heat capacity and latent heats. Analytical description based on experimental results.

Intrinsic optical properties

- **Extinction coefficient**. Construction of an *extended dataset* within 0.01 eV 30 keV for amorphous boron based on ellipsometry measurements, transmittance measurements and theoretical calculations.
- Refractive index. Calculation on the basis of the *Kramers-Kronig relations* and compliance with the f-sum rule and inertial-sum rule.
- Adhesive force. Utilization of the complex refractive index for calculation of the Hamaker coefficient on the basis of the Lifshitz theory of van der Waals forces.
- Radiative cooling. Utilization of the complex refractive index for calculation of the total hemispherical emissivity on the basis of the Mie scattering theory for spherical dust.

Extension of material library of the MIGRAINe dust transport code to boron

- MIGRAINe calculations of the different microphysics contributions to boron dust heating and cooling for a uniform 100 eV, 10^{19} m^{-3} deuterium plasma.
- Boron dust heating is dominated by electron collection, as expected.
- Boron dust cooling is dominated by vaporization with respectable contributions from secondary electron emission and electron backscattering.
- Difference from tungsten dust cooling that would have been dominated by vaporization and thermionic cooling.

P. Tolias, S. Ratynskaia, L. Boccaccia, T. Rizzi

Many thanks to Dmitry Matveev and the ERO team for sharing their SDTrimSP6 boron data!

Deliverable: PWIE-SP B.5.T-T003-D004

Status: completed

Facilities: -

Linked WP or TSVV: WPTE

SP B.5: Fracture and strength properties of B and W reference layers on W (UKAEA)

The aim is to use micromechanical testing techniques (bending of FIB-produced microcantilevers in a nanoindenter) to determine interfacial and bulk mechanical properties (strength and toughness) of reference B/W layers on W substrates.

Task and questions to be addressed

- Information about mechanical properties of reference layers and layer-substrate interface is to be used to improve the fundamental understanding of the propensity of deposit layers relevant for full-W device (i.e., B, W and mixed) for dust generation, and provide materials data for modeling of dust formation due to deposits fracture and exfoliation.
- Focus on a dependence of mechanical properties on thickness, consistency and composition of layers, and surface state of substrates.

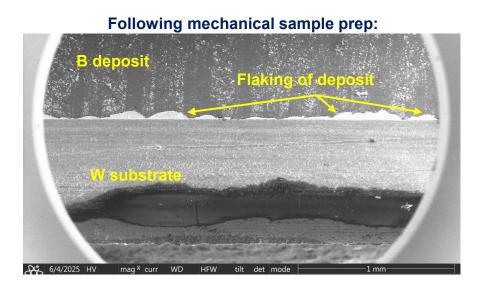
Approach

- Task uses instruments and facilities in Materials Research Facility (UKAEA):
 - TESCAN AMBER X dual-column SEM-plasma FIB (Xe) for sample preparation
 - FEI Helios NanoLab 600i dual-column SEM-FIB (Ga) for manufacturing of microcantilevers using FIB micromachining
 - Agilent G200 nanoindenter for bending/fracture testing of microcantilevers
- Batch of samples produced by IAP, received at UKAEA, 10×10 × 1 mm³ W substrates with 5 μm thick B layer

Deliverable: PWIE-SP B.5.T-T003-D010

Status: ongoing (to be completed in the end of 2025)

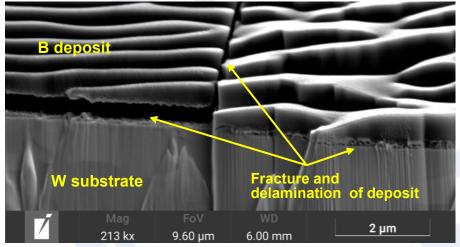
Facilities: **MRF (UKAEA)**Linked WP or TSVV: -


Y. Zayachuk

SP B.5: Fracture and strength properties of B and W reference layers on W (UKAEA)

Results

- The overall methodology seems to be unworkable when applied to available B-W samples due to the difficulty in sample preparation.
 - Mechanical sample prep (cutting and grinding) leads to delamination of the B deposit.
 - Plasma FIB cutting of the sample's edge (whereby large area of material can be removed and surface polished, up to ~mm in width, without any mechanical action) was attempted as a replacement for mechanical preparation.
 - Even in the case of pFIB sample preparation the cracks running along the interface between B layer and W substrate were found, making cantilever testing impossible.
- These observations indicate **fragility of thick B deposits** → their fracture and subsequent dust generation appear likely.



Deliverable: PWIE-SP B.5.T-T003-D010

Status: ongoing (to be completed in the end of 2025)

Facilities: **MRF (UKAEA)**Linked WP or TSVV: -

Following plasma FIB sample prep:

SP B.5: Surface analysis of dust generated on AUG (MPG)

General Information

Obtain statistical data of dust particles collected in AUG

Task and questions to be addressed

■ Investigate (including ion-beam analyses, SEM, EDX) the properties of dust samples observed on AUG, WEST, and W7-X and validate proposed dust production mechanisms against laboratory experiments

Approach

- Collecting dust on Si collector plates mounted in special collector boxes (AUG)
- SEM measurements assisted by EDX: automated images collected, particle detection in the images, and recording EDX spectra for chemical anlyses of the individual articles

Results

- Automated recording system set back into operation
- Data taken from collector plates of the last campaigns

Deliverable: PWIE-SP B.5.T-T003-D003

Status: completed

Facilities: -

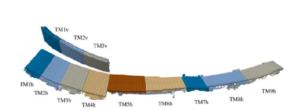
Linked WP or TSVV: WPTE, SP D

M. Balden et al.

SP B.5: Dust collection using sticky probes on W7-X (MPG)

General Information

Several dust samples collected from W7-X divertor units after OP2.3 using sticky probes and sent for further analyses


Divertor unit is denoted with

DU[number of module][upper or lower]

8 = upper

9 = lower

e.g. DU18 = divertor unit, module 1, upper module

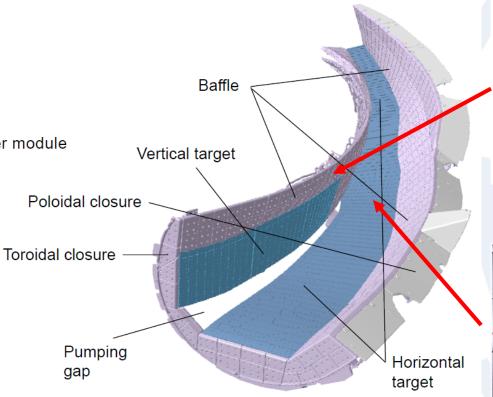


Photo credit: M. Endler Inspection after OP2.3

Deliverable: PWIE-SP B.5.T-T003-D003

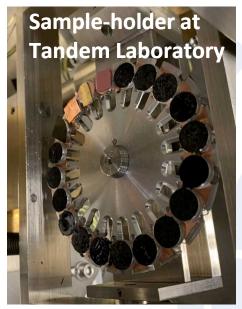
Status: completed

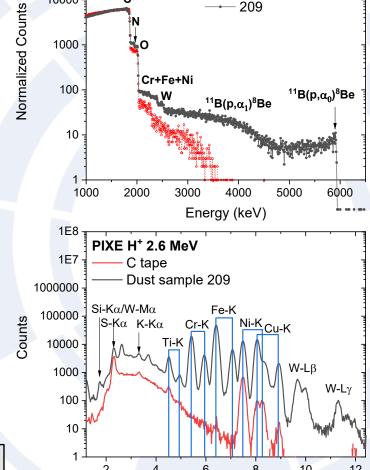
Facilities: -

Linked WP or TSVV: WPW7X

SP B.5: Ion-beam analyses of B dust originating from W7-X (VR)

IBA of dust samples from W7-X


Identify chemical composition forming the dust and tracing their source on the plasma-facing components


Approach

- 39 samples received collected from divertor units from all modules.
- Ion beam analysis performed: EBS+NRA+PIXE and ToF-ERDA.

Results

- Example of data for EBS/NRA + PIXE from sample 209:
 - Sample from Module M1, Divertor (DU18)
 - Identified the presence of B, Fe, Cr, and W in sample. Ti, Ni, and Cu also present in tape
 - Detailed analysis of data is in progress
 - μ-beam 2D elemental maps of selected isolated flakes are planned

10000

EBS/NRA H⁺ 2.6 MeV

C tape

— 209

E. Pitthan, P. Petersson, M. Rubel, D. Primetzhofer

Energy (keV)

Deliverable: PWIE-SP B.5.T-T003-D007

Status: ongoing (to be finished in the end of 2025)

Facilities: Accelerator 3 days Linked WP or TSVV: WPW7X

SP B.5: Ion-beam analyses of dust samples originating from W7-X (RBI)

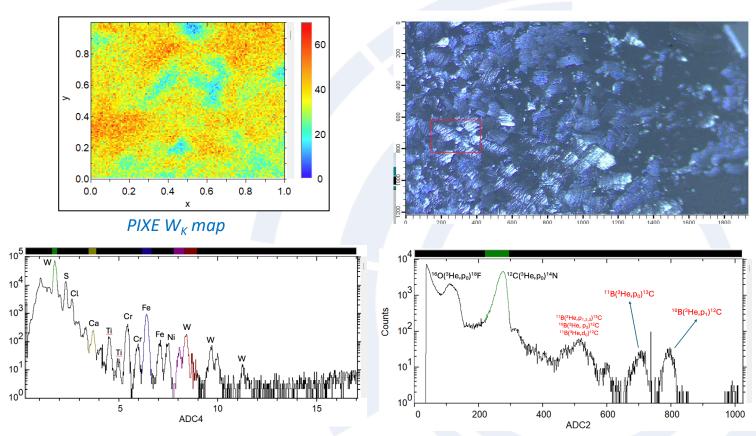
15 dust samples received from W7-X

Task and questions to be addressed

 Determine concentration of light elements and metals in dust samples using IBA techniques

Approach

 NRA, PIXE and RBS measurements with focused ion beam of 3 MeV ³He to measure light and heavier elements on the samples


Results

- All measurements completed
- Analysis of the PIXE, NRA and RBS spectra ongoing
- Clusters of W, Fe, Cr, Ti found along with boron
- Two samples contained copper droplets without boron

Status: ongoing (to be finished in the end of 2025)

Facilities: **Accelerator 5 days** Linked WP or TSVV: **WPW7X**

PIXE and NRA spectra of sample #193 (Module 1)

G. Provatas, S. Gouesmia, I. Bogdanović Radović

SP B.5: Microscopy and LIBS analyses of dust samples originating from W7-X (FZJ)

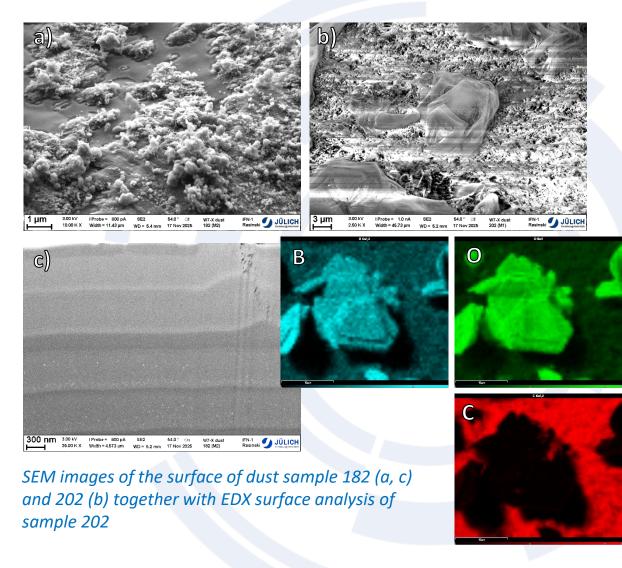
Task and questions to be addressed

 Investigate the structure and composition of selected dust samples from W7X

Approach

- SEM investigation combined with EDX chemical composition analysis on the surface and FIB prepared cross-sections
 - Delivered samples: 195, 200, 202 (M1); 172, 181, 182 (M2); 143, 153, 158 (M3); 112 (M4); 119, 132, 141 (M5)
 - Analysed samples 202 (M1), 182 (M2), 158 (M3), 119, 141 (M5)

Results


- Each sample consist of a thick deposit (thickness 20-150 μm)
- Deposits consist of C, O and B with trace elements of Si, Fe, Cr, Cu,
 Ca, Cl (with concentrations below 0.1 at. %)
- Deposits have a dense structure with visible layers resulting from exposure and grow conditions during W7-X campaign.

Deliverable: PWIE-SP B.5.T-T003-D006

Status: ongoing (to be finished in the end of 2025)

Facilities: -

Linked WP or TSVV: WPW7X

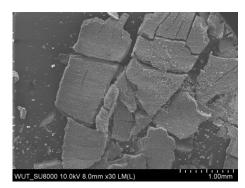
M. Rasinski, T. Dittmar

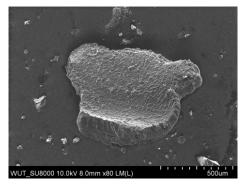
SP B.5: Microscopy analyses of dust samples originating from W7-X (IPPLM)

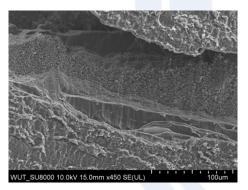
General Information

Examined samples:

17 samples from W7-X shipped for analyses, up to now results reported from 2 samples (labelled 194 and 206) in the baffle region


Task and questions to be addressed


General objective: Determination of the composition, morphology, and, potentially, thickness of the collected co-deposited layers.


Approach

- On each sample, microscopic surface observations of co-deposited layers will be performed
- FIB cross-sections will be cut on selected samples to determine (i) structure and (ii) thickness of the examined flakes
- Optical profilometry to assess the thickness of the flakes

Sample 206 features relatively large (mmsized) and thick flakes of deposits with varied morphology (granular, scaly, tilelike). Carbon is the dominant element.

Deliverable: PWIE-SP B.5.T-T003-D008

Status: ongoing (to be finished in the end of 2025)

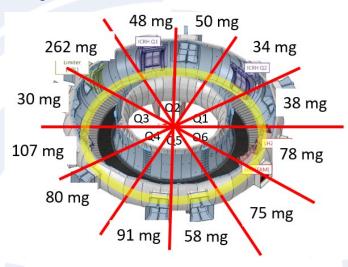
Facilities: -

Linked WP or TSVV: WPW7X

SEM images of flakes, sample 206 – images at different maginifications

- Thickness of some flakes significantly exceeds 100 μm
- Layered structure visible on the edges of the flakes or at the cracks
- Iron-rich particles/clusters on the surface of the deposited flakes

E. Fortuna-Zaleśna


SP B.5: Report on the properties, composition, and amounts of dust produced on WEST during the Phase 2 operations (CEA)

Work carried out within SAE and reported in PWIE

Task and questions to be addressed

 Use WEST and its tungsten plasma facing materials to assess dust characteristics

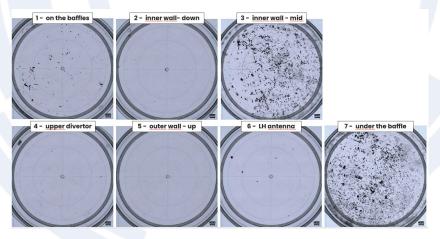
2 mg 10cmx10cm 1 mg 72 mg 1 mg 1 mg 0,6 mg

Approach

- In-situ dust collection at various poloidal locations (2024) and toroidal locations (2025) done
- Weight measurements done
- Statistical analysis of particles size using image treatment done
- SEM/EDX analyses to identify chemical composition ongoing

Results

- Most of the dust was found at the bottom of the VV
- Dust evenly distributed across the 12 sectors
- Particles of W coating, Cu and glass



Status: completed

Facilities: -

Linked WP or TSVV: WPTE, WPSAE

M. Diez, A. Flament, C. Martin, et al.

SP B.6 – B deposition on diagnostic mirrors

SP B.6 deliverables 2025

Activity	Deliverable ID(s)	Title
SP B.6	D001	Preparation and post characterization of exposed Mo mirrors (FZJ)
	3 PM	
SP B.6	D002	Handling and exposure of Mo mirrors using AUG LBO-manipulator during boronizations (MPG)
	1 PM	
SP B.6	D003	Handling and exposure of Mo mirrors using W7-X multipurpose manipulator during boronizations
	1 PM	(MPG)
SP B.6	D004	Changes in the optical properties of the exposed Mo mirrors (EPFL)
	3 PM	

SP B.6: Preparation and post characterization of exposed Mo mirrors (FZJ)

Task and questions to be addressed

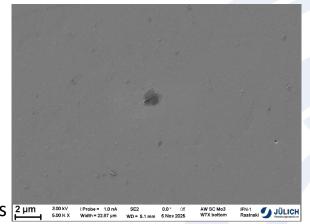
 Characterize diagnostics mirrors after exposure to boronizations on W7-X and AUG

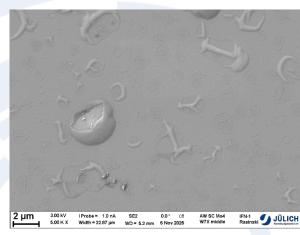
Approach

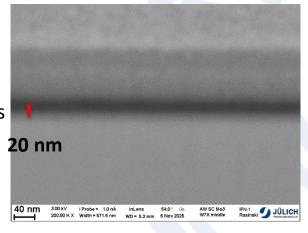
- 4 Mo mirror samples prepared, characterized and exposed during boronizations on W7-X (1) and AUG (3)
- Post-characterization including reflectivity, weight loss, surface roughness ^{2μm}/_{6∞κχ} and photography finished
- Post-characterization including SIMS and SEM/FIB finished

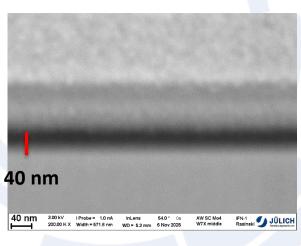
Results

Different thickness measured for B layers depending on exposure conditions


- at LBO location
- boronization, electrode on (2)
- boronization + plasma (3)
- boronization, electrode off (4)


Deliverable: PWIE-SP B.6.T-T002-D001


Status: completed


Facilities: -

Linked WP or TSVV: WPTE, WPW7X

SEM surface image (top row) and FIB cross-section (bottom row) of Mo SC mirror exposed in AUG to conditions 3 (left) and 4 (right)

A. Litnovsky et al.

SP B.6: Exposure of Mo mirrors on AUG and W7-X (MPG)

Task and questions to be addressed

■ Handling and exposure of Mo mirrors using AUG LBO-manipulator (D002) and the MPM of W7-X (D003) during boronizations

Results

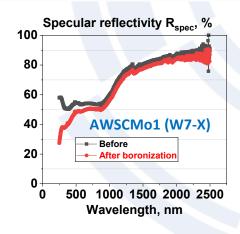
• All Mo samples exposed successfully and sent for further analyses

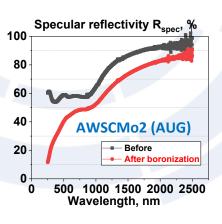
Mirror	Facility/Location	Description	Principal results
AWSCMo1	W7-X MPM manipulator	At the first wall, boronization only	Reflectivity $R_{tot}drop$ to 30% in the UV, mass increase 30 μg
AWSCMo2	AUG LBO manipulator	LBO location, boronization, electrode on	Reflectivity $R_{tot}drop$ to 14% in the UV, mass increase 60 μg
AWSCMo3	AUG LBO manipulator	At LBO location, boronization + plasma	Reflectivity $R_{tot}drop$ to 4% (!) in the UV, mass increase 203 μg
AWSCMo4	AUG LBO manipulator	At LBO location, boronization, electrode off	Reflectivity R_{tot} drop to 38% (but!) in the UV, mass increase 500 (!) µg, Roughness R_a ~ 17%

Deliverable: PWIE-SP B.6.T-T002-D002

Status: completed

Facilities: -


Linked WP or TSVV: WPTE


Deliverable: PWIE-SP B.6.T-T002-D003

Status: completed

Facilities: -

Linked WP or TSVV: WPW7X

V. Rohde, M. Balden, C.P. Dhard

SP B.6: Changes in the optical properties of the exposed Mo mirrors (EPFL)

Samples received at Uni Basel (10.11.25). Removal of boron will start after the characterization results (FZJ) are sent to Uni Basel.

Deliverable: PWIE-SP B.6.T-T002-D004

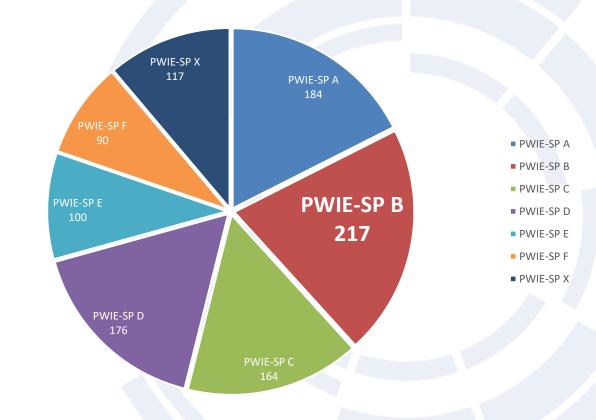
Status: delayed

Facilities: -

Linked WP or TSVV: WPTE, WPW7X

L. Marot

Concluding remarks


- Generally the work has progressed steadily since the kick-off meeting
 - ✓ Several smaller, thematic meetings organized after the Prague meeting in March (on dust, mirrors, and sample analyses) to agree on the details
 - ✓ Needs for W and B samples updated in July before the holidays and task descriptions adjusted accordingly to ensure completion of the activities as much as possible in 2025
- On SP B.1 work on W samples could finally be pursued in addition to which several B samples have been exposed on the contributing linear machines and in laboratory setups
 - ✓ Many exposures have, however, resulted in large damages and surface modifications → more experiments with gentler parameters and/or different sample specifications required
- WEST analyses formed the main part of activities under SP B.2 and SP B.3 but now new samples also available from AUG
 - ✓ AUG (follow-up) analyses will be largely carried out in 2026
 - ✓ WEST analyses will still be an integral part of the work programme in 2026-2027, flavored by individual samples from W7-X
- Reference coatings (SP B.4) largely focused on B layers in 2025 and this trend expected to continue in 2026-2027
 - ✓ Several contributions considered for PSI, including an "overview" of the programme by A. Hakola
- Dust and mirror activities (SP B.5 and SP B.6) to be stopped, any outstanding work relevant for contributing devices can be finished under the overall analysis activities
 - ✓ Situation may, however, change stay tuned for any updates to follow

WPPWIE SP B in 2026-2027 – status of preparations

- Selection made and resources in PM balanced between different subprojects and tasks to be carried out
 - ✓ SP B continues to have a large share of the resources (and related time on linear devices and accelerators) even though reductions have made compared to 2025 budget
- Detailed RU selection in line with what has been communicated privately to the task holders
 - ✓ Now it is time to start working with the usual activity sheets
- Everybody will be contacted within the next couple of weeks to agree on the detailed work plan for 2026-2027
 - ✓ NB1! We have 2-year programme
 - ✓ NB2! Task descriptions to be elaborated based on feedback obtained in this meeting

Distribution of Human Resources at 50% funding rate

