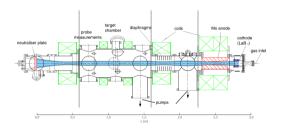
PSI-2 SIMULATIONS USING SOLPS-ITER WP PWIE SP D

20. November 2025 | D. Reiser |


Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste Management – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany

TO DO

Basic Steps to a Running System for PSI-2 Simulations

- Installation of Code Package
- Preparing Geometry Input
- Test Run B2.5 Standalone
- Preparing Visualization Tools
- Preparing Source Input Files
- Adjustment of Physics Parameters
- B2.5 Standalone Runs
- B2.5-Eirene Runs

TO DO (NOVEMBER 2024)

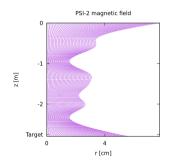
Basic Steps to a Running System for PSI-2 Simulations

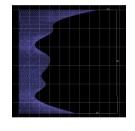
- Installation of Code Package ✓
- Preparing Geometry Input ✓
- Test Run B2.5 Standalone ✓
- Preparing Visualization Tools ✓
- Preparing Source Input Files!
- Adjustment of Physics Parameters !
- B2.5 Standalone Runs!
- B2.5-Eirene Runs!

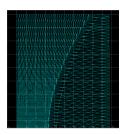
- At the moment Gateway is not available
- Next steps will follow the to-do list
- Goal for 2025: adjusting details and focus on molecular reactions

STATUS NOVEMBER 2025

PSI-2 Simulations


- Installation of Code Package ✓
- Preparing Geometry Input ✓
- Test Run B2.5 Standalone ✓
- Preparing Visualization Tools ✓
- Preparing Source Input Files!
- Adjustment of Physics Parameters!
- B2.5 Standalone Runs!
- B2.5-Eirene Runs!

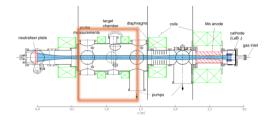

- The code package has now been implemented in our system
- All input files have been generated and the code is actually fully executable for PSI-2 geometry
- However, results could not be obtained because various factors lead to convergence problems


Details follow

Magnetic field and computational grids

PSI-2 magnetic field, Biot-Savart-Solver, Input for DivGeo, B2 conventions

This is done and available and can be changed in a flexible way!

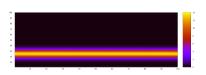


Plasma source

To avoid confusing model overload, the real source is approximated

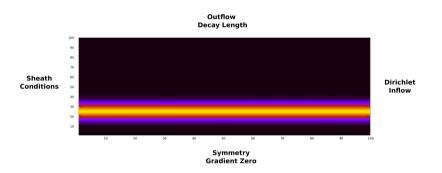
Match experimentally accessible region

Sheath boundary conditions at both ends



Volume sources and boundary conditions

Volume sources have been implemented according to needs


Try to start with homogeneous field in sub-domain to avoid Laval nozzle effects

Homogeneous Field and Inflow Scenario

Boundary Conditions for n, u_{\parallel} , T_e and T_i

Slide 7113

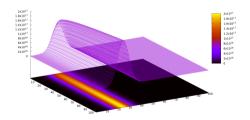
Starting guess for iteration

Starting SOLPS-ITER runs with profiles far from solution is extremely unstable. Pre-processing tools have been developed to provide something reasonable

■ Dirichlet Inflow

Profile for n, T_e and T_i , extrapolation for u_{\parallel}

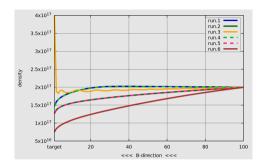
Symmetry Gradient Zero


$$\partial n/\partial x = 0$$

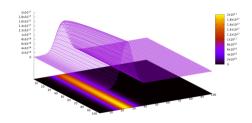
Outflow Decay Length

$$\partial n/\partial y = -n/\lambda$$

■ Sheath Conditions


$$u_{\parallel} = c_s$$
, extrapolation for n
Prescribe fluxes Γ_e and Γ_i

EXAMPLES FOR STARTING GUESSES


- run 1Reference with sheath bc and zero bias
- run 2
 No sheath bc
- run 3
 With sheath bc and bias = -2
- run 4
 With sheath bc and bias = +2
- run 5
 No sheath bc, T_e and T_i fixed
- run 6
 With sheath bc and 10 x neutrals

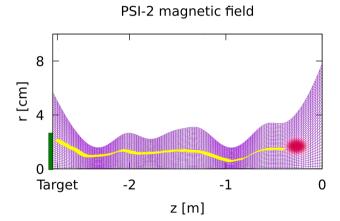
Densities vary only about a factor of 2, exception: run 2 with negative biasing!

GOALS

Simplified models are nice ...

... but SOLPS-ITER can take into account

- Electric fields
- Currents
- Multi-species model
- Stable sheath physics
- Detailed plasma chemistry
- Kinetic neutrals


These important points raise a problem for simplified approaches!

Current focus

Inflow conditions (profiles!) hard to realize in SOLPS-ITER

Return to source modelling

Code parameters

$$\begin{split} \frac{\partial n}{\partial t} + \boldsymbol{\nabla} \cdot (n \boldsymbol{V}) &= S_n \\ \frac{\partial}{\partial t} (m n \boldsymbol{V}) + \boldsymbol{\nabla} \cdot (m n \boldsymbol{V} \boldsymbol{V}) &= -\boldsymbol{\nabla} p - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi} + \boldsymbol{R} + Zen(\boldsymbol{E} + \boldsymbol{V} \times \boldsymbol{B}) + \boldsymbol{S}_m \\ \frac{\partial}{\partial t} \left(\frac{3}{2} n T + \frac{1}{2} m n \boldsymbol{V}^2 \right) + \boldsymbol{\nabla} \cdot \left(\frac{5}{2} n T \boldsymbol{V} + \frac{1}{2} m n \boldsymbol{V} \boldsymbol{V}^2 + \boldsymbol{q} + \boldsymbol{\Pi} \cdot \boldsymbol{V} \right) &= S_E - Q + \boldsymbol{R} \cdot \boldsymbol{V} + Zen\boldsymbol{E} \cdot \boldsymbol{V} \end{split}$$

- Π, R, Q and q depend on closure model of fluid equations.
- \blacksquare \mathbf{V}_{\perp} and \mathbf{E} depend on model for electromagnetism, viscosity etc.
- S_n , S_m and S_E depend on physical system.

An infinite number of models can be used, but we are aiming at a multi-species standard.

Current work

The convergence problems require the following steps

- 1. A multi-species parameter set must be aligned with successful applications
- 2. Meaningful start profiles must be prepared to stabilize the iteration
- 3. Kinetic neutral particles should eliminate uncertainties with fluid neutrals

We are trying to build on the successes of GyM, PISCES-RF, and Magnum-PSI

