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Global EM turbulence in W7-X using EUTERPE
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• W7-X is shown to be turbulence dominated due to neoclassical optimization

• High performance is achieved at higher 𝜷-values

• Small and large/global scales interact and can generally not be separated

• Open question of interplay between turbulence, ZFs and mode activity in EM dominated 

regimes

• Here: a series of global NL EM simulations are performed to investigate turbulence in W7-X

Motivation
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• The W7-X UFM configuration is investigated:

• Low shear / flat iota

• Very high mirror ratio of 28.5%

• Mercier-unstable (strong linear drive)

• Profiles

• 𝑇𝑒 = 𝑇𝑖, flat density,

• Finite 𝛻𝑇𝑒,𝑖, 𝑎0𝛻𝑇/𝑇 = −4.2

• 𝛽 is scaled via flat density to 𝛽 = 1.0%, 2.59%, 4.16%

• The plasma profiles and 

VMEC equilibria are consistent.

Setup of simulations
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• We use the global 𝛿𝑓 PIC-code EUTERPE. 

• Simulations are fully kinetic in the electromagnetic regimes 𝜹𝐴∥ ≠ 0 and 𝛿𝐵∥ ≠ 0.

• Gyrokinetic ions, drift kinetic electrons

• Grid for fields 𝑁𝑠 × 𝑁𝜃 × 𝑁𝜑 = 128 × 512 × 128

• Particle markers 𝑁𝑒 = 1.25 ∗ 109, 𝑁𝑖 = 0.75 ∗ 109

• Simulation domain is restricted to 𝑠 = [0.2, 1.0]

• Mass ratio 𝑚𝑖/𝑚𝑒 = 200

• Cost per simulation:

• About 1.5 − 2 ∗ 106 CPUh => 6 million CPUh

• For real electrons about x3 higher due to time step adjustment

• Simulations were executed on the Viper (MPG) and MareNostrum4+5 (BSC) 

supercomputers

Numerical information
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• Normalized spectral power shows evolution of activity in time:

• ZF stabilizes initial electron driven mode (m ~ 120 – 100, 𝑘⊥𝜌𝑖 ≈ 1.4)

• All scales become active and ZF stabilizes intermediate ITG (m ~ 40 – 60, 𝑘⊥𝜌𝑖 ≈ 0.65)

• Broad large scale activity follows

• 𝐴∥ generally follows 𝜙, but jumps to very large scales as electron mode is stabilized

Spectral activity - 𝜷 = 𝟏% Red line ZF is maximum

𝜙 𝐴∥
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Spectral activity – all 𝜷

• 1% and 2.5% similar (elec. Mode 

+ ITG => both ZF-stabilized)

• At 4% initially elec. Mode, then 

yet unidentified mode active in 

𝑨∥ and 𝝓

• Late stages show broad activity 

at large scales and only weak 

activity at small scales

𝜙

𝐴∥

𝛽 = 1% 𝛽 = 2.5% 𝛽 = 4%
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• Steady state fluxes obtained without simulations crashing.

• Initial flux peak driven by ITG-mode. At 𝛽 = 4% strong 𝑄𝑒 by small scale mode.

• During linear phase 𝑄𝑒 > 𝑄𝑖 , but during late NL-phase 𝑄𝑖 > 𝑄𝑒 (for 𝛽 = 1%)

• For 𝛽 = 2.5% and 4% 𝑄𝑒 ≈ 𝑄𝑖 during NL-Phase, within statistical uncertainty

• No catastrophic increase of fluxes observed due to EM-activity. 

• Instead: Steady state fluxes reduce with 𝜷.

Heat fluxes
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• Strongest temperature relaxation in 𝛽 = 1%-case

• Changed profile becomes increasingly linear in late stages at 

s=0.6-0.8. Deeper meaning?

Temperature profile evolution

𝛽 = 1% 𝛽 = 2.5% 𝛽 = 4%
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• Strongest temperature relaxation in 𝛽 = 1%-case

• Changed profile becomes increasingly linear in late stages at 

s=0.6-0.8. Deeper meaning?

• Temperature at steepest gradient (s=0.5) unchanged

• Turbulent region becomes wider as profile flattens and 

gradient-region expands

Temperature profile evolution

𝛽 = 1% 𝛽 = 2.5% 𝛽 = 4%
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• Particle fluxes show pinch

• Buildup of density gradient

• Pinch decreases in strength with increasing β

• Small non-ambipolar particle flux observed => increases with 𝜷

Particle Fluxes
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• Continuation of sim. to split particle fluxes into physics terms: ExB, 𝑨∥ and 𝜹𝑩∥

• Slight difference in ExB-term => almost the same, as expected

• Flutter term shows strong peaks by electrons => Electrons react more to flutter because 𝑣𝑡ℎ,𝑒 ≫

𝑣𝑡ℎ,𝑖 and drift-kinetic treatment

• 𝛿𝐵∥-flux: 𝑃𝛿𝐵∥ ,𝑖 ≈ −𝑃𝛿𝐵∥ ,𝑒 since charge in drift-term:
𝜇

𝑞𝐵
𝑏 × ∇𝛿𝐵∥ and LW-approximation

Non-ambipolar particle fluxes - 𝜷 = 𝟒%
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• Linear mode develops into turbulence and spreads throughout plasma

• Turbulence causes partial reconnection and destruction of flux surfaces

Ergodization of flux surfaces and reconnection
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• Strong perturbation of rotational transform due to turbulence

• Optimization of magnetic field geometry partially lost under 

turbulence

Turbulence perturbed rotational transform
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• Phase-Space energy transfer plots

• Electron drive in linear phase and ion drive in NL-phase

• Show 𝒗∥-Resonances: potential Alfvénic-activity

• Growth rate cascades? 

• Indications for beat-driven ZFs: 𝜸𝒁𝑭 = 𝟐𝜸𝒊𝒏𝒔𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚

• Difficult to find EXACT matching (m,n) and 𝛾

• How precisely do these have to match?

• Rather using 𝜙 or 𝐴∥ for this?

Extras
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• Initial (and linearly dominant) small scale instability is not active in late stages but does drive a 

ZF which might regulate turbulence. Is that important to simulate? What happens if that 

instability is left out and the ZF is weaker?

• Does the non-ambipolar particle flux create a radial electric field (-> ZF) that sheares turbulence 

apart, thus causing stabilization of heat fluxes? Test by deactivating dBpar?

• 𝜌∗ = 𝜌/𝑎0-dependence of non-ambipolar particle flux?

• Flux surface ergodization, perturbed iota and particle flux terms at 𝛽 = 1%?

• Importance of Alfvénic activity? Worth investigating despite changed mass ratio?

Open questions
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• Global NL EM simulations have been performed for several 𝜷 -values. 

• No crashes of simulations due to unstable heat fluxes.

• Reduction of heat fluxes up to 𝛽 = 4.16%.

• In fact: absence of strong increases in heat flux typical for MHD-modes or KBMs

• Particle fluxes show pinch and even non-ambipolarities

• Pinch decreases with 𝛽

• Non-ambipolarities in all physics-terms but mainly driven by 𝛿𝐵∥-terms

• Turbulence causes partial destruction + widening of flux surfaces and strong changes in 

the rotational transform profile

• Optimization of magnetic field geometry important but partially lost under turbulence

• Reactor relevant configurations need to be resistant to turbulence

• Indications for Alfvénic instabilities and beat-driven ZFs

Summary and conclusions
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Backupslides
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Turbulence perturbed rotational transform
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Particle drive - 𝜷 = 𝟒%

• Tracking power transfer between fields 

and particles. 

• Negative value => particles drive 

instability and v.v.

• Transition from electron drive (early and 

intermediate phase) to ion drive 

(nonlinear phase).

• Early phase similar for all 𝜷-values, 

changes as 𝜷 increases

• For electrons (all 𝜷): late stages show 

trapped particles (varies slightly with 𝜷) 

and 𝒗∥-resonances (all 𝜷)
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Electron mode ns 64 (No Padé) 64 512 (annulus) 512(annulus)

𝛾 [10^5 s^-1] 4.76 9.23 10.85 10.64

𝜔 [10^5 Hz] -2.24 +2.12 +2.30 2.35

m 71 75 75 74

N per cell 114 114 76 171

Radial mode structure (electrostatic)

𝛽 = 1%


