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Problem: DEMO Radiative Instabilities

o

= |mpurities at the plasma edge can lead to disruption. 1 ~20

= Magnetic field in the plasma depends on the radius (w, x B x 1/R ). 2] 0 é

= Center heating (< 30 MW required) at high frequency and edge x 0 0 3
instability heating (> 70 MW) at a lower frequency needed. N 8°::
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Key Components of the DEMO EC System

Collector

Gaussian beam
output at CVD
diamond window

Height ~3 m, weight ~1 ton

DEMOE

Cathode/
4 Emitter
8-12m[ L\ (MIG)

Quasi-optical transmission line (TL)

= Switching frequencies takes a long time, due to the large inductances of the magnet.

- Gyrotrons switchable between 15t and 2"4 harmonic might be the solution!
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Problem: DEMO Radiative Instabilities

= Impurities at the plasma edge can lead to disruption.
= Magnetic field in the plasma depends on the radius (w. x B < 1/R ).

= Center heating (< 30MW required) at the 2" harmonic (s = 2) and
edge instability heating (> 70 MW) at the first harmonic (s = 1).

= Same gyrotron, launcher, window and transmission line for

center & edge heating could be the solution.
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ENR Second Harmonic Gyrotron

Target: MW class gyrotrons operating at 1st harmonic (s = 1) and at 2" harmonic (s = 2) of the electron

cyclotron frequency

= Plasma center heating and mitigation of radiative instabilities with the same gyrotron, transmission line

and launcher.
= Fast (sub-second) switching between distant frequencies.
= Two enabling technologies are addressed:

1. The coaxial-type cavity technology that is specifically adapted to the operation at 2"d harmonics in

combination with advanced inner and outer corrugations.
2. The Multi-stage Depressed Collector (MDC) technology based on ExB drift concept.

Potential of saving = 100 MW of installed spare power for EU-DEMO (Baseline 2019)




Theoretical Investigation of
Fast Switching
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Ultra-Fast Switching Using the Applied Voltages

= Variation of the accelerating and modulation Main Magr][etif[: Field
constan
anode voltage.
= Variation of the electron beam parameters Modulation
Potential Body
(Epiny @ =V 1 V,). (10 kV) Potential

= Enables switching between s =1 and w
s = 2 operation in the millisecond range. “

E = Be?é"

J

Cathode M{/’,/L

Potential
(-50 kV)




Novel concepts for advanced fast switching between

harmonics

Multimode simulations demonstrate the fast-switching scenario

= Cavity (2" harmonic TE2, 1.55 MW @ 170 GHz)
tested for:

= also 15t harmonic TE1 operation
= the design of a fast-switching scenario

1600 |

= Table I: Operating Points

P
-
N
o
o

Evin l, (A) B nax Pitch Eigenvalue
(keV) (T) factor a

TE1710 3.475 53.00
TEa10 87 95  3.475 1.3 105.19

Output Power
o
o
o

= Table Il: Performance

out effICIGHCy pout pln
(MW) (kW/cmZ) (kW/cm?)

TEq7 10 1.35 18% 1.35
=9 1.45 19% 2.1 0.39

2000_IIll|IllI|IllI|llII|llII|IIII|IIII|IIII|IIII|I
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3 1400?

between the TE1 and the TE2 mode
by varying the electron-beam parameters (Ein, a)

TE1: TE1?,1D @85GHZ
| TE2: TE34 10 @169GHZ
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Time t (a.u.)
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New Modelling Tool for Starting Pitch Factor Calculation

= The numerical code SC2 has been developed 09

for the calculation of the starting pitch factor
and the starting current of a TE mode in

gyrotron cavities. 0.90

= SC2 has been validated by comparison with
EURIDICE and TWANGIinspec.

Starting pitch factor «_

= The knowledge of the starting pitch factor
identifies practical gyrotron startup scenarios
with a triode-type electron gun that can
mitigate mode competition, especially in high- i
power gyrotrons. 0.80 Lo

0.85

SC2 ]
= EURIDICE .

85 90 95 100
Electron energy E (keV)
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Fast Switching the Guiding Center Radius
(Tuning the Gun Coils)

Main Magnetic Field
constant

Switching time in the multiple seconds range. Adjustment of

Gun
= Gyrotrons can be used for plasma startup Magnetic Field

(at s = 2) and then switched for RI mitigation

(ats=1).

= Varying the magnetic field at the emitter e Be?fn

changes the electron beam radius in the —ﬁa_(//L k\ J
cavity. Adjustment of Electron

Beam Radius

= Hysteresis effect, depending on sweep

direction could lead to a suppression of the

second harmonic operating mode.




Fast Switching the Guiding Center Radius
(Tuning the Gun Coils)

= Main magnetic field coil remain unchanged.
= Transition from TEz4,10 mode (170 GHz) to TE,g,10 (86.6 GHz) mode.
= Magnetic field at the emitter changes from 88.8 mT (TEz4,19) to 107.6 mT (TE0,10)-

= Non-optimal for the quasi-optical (QO) output system
— Reflection of -15 dB at the window expected TE,ohe

1750 A

— Difference in relative caustic radius: 0.32 (TEz4,19) — 0.35 (TE20,10)-

1500 A
= Qutput power: .
. . 1250 A
— Second-harmonic operation: 600 kW E
4] ]
— Fundamental operation : 1.7 MW 5
. . S 750
= Recommended to also re-ramp the accelerating voltages after tuning § - TE3110
the gun coils. 5001
250 - ‘J
0 A o
9.I75 10:00 10:25 10150 10175 11100 11125 11.50

Guiding Center Radius ry. in mm
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Enhancement of Mode Selectivity
Profiled Inner Corrugations

Target: Better suppression of the fundamental competing modes

= Introduce a novel concept for tapered impedance corrugations.

= Increase drop of the eigenvalue along the cavity axis.

= Decrease of the diffractive Q factor - Increase of the starting current.
= Relaxed tolerance requirements.

Constant Corrugation Depth Variable Corrugation Depth
H— TEA7110 1400
30 T 1750 1 TE34,19
— Z 1200 :
21500 | =
£ = 1000 {
_ 0 1250 TE34,19 D;
£ 20- o 2 800
£ Constant Tapered Constant g 1000 o
Zé Depth Depth bepth o = 600 .
5 - . 5 750 2
o Ll L] -
10 3 500 | S’_ 400 |
, % 250 | ™ 200
in
o 0 - / 0
0 : : : . - e | | | } | | | T T T T T T .
0 10 2 ° 40 %0 80 09 10 11 12 13 14 15 09 10 11 12 13 14 15

Axial coordinate z in mm Pitch Factor a Pitch Factor a




Enhancement of Mode Selectivity
Profiled Outer Corrugations

® To reach eigenvalues above y=125, a new scheme of axially
profiled azimuthal corrugations was proposed and studied.

® Such corrugations should be localized on the axis to selectively suppress
only the major competing modes while leaving the operating one unaffected.

® The transition from the smooth wall to profiled corrugations is performed smoothly to
avoid any undesired reflections and mode conversion.

® As an illustrative example, the excitation of TE 4, ,3 (x=126) at 204 GHz and at second
harmonic have been used.

® Main 15t harmonic competing modes are TE,4,, and TEg ;5.

® TE,, »; cannot be excited with corrugations only on the insert
(without profiling TE g ;, suppresses TE, »3).

Output power (kW)

® Performance:
m P, ,=1.65MW,
| nN=22%,
® Ohmic loading below technological limits (o,,=2.09 kW/cm?, p,,=0.24 kW/cm?).
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Studies on dual-harmonic launchers and quasi-optical
system

A mirror-line launcher for the TE17,10 mode @ 85.66 GHz and the TE34,19 mode @ 170.05 GHz
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Studies on dual-harmonic launchers and quasi-optical
system

A mirror-line launcher for the TE17,10 mode @ 85.66 GHz and the TE34,19 mode @ 170.05 GHz
GMC: Gaussian Mode Content

field distribution on the launcher wall (linear scale, 0~1), field distribution on the launcher wall (linear scale, 0~1),

TE,; 1o @ 85.66 GHz TE,, ;, mode @ 170.05 GHz
6 i ' ¥ ‘, GMC=
: GMC= . 97.3%

¥ 97.05% f
4 f 4
2 ] ’ 21
1 1
, i
'] 50 100 150 200 250 300 350 % s 10 150 200 250 30 30
z/mm z/mm
Field distributions on launcher wall, operating in the TE,, ;, mode @ 85.66 GHz (left)
Disadvantages: and in the TE;, ;o mode @ 170.05 GHz (right).

= The RF beam @ 85 GHz could not be focused very well (due to the wavelength @ 85 GHz,
which is two times larger compared to the 170 GHz case) — relatively large power density at the launcher cuts.




EU-DEMO Relevant Design
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Detailed cavity design including sensitivity studies

= Requirements for dual-harmonic operation:
= maximum 1% difference in caustic radii (|[0R¢| < 1%)
= maximum 1% deviation of the window reflection coefficient from zero (0R, < 1%)
= 80 < Xy p< 110 for TE2

= Table Ill: Reduced list* of candidate modes for dual-harmonic operation from a Python code

__TEL/TE2 | R/R, | I5Rcl | BR.

TE20 07 / TE40 13 04 091% 0.32% *Three cases with relative caustic radii of
' ’ 0.3,0.4 and 0.5 are considered sufficient to

TE23,06 / TE46,11 0.5 0.94% 0.34% cover all relevant cases

= The TEy; .9/ TE3, 10 mode pair: promising candidate, but limited by high p,,, despite cavity modifications.
= The TE,q 7 / TE4o 13 mode pair: single mode simulations indicate high p;, during TE1 operation.

= The TE,; o6 / TE461, Mode pair: indications of compatibility with CW dual-harmonic operation.




Detailed cavity design including sensitivity studies

= Table IV: Operating Points & Performance

Evin l, (A) max (T) Pitch Eigenvalue
(keV) factor a

TEps 06 3.482  1.29 46.84
TE 4611 3.482  1.28 92.80

out EfflClency Pout Pin
(MW) (kW/icm?) | (kW/cm?)

TE 3306 1.35 22% 0.65 0.36

TE 611 1.30 20% 2.4 0.08
= The new cavity design is:

= Optimized for: High interaction efficiency at both
harmonics.

= Tested for:

a. Safe margins from modeloss by independent
increase of beam parameters (E,, |, Q).

b. Stable Performance under cavity deformation.

Multimode simulations (75 modes are included) demonstrate
the fast switching-scenario between the TE1 and the TE2 mode
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Design of a Quasi-Optical System for Harmonic Modes

Launcher

= Ahybrid-type launcher has been designed for the TE46,11 mode @ 170 GHz and
the TE23,06 mode @ 85.66 GHz

= The launcher length is 213.12 mm, the slope of taper is 0.002, launcher radius at
the entry of the launcher is 27.86 mm.

0,10

a/rad
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Field distribution on the launcher wall (linear scale, 0~1)
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Designh of a Quasi-Optical System
Mirror System

= A mirror system with a quasi-parabolic mirror, and two quadratic mirrors has been designed.
= Excellent Gaussian Mode Content (GMC) at first (98.37%) and second harmonic (97.86%) operation.

= Beam waists first harmonic :
- Wp,=19.98 mm @ 2 mm after the window

~ W,=20.49 mm @ 34 mm before the window First Harmonic Second Harmonic
’ Field distribution, in dB Field distribution, in dB

0,0
40 O . 3,0

20

= Beam waists second harmonic :
— Wq,=17.75 mm @ 231 mm after the window
— W,=14.57 mm @ 261 mm before the window. 20

401

= Astigmatism has to be compensated by
matching optics unit (MOU).

y/mm
o
y/mm
(=)

-20 -20-

40/ -40-
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Desigh of a CW Multistage Depressed Collector (MDC)

2.4

= MDC development for increased efficiency 2l =
= Triple helix ExB design with magnetic field sweeping m

= Compact MDC due to reduced magnetic field
— Inner electrode radius: 150 mm 18l

— Length of ExB region: 300 mm a

1.6




Design of a CW Multistage Depressed Collector (MDC)

MDC development for increased efficiency

Triple helix ExB design with magnetic field sweeping

Compact MDC due to reduced magnetic field
— Inner electrode radius: 150 mm

— Length of ExB region: 300 mm

Operating points with identical collector potentials
Excellent performance for second harmonic operation:
— First harmonic: 1., =66.1 % 2 Nyt = 42.8 %

— Second harmonic: n¢o = 84.2 % =2 Nior = 57.7 %
Optimization potential of magnetic field profile

— Improve wall load uniformity

— Reduce reflected current
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Experiments on Second
Harmonic Operation
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Cavity Design for Experimental Verification

T y 100
1600
. . . . . . I 195
= A detailed 2"d-harmonic TE,, ;4 coaxial cavity design for the upcoming 1400 .
: o : S 190
experiment was performed targeting to MW-class operation. T 1w s <
S 1000 <
= I 1=
_ 8 800 180 S
= Simulated performance: 2 ol 175 §
= Output power at cavity exit P,,=1.55 MW. © ool |70
. . . 65
= |nteraction efficiency n = 23 %. o .
, , _ 5 ° 1000 | 2000
= Quter ohmic loading p,; = 2.08 kW/cm=. time ()
- |nner OhmiC IOading pin — 036 kW/sz. Simulation results showing stable excitation of the 2"-harmonic operating

mode TE,, ;4 in diode startup. A large number of 100 1s- and 2"d-harmonic
competitor modes are included in the simulation. Assumed spreads: 6%
rms in pitch factor, 2.0 Larmor radii uniform guiding center spread.

= Sensitivity analysis was performed against many parameters. Excellent mode stability with respect to:
= Velocity beam spreads (stable MW-class excitation of the 2"d-harmonic mode up to a-spread of 15% rms).
= Magnetic field value B,,;,, and displacement zyg, (-1.0% < (B — B,;))/Bpom < 0.5%, -6 mm <z, < +15 mm).

= Coaxial insert and e-beam radii (8.57 mm <R_,,,< 8.77 mm, 9.47 mm < R, < 9.73 mm).
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Experiments in Preparation
Designh and Manufacturing

Manufacturing of a short pulse cavity.

Novel mechanical design and manufacturing of a modular insert.

Challenging design of impedance corrugated insert tip.

Two attempts needed to manufacture the corrugations.
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Insert Manufacturin

First Attempt Second Attempt
(June — July 2025) (September — October 2025)
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Grooves applied by a slitting cutter: constant depth 0.7 mm, slit width 0.3 mm
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Experiments in Preparation
Electron Gun

= KIT triode gun was validated in June 2025 for fundamental

operation and high beam currents.

= Challenging operation of the KIT triode gun.

— Operation at half of the designed main magnetic flux density.

— Low E, field at the emitter to counteract high transverse

velocities
1 Ee

B X ——

Tgc Be’
= High laminarity of the electron beam.

= High pitch factor spreads expected.

= Operation with reduced accelerating voltage and power to reduce

spreads.

Accelerating Potential — Modulation Potential

Modulation
Potential

Accelerating
Potential

Cathode
Potential

w o
Pitch Factor a

—_
—_
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Experiments in Preparation
Installation

= |nstallation of the manufactured parts in
the KIT short pulse coaxial prototype

finished.
= Superconducting magnet cooled down.
= Conditioning phase has started.

= Target: World first second harmonic
gyrotron experiment with a power of

closeto 1 MW.



Conclusion
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Conclusion

= Theoretical results on the “ultra-fast” switching approach very successful.

= Novel tools to calculate starting pitch factor and new approach for dual

harmonic quasi-optical launcher were developed.
= Excellent gaussian mode content for both harmonics possible.
= Efficiency > 50 % for both harmonics can be reached using an MDC.

= Experiments will start end of November.
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T2.2 Profiling on Outer Corrugations (2)

® By examining the eigenvalue spectrum, it has been found that only by localizing the outer

corrugations at specific C (

Rout
Rin

) range the main 15t harmonic competing modes can be

suppressed, while the operating mode remains unaffected.

® The specific C range is translated to specific z range - localization.
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