

Novel dual-harmonic gyrotrons for DEMO featuring fast switching between distant frequencies: Concept elaboration and experimental demonstration of key elements

Stefan IIIy on behalf of the KIT/NKUA ENR Project Team

1. Introduction

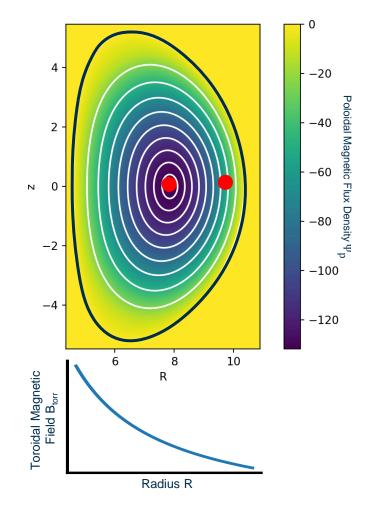
2. Theoretical Investigation of Fast Switching

- Novel Concepts for Advanced Fast Switching Between Harmonics
- Enhancement of Mode Selectivity using Profiled Corrugations

3. EU-DEMO Relevant Design

- Cavity Design
- Triode Gun
- MDC

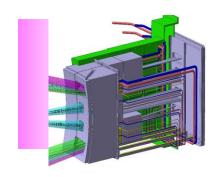
4. Experiments on Second Harmonic Operation

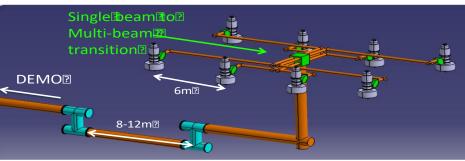


Introduction

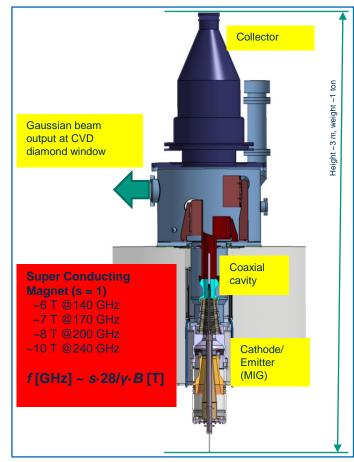
Problem: DEMO Radiative Instabilities

- Impurities at the plasma edge can lead to disruption.
- Magnetic field in the plasma depends on the radius ($\omega_c \propto B \propto 1/R$).
- Center heating (< 30 MW required) at high frequency and edge instability heating (> 70 MW) at a lower frequency needed.





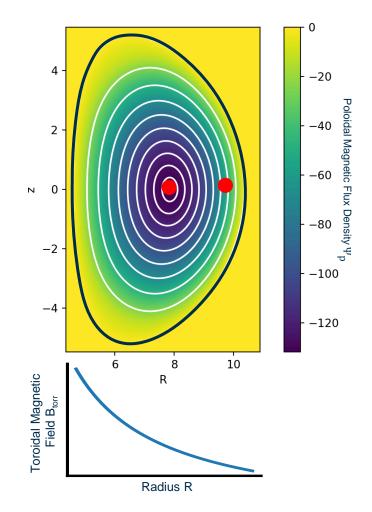
Key Components of the DEMO EC System



EC equatorial launcher

Quasi-optical transmission line (TL)

- Switching frequencies takes a long time, due to the large inductances of the magnet.
- → Gyrotrons switchable between 1st and 2nd harmonic might be the solution!



Problem: DEMO Radiative Instabilities

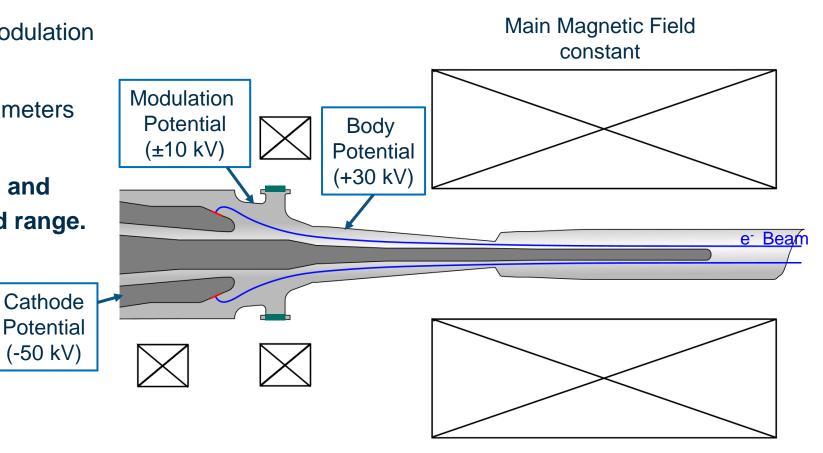
- Impurities at the plasma edge can lead to disruption.
- Magnetic field in the plasma depends on the radius ($\omega_c \propto B \propto 1/R$).
- Center heating (< 30MW required) at the 2nd harmonic (s = 2) and edge instability heating (> 70 MW) at the first harmonic (s = 1).
- Same gyrotron, launcher, window and transmission line for center & edge heating could be the solution.

ENR Second Harmonic Gyrotron

Target: MW class gyrotrons operating at 1^{st} harmonic (s = 1) and at 2^{nd} harmonic (s = 2) of the electron cyclotron frequency

- Plasma center heating and mitigation of radiative instabilities with the same gyrotron, transmission line and launcher.
- Fast (sub-second) switching between distant frequencies.
- Two enabling technologies are addressed:
 - 1. The coaxial-type cavity technology that is specifically adapted to the operation at 2nd harmonics in combination with advanced inner and outer corrugations.
 - 2. The Multi-stage Depressed Collector (MDC) technology based on *E*×*B* drift concept.

Potential of saving ≥ 100 MW of installed spare power for EU-DEMO (Baseline 2019)



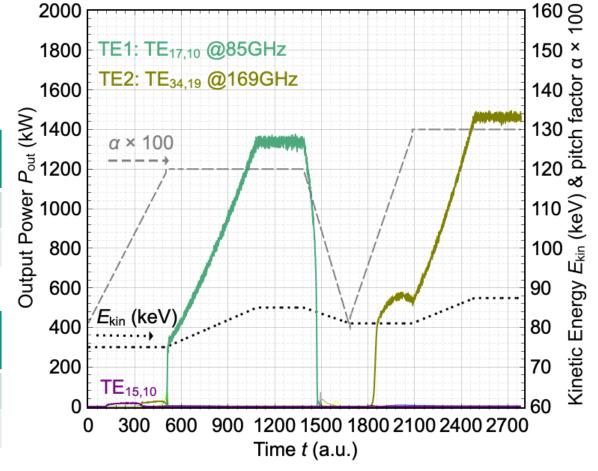
Theoretical Investigation of Fast Switching

Ultra-Fast Switching Using the Applied Voltages

- Variation of the accelerating and modulation anode voltage.
- Variation of the electron beam parameters $(E_{\rm kin}, \alpha = v_{\perp}/v_{\rm z}).$
- **Enables switching between s = 1 and** s = 2 operation in the millisecond range.

Potential (-50 kV)

Novel concepts for advanced fast switching between harmonics

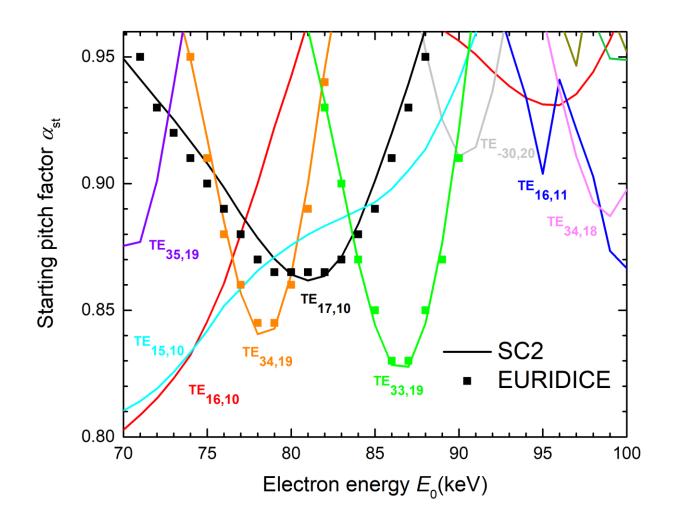

- Cavity (2nd harmonic TE2, 1.55 MW @ 170 GHz) tested for:
 - also 1st harmonic TE1 operation
 - the design of a fast-switching scenario
- Table I: Operating Points

	E _{kin} (keV)	<i>I</i> _b (A)	B _{max} (T)	Pitch factor <i>α</i>	Eigenvalue
TE _{17,10}	85	95	3.475	1.2	53.00
TE _{34,19}	87	95	3.475	1.3	105.19

Table II: Performance

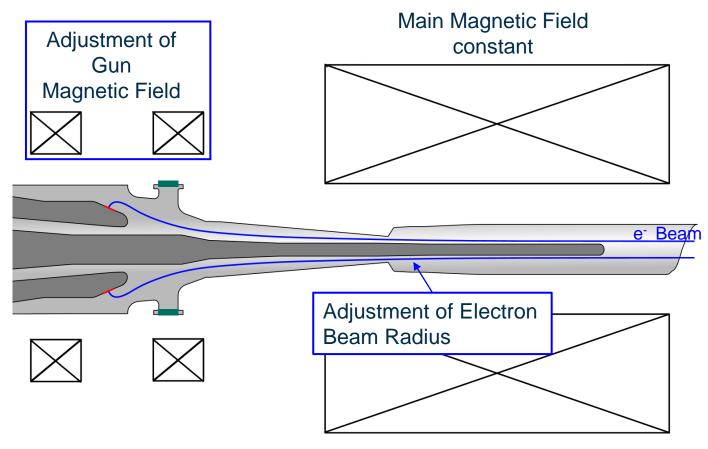
	P _{out} (MW)	efficiency	ρ _{out} (kW/cm²)	ρ _{in} (kW/cm²)
TE _{17,10}	1.35	18%	0.5	1.35
TE _{34,19}	1.45	19%	2.1	0.39

Multimode simulations demonstrate the fast-switching scenario between the TE1 and the TE2 mode by varying the electron-beam parameters (E_{kin} , α)



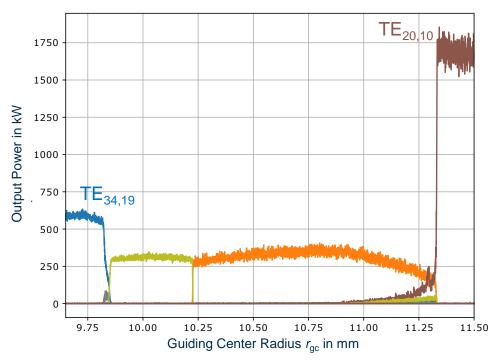
New Modelling Tool for Starting Pitch Factor Calculation

- The numerical code SC2 has been developed for the calculation of the starting pitch factor and the starting current of a TE mode in gyrotron cavities.
- SC2 has been validated by comparison with EURIDICE and TWANGlinspec.
- The knowledge of the starting pitch factor identifies practical gyrotron startup scenarios with a triode-type electron gun that can mitigate mode competition, especially in highpower gyrotrons.



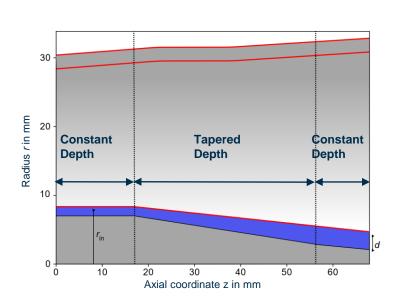
Fast Switching the Guiding Center Radius (Tuning the Gun Coils)

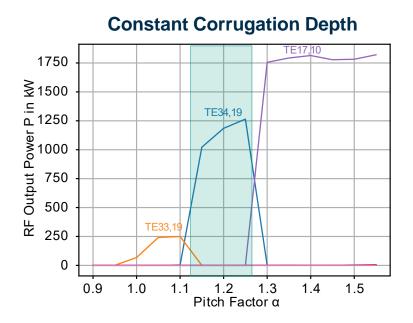
- Switching time in the multiple seconds range.
- Gyrotrons can be used for plasma startup
 (at s = 2) and then switched for RI mitigation
 (at s = 1).
- Varying the magnetic field at the emitter changes the electron beam radius in the cavity.
- Hysteresis effect, depending on sweep direction could lead to a suppression of the second harmonic operating mode.

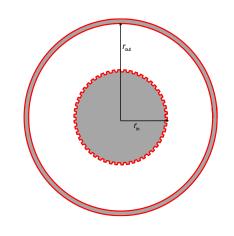


Fast Switching the Guiding Center Radius (Tuning the Gun Coils)

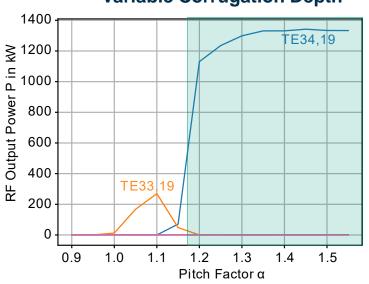
- Main magnetic field coil remain unchanged.
- Transition from $TE_{34,19}$ mode (170 GHz) to $TE_{20,10}$ (86.6 GHz) mode.
- Magnetic field at the emitter changes from 88.8 mT (TE_{34,19}) to 107.6 mT (TE_{20,10}).
- Non-optimal for the quasi-optical (QO) output system
 - Reflection of -15 dB at the window expected
 - Difference in relative caustic radius: 0.32 (TE_{34,19}) → 0.35 (TE_{20,10}).
- Output power:
 - Second-harmonic operation: 600 kW
 - Fundamental operation : 1.7 MW
- Recommended to also re-ramp the accelerating voltages after tuning the gun coils.





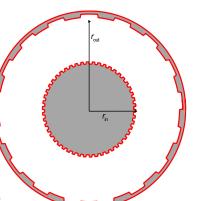

Enhancement of Mode Selectivity Profiled Inner Corrugations

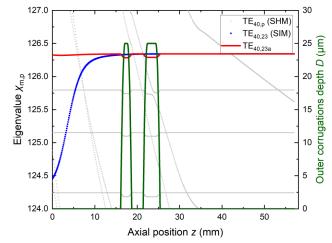
Target: Better suppression of the fundamental competing modes

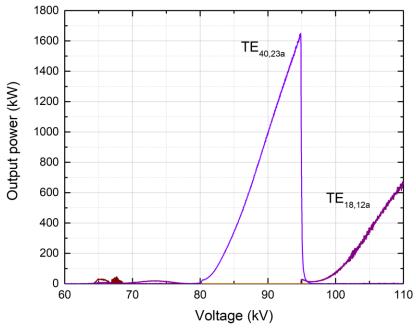

- Introduce a novel concept for tapered impedance corrugations.
- Increase drop of the eigenvalue along the cavity axis.
- Decrease of the diffractive Q factor → Increase of the starting current.
- Relaxed tolerance requirements.

Variable Corrugation Depth

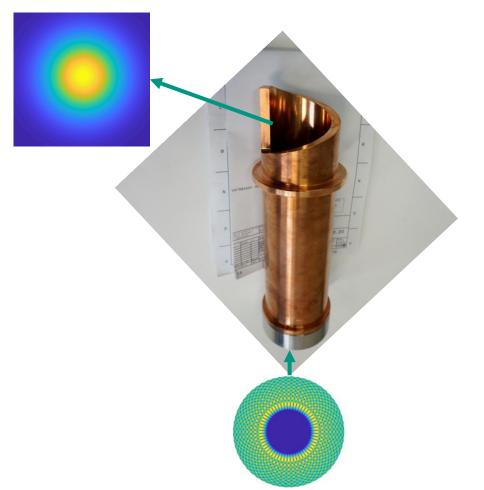


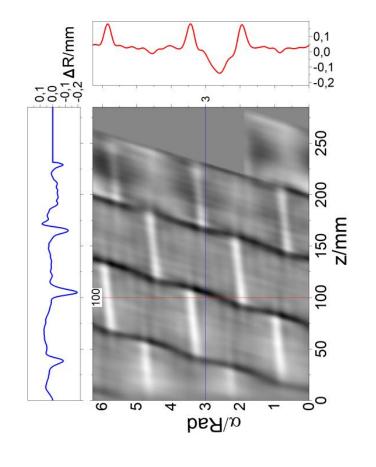



Enhancement of Mode Selectivity Profiled Outer Corrugations


■ To reach eigenvalues above χ =125, a new scheme of axially profiled azimuthal corrugations was proposed and studied.

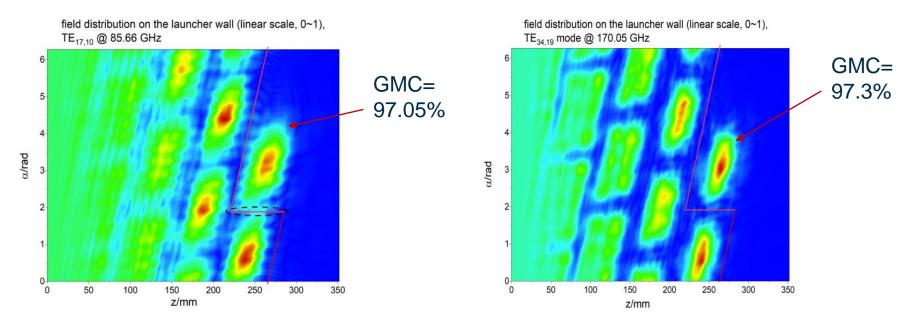
- The transition from the smooth wall to profiled corrugations is performed smoothly to avoid any undesired reflections and mode conversion.
- As an illustrative example, the excitation of $TE_{40,23}$ (χ =126) at 204 GHz and at second harmonic have been used.
- Main 1st harmonic competing modes are TE_{19,12} and TE_{19,13}.
- $TE_{40,23}$ cannot be excited with corrugations only on the insert (without profiling $TE_{19,12}$ suppresses $TE_{40,23}$).
- Performance:
 - $P_{\text{out}} = 1.65 \text{ MW},$
 - $= \eta = 22\%,$
 - Ohmic loading below technological limits (ρ_{out} =2.09 kW/cm², ρ_{in} =0.24 kW/cm²).





Studies on dual-harmonic launchers and quasi-optical system

A mirror-line launcher for the TE17,10 mode @ 85.66 GHz and the TE34,19 mode @ 170.05 GHz



Studies on dual-harmonic launchers and quasi-optical system

A mirror-line launcher for the TE17,10 mode @ 85.66 GHz and the TE34,19 mode @ 170.05 GHz GMC: Gaussian Mode Content

Field distributions on launcher wall, operating in the $TE_{17,10}$ mode @ 85.66 GHz (left) and in the $TE_{34,19}$ mode @ 170.05 GHz (right).

Disadvantages:

- The RF beam @ 85 GHz could not be focused very well (due to the wavelength @ 85 GHz, which is two times larger compared to the 170 GHz case) → relatively large power density at the launcher cuts.
- Relatively strong reflection on the straight cut @ 85 GHz, "ripple" appears on the field on launcher wall.

EU-DEMO Relevant Design

Detailed cavity design including sensitivity studies

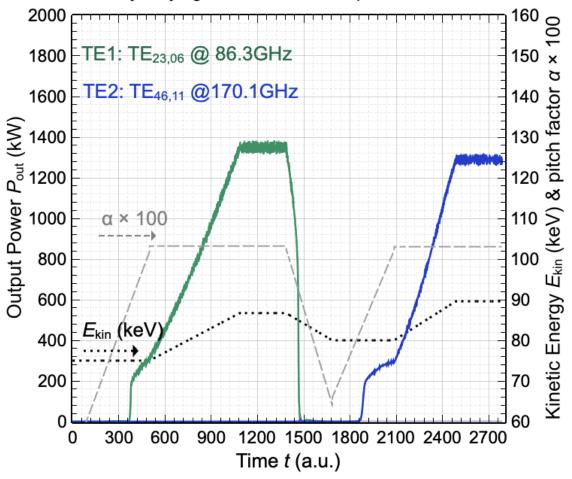
- Requirements for dual-harmonic operation:
 - maximum 1% difference in caustic radii ($|\delta R_{\rm C}|$ < 1%)
 - maximum 1% deviation of the window reflection coefficient from zero ($\delta R_{\text{ref}} < 1\%$)
 - $80 < \chi_{m,p} < 110$ for TE2
- Table III: Reduced list* of candidate modes for dual-harmonic operation from a Python code

TE1 / TE2	$R_{\rm c}/R_{\rm o}$	δR _C	δR _{ref}
TE _{17,10} / TE _{34,19}	0.3	0.77 %	0.23 %
$TE_{20,07} / TE_{40,13}$	0.4	0.91 %	0.32 %
TE _{23,06} / TE _{46,11}	0.5	0.94 %	0.34 %

*Three cases with relative caustic radii of 0.3,0.4 and 0.5 are considered sufficient to cover all relevant cases

- The $TE_{17,10}$ / $TE_{34,19}$ mode pair: promising candidate, but limited by high ρ_{in} , despite cavity modifications.
- The $TE_{20.07}$ / $TE_{40.13}$ mode pair: single mode simulations indicate high ρ_{in} during TE1 operation.
- The TE_{23,06} / TE_{46,11} mode pair: indications of compatibility with CW dual-harmonic operation.

Detailed cavity design including sensitivity studies

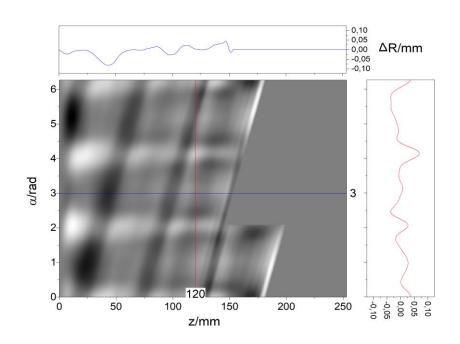

Table IV: Operating Points & Performance

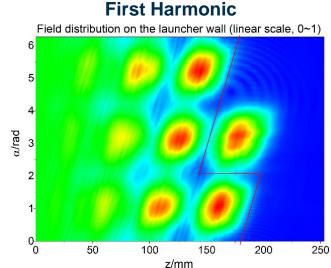
	E _{kin} (keV)	<i>I</i> _b (A)	B _{max} (T)	Pitch factor α	Eigenvalue
TE _{23,06}	86	72	3.482	1.29	46.84
TE _{46,11}	89	74	3.482	1.28	92.80

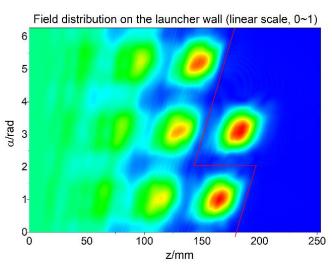
	P _{out} (MW)	Efficiency	ρ _{out} (kW/cm²)	ρ _{in} (kW/cm²)
TE _{23,06}	1.35	22%	0.65	0.36
TE _{46,11}	1.30	20%	2.4	0.08

- The new cavity design is:
 - Optimized for: High interaction efficiency at both harmonics.
 - Tested for:
 - a. Safe margins from modeloss by independent increase of beam parameters (E_{kin} , I_b , α).
 - b. Stable Performance under cavity deformation.

Multimode simulations (75 modes are included) demonstrate the fast switching-scenario between the TE1 and the TE2 mode by varying the electron beam parameters

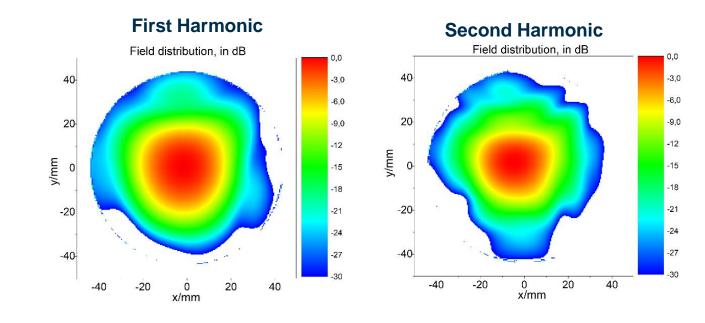





Design of a Quasi-Optical System for Harmonic Modes Launcher

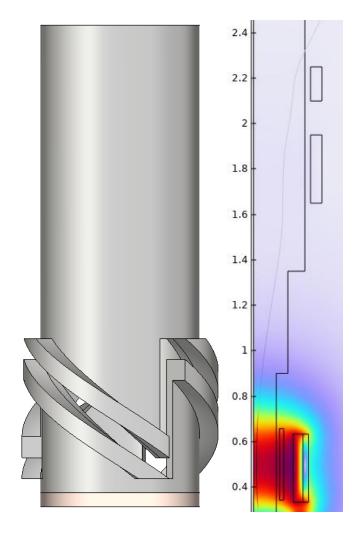
- A **hybrid-type** launcher has been designed for the TE_{46,11} mode @ 170 GHz and the TE_{23,06} mode @ 85.66 GHz
- The launcher length is 213.12 mm, the slope of taper is 0.002, launcher radius at the entry of the launcher is 27.86 mm.

Second Harmonic



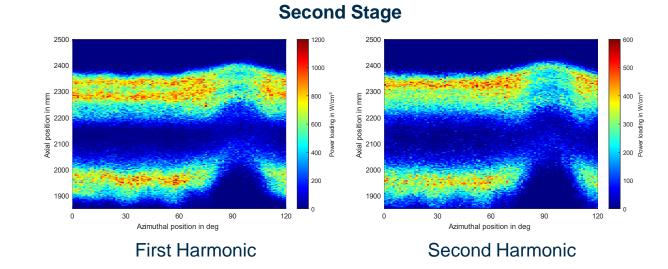
Design of a Quasi-Optical System Mirror System

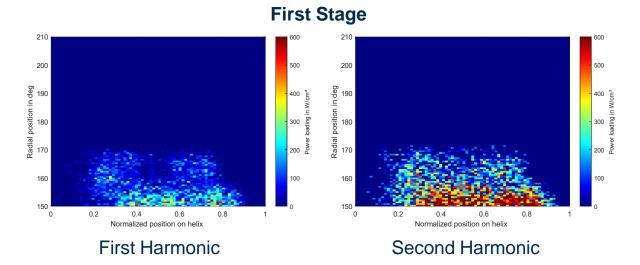
- A mirror system with a quasi-parabolic mirror, and two quadratic mirrors has been designed.
- Excellent Gaussian Mode Content (GMC) at first (98.37%) and second harmonic (97.86%) operation.
- Beam waists first harmonic :
 - $w_{0 x}$ =19.98 mm @ 2 mm after the window
 - $w_{0,y}$ =20.49 mm @ 34 mm before the window
- Beam waists second harmonic :
 - $w_{0 x}$ =17.75 mm @ 231 mm after the window
 - $w_{0,v}$ =14.57 mm @ 261 mm before the window.
- Astigmatism has to be compensated by matching optics unit (MOU).



Design of a CW Multistage Depressed Collector (MDC)

- MDC development for increased efficiency
- Triple helix E×B design with magnetic field sweeping
- Compact MDC due to reduced magnetic field
 - Inner electrode radius: 150 mm
 - Length of E×B region: 300 mm

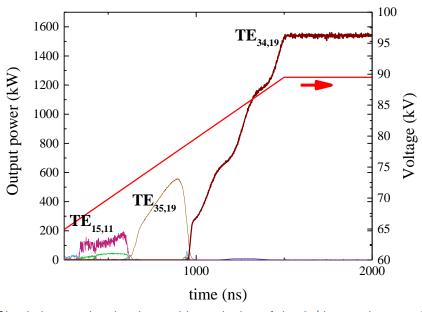




Design of a CW Multistage Depressed Collector (MDC)

- MDC development for increased efficiency
- Triple helix E×B design with magnetic field sweeping
- Compact MDC due to reduced magnetic field
 - Inner electrode radius: 150 mm
 - Length of E×B region: 300 mm
- Operating points with identical collector potentials
- Excellent performance for second harmonic operation:
 - First harmonic: $\eta_{col} = 66.1 \% \rightarrow \eta_{tot} = 42.8 \%$
 - Second harmonic: $\eta_{col} = 84.2 \% \rightarrow \eta_{tot} = 57.7 \%$
- Optimization potential of magnetic field profile
 - Improve wall load uniformity
 - Reduce reflected current

Experiments on Second Harmonic Operation



Cavity Design for Experimental Verification

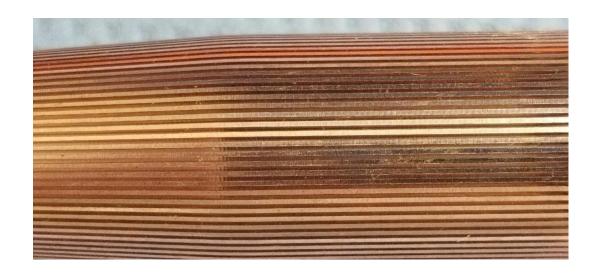
 A detailed 2nd-harmonic TE_{34,19} coaxial cavity design for the upcoming experiment was performed targeting to MW-class operation.

Simulated performance:

- Output power at cavity exit P_{out}=1.55 MW.
- Interaction efficiency $\eta = 23 \%$.
- Outer ohmic loading $\rho_{\text{out}} = 2.08 \text{ kW/cm}^2$.
- Inner ohmic loading $\rho_{in} = 0.36 \text{ kW/cm}^2$.

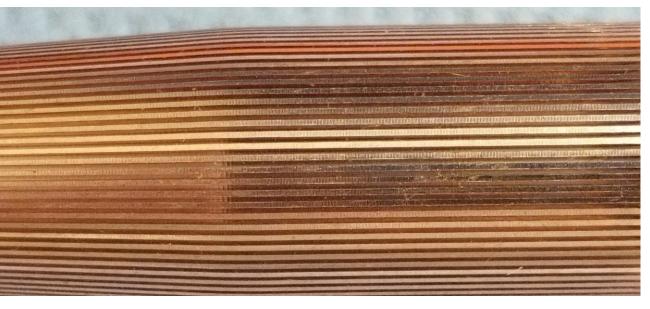
Simulation results showing stable excitation of the 2^{nd} -harmonic operating mode $TE_{34,19}$ in diode startup. A large number of 100 1^{st} - and 2^{nd} -harmonic competitor modes are included in the simulation. Assumed spreads: 6% rms in pitch factor, 2.0 Larmor radii uniform guiding center spread.

- Sensitivity analysis was performed against many parameters. Excellent mode stability with respect to:
 - Velocity beam spreads (stable MW-class excitation of the 2^{nd} -harmonic mode up to α -spread of 15% rms).
 - Magnetic field value B_{nom} and displacement z_{disp} (-1.0% < $(B B_{\text{nom}})/B_{\text{nom}}$ < 0.5%, -6 mm < z_{disp} < +15 mm).
 - Coaxial insert and e-beam radii (8.57 mm $< R_{\text{coax}} < 8.77$ mm, 9.47 mm $< R_{\text{beam}} < 9.73$ mm).



Experiments in Preparation Design and Manufacturing

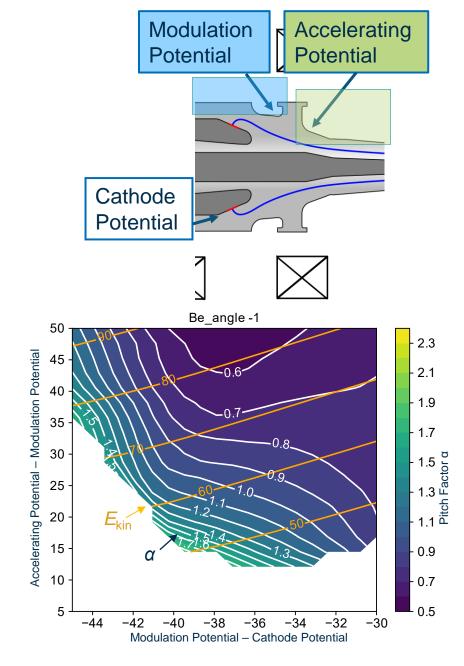
- Manufacturing of a short pulse cavity.
- Novel mechanical design and manufacturing of a modular insert.
- Challenging design of impedance corrugated insert tip.
- Two attempts needed to manufacture the corrugations.


Insert Manufacturing

First Attempt

(June – July 2025)

Grooves applied by a slitting cutter: constant depth 0.7 mm, slit width 0.3 mm



Experiments in Preparation Electron Gun

- KIT triode gun was validated in June 2025 for fundamental operation and high beam currents.
- Challenging operation of the KIT triode gun.
 - Operation at half of the designed main magnetic flux density.
 - Low $E_{\rm e}$ field at the emitter to counteract high transverse velocities

$$\beta_{\perp} \propto \frac{1}{r_{\rm gc}} \frac{E_{\rm e}}{B_{\rm e}}$$

- High laminarity of the electron beam.
- High pitch factor spreads expected.
- Operation with reduced accelerating voltage and power to reduce spreads.

Experiments in Preparation Installation

- Installation of the manufactured parts in the KIT short pulse coaxial prototype finished.
- Superconducting magnet cooled down.
- Conditioning phase has started.
- Target: World first second harmonic gyrotron experiment with a power of close to 1 MW.

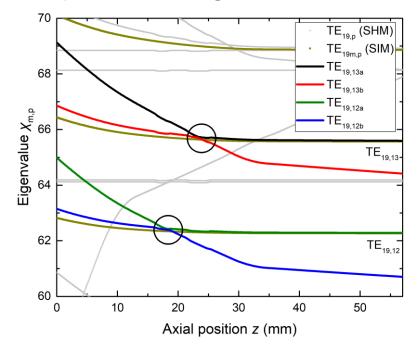
Conclusion

Conclusion

- Theoretical results on the "ultra-fast" switching approach very successful.
- Novel tools to calculate starting pitch factor and new approach for dual harmonic quasi-optical launcher were developed.
- Excellent gaussian mode content for both harmonics possible.
- Efficiency > 50 % for both harmonics can be reached using an MDC.
- Experiments will start end of November.

Publications

- C. Argyropoulos et al., A self-consistent linearized model and code for the calculation of the starting pitch factor of TE modes in gyrotron cavities', Physics of Plasmas, 2025, (submitted).
- L. Feuerstein et al. ,Enhanced Suppression of First Harmonic Competing Modes in Harmonic Coaxial Gyrotron Cavities with Tapered Corrugation Depth ', (ready for submission).
- S. Illy et al., 'Technical Concepts for Megawatt-Class Fusion Gyrotrons Operating at the Second Harmonic of the Cyclotron Frequency', 26th International Vacuum Electronics Conference (IVEC), Apr. 2025.
- L. Feuerstein et al., 'Design Strategies for Second Harmonic Gyrotrons in Nuclear Fusion Applications', 16th German Microwave Conference (GeMiC), Mar. 2025.
- L. Feuerstein et al., 'MW Level 280 GHz 2nd Harmonic Coaxial Gyrotron Cavity with Variable Corrugation Depth', Joint International Vacuum Electronics Conference and International Vacuum Electron Sources, Apr. 2024.
- S. Illy et al., 'Design Proposals for Megawatt-Class Fusion Gyrotrons Operating at the Second Harmonic of the Cyclotron Frequency', 22th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating, Apr. 2024.



Backup

T2.2 Profiling on Outer Corrugations (2)

- By examining the eigenvalue spectrum, it has been found that only by localizing the outer corrugations at specific $C(\frac{R_{\text{out}}}{R_{\text{in}}})$ range the main 1st harmonic competing modes can be suppressed, while the operating mode remains unaffected.
- The specific C range is translated to specific z range \rightarrow localization.

