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@) Our Enabling Research Project’s overview

* Objective: Highlight potential impact of quantum computing to
plasma fusion in computational & theoretical level.

* Quantum computing offers processing capabilities beyond classical HPC!

» Superposition, entanglement, quantum parallelism, ... . g:“ggg %g%ﬁﬁof
» Already applied to the field of Quantum Information Science (QIS). {’é’u%w”s” ‘ Jl %
* Plasma demonstrates complicated processes with high computational demands! 7 J

» Propagation phenomena that require full-wave description (e.g. scattering).
» Kinetic phenomena with nonlinearities (e.g. wave-wave interaction).

* Opportunity for relative fields of magnetic & inertial plasmas
to establish synergies in fusion research!

* Project implementation based on multidisciplinary team structure & collaboration.

* Research work spanning over different parts and goals.

* NTUA contributions: QC formulation & simulation of Maxwell’s equations for
electromagnetic waves in cold & thermal inhomogeneous magnetized plasma.

* IPFN contributions: QC formulation & simulation of OD 3-wave interactions with
variational error correction & quantum representation of the 1D problem.
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\_) Basics of quantum computing

(

* Quantum Computing (QC) relies on many fundamental
principles of quantum mechanics.

* Superposition — Decoherence — Entanglement — Interference.

e Schrodinger’s equation: ; l}"y)
t

* A system may possess one of a number of states |y,) with probability p;.

= HA|y), A =H" — unitary evolution operator

Probability density r}‘p )
matrix formalism dt

P=ZM|‘MHW|
E;:r;z |
i

=[H.p], p(t) =UpoU’

Qubits: The fundamental carriers of information in QC!

* Qubits can behave like binary bits or weighted combinations of 0 & 1,
but output a single bit of information at the end of the computation.

* Superposed & entangled qubits can scale exponentially & create multi
dimensional spaces (— complex problems represented in new ways).

=1 n
W) =" alk). k=jn12" +fam22" 2+ L+ 12+ 02° [ entangted 7 @) [qubit),
k=0 =1
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@) Computer implementation of quantum states

* Probabilistic nature (viewed as collection of measurement operators).

~ .- Q@ Exponentially larger memory compared to classical machines, dim(H) = 2"
ARy T Y I . Mm ) .
p(m) = (LM Mpylv), |¢¥) = © Quantum parallelism

© Probabilistic and post-selective protocols

* Probability-preserving evolution is compatible with the use of logical “gates”.

Pauli gates < o9l = W< =t 4 - cos§ —isin§ . |cos§ —sin§ : e/
) X = ., ¥ = . L= R.(8)= .8 a | R (B8)=] . 5 s | .Irf::“:— .
Rotation gates 1 0 i 0 0 =11 —isins COsS= SIN= COS= () evl<

* Simplification in the representation by replacement of the 0y — f1
. . . . 00) 4|11

multiple (groups) of gates with quantum circuits. l R )\/§| !

e Quantum circuit: Collection of wires ( — qubits) & boxes ( — qubit gates). 0) W

* Input state given on the left side, outcome state produced on the right side. 100 0

« Control by bit 1 — solid black dot vs control by bit 0 — hollow white dot. - L [1 1 } cnoT= |9 1 OO0
V21 -1 0 0 0 1

* Advantage if the decomposition to qubit gates is simple ( — shallow circuit). 0 0 10
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@) Quantum simulation of systems described by linear PDEs

=

* Schrodinger reformulation of classical PDE — Quantum simulation of evolution operator.

YT by, v e

Unitary evolution — Hermitian tensor (characteristic of conservative systems)

Non-unitary evolution — anti-Hermitian part (connected to dissipation)

* Quantum approach for Maxwell’s equations (6-vector formalism for EM field).

.0

OB(r.1) 4 ia, v-d =0, d=[g|. u=[gl =

Jt

dD(r.t)
dt

V-D(rt)=0, V-B(rt)=0.

B H

=-V KEI{I‘._I‘}I, :?KH(?‘J}

[
B

d(r.t)= Lfix’(r)u(r, t)+ -/Or @(r, t—7)u(r,7)dT, W = [E(r) 0 ]

* Quantum approach for wave-wave interaction problem (Hamiltonian formalism).

d Ay = gArAz Hamiltonian system has
2 constants of motion _ .
diAy = —8*1"11!‘-1; S> =ni+n3, S3=n;+n * III:!-';II Wy = Hl"—'::'
. number operator Schroédinger
diAz = —g'AiA, ny=A%A; representation

H = igAlA)A; — ig"A AL AL

X

COUPLING 1
[Aj, Al =38
COEFFICIENT

*On the basis |n, n2, n3), any state of the D-dimensional subspace V is represented by |y) = Zaﬂ-“’z —J.s3 =52+ j. )
j=0

5 Christos Tsironis | ENR-MOD.02.NCSRD (Final Reporting of 2024 — 2025 activities) | 25 November 2025



h) Principles followed by quantum computing algorithms

* Quantum algorithms break down to the following stages: Qubits Superposition  Entangelment

» Qubit encoding & superposition of computational states. @ @ @@
0

» Generation of entanglement within the quantum circuit. o 1

. . Quantum Gates Measuremen

» Occurrence of interference between (some of) the different states. rt_] ) ! :
. o [H] )

» Some probable outcomes are canceled out, while others are amplified. @ 7

» The remaining outcomes are the computed solutions of the problem. [2]

* Qubit encoding: Representation of classical states as quantum superpositions.

* First step: Finite spatial discretization of the continuous (classical) state in configuration space.

= Z vi(r,t)e, V= [x0,x0 + Lx| X [yo, Y0 + Ly] X [20, 20 + L;]

* Second step: Definition of amplitude & spatial qubit registers — |pi) = |io + pidi), pi=0,1,.. . Ni =1, for i =x,y,z.

{Ip)}, np = log,(N) = log,(Ny) + logy (N, ) + logo(N;) = npe + npy + npz qubits — {|q)}, g =0,1,..,5 — 1, ng = logy(d) qubits

* Third step: Discretization of configuration space on 3D lattice — N = N N, /, nodes, §; = L;/N;, for i =x,y,z

s—12"—1
* Final result: Classical state translates to n=n_+n_— qubits quantum state — ¥(r,t) < |9(t) =YD Ya(t)]a)|p)
q=0 p=0
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Overview of our (dynamic) project workplan

QC implementation for scattering

& propagation of EM structures

in cold magnetized plasma

Optimization of variational circuits
for OD setup of 3-wave interaction
in laser plasmas

Quantum representation & QC
implementation of Maxwell’s
equations in hot magnetized plasma

Implementation of wave interaction
scenarios in QC environment based
on lower-dimensional simulations

Project phases Scientific milestones

Simulation of EM scattering in cold inhomogeneous magnetized plasma with QLA method

Implementation of quantum-walk-based QLA algorithm for Maxwell’s equations in cold magnetized plasma

Comparison of QLA computation with classical methods (scaling & accuracy vs FDTD computations)

Characterization of decoherence errors for different QC parameters in the OD 3-wave mixing problem

Quantitative comparisons of decoherence errors for different quantum implementations of
variational wavefunction ansatzes (parameterized circuit architectures)

Investigation on an optimal combination of quantum circuit depth & accuracy for 3-wave simulations
Theoretical reformulation of Maxwell’s equations for dissipative plasmas in Schrédinger-Dirac form
Quantum circuit implementation for scattering & propagation of EM waves in hot magnetized plasma

[ADDITIONAL ACTIVITY] Theoretical QC framework for complex/nonlinear plasma physics problems

Classical/Quantum simulations of lower-dimensional wave interaction problems in different
parameter regimes for benchmark and diagnostic purposes

Implementation of wave interaction scenarios with different system parameters & circuit
depths on IBM Qiskit and on quantum computer (if available)

[ADDITIONAL ACTIVITY] Variational QC methods for the simulation of plasma instabilities
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("‘}) QC implementation for EM waves in cold magnetized plasma

* QLA simulations of EM propagation & scattering in cold magnetized plasmas.

* Quantum circuit implementation for estimating W —1H

ﬂ"{'r "H 'irn q{-*mrr (Rim}Kf{xi}P {ﬁ“]”ﬂpl '}QL} j([]}{-m:‘[ ””:Iw"*f :H:'rﬂ: 'I{ fffff ul.x*lf’fl-'[z:lliﬂc-t.-"lzj]
% I3z @ R, (610, /2) ]’R[”['” 2 O [Faxa @ B (0../2)][{ax2 @ RI(51%8, f@ [Rh-leelifgi2hlce) s ap,

the state vector (using 2-qubit registers). T T P

E:rhl:l:l:l::

o

oy

7
f(w) =

pmiad I

e |40+ A2 —

* Quantum Lattice Algorithm (QLA) decomposes unitary evolution to product of simple unitary operators.

S —iD 0]
iD S 0
0 0 PJ

* QLA simulations of Gaussian wave-packet scattering by scalar inhomogeneous dielectrics (corresponding
to turbulent plasma “blob” structures) test the capabilities of the spatio-temporal initial value simulators.

Visualization of the wave electric field’s z-component in QLA simulation of electromagnetic wave-packet scattering off a

dielectric inhomogeneity in the shape of a cylinder (left), ellipse (middle left), cone (middle right) and sphere (right).

8
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@) QC implementation for EM waves in cold magnetized plasma

* Development of quantum-walk QLA algorithm for cold magnetized plasmas.

* Explicit guantum algorithm by encoding QLA as a quantum-walk Hamiltonian simulation process.
Vee Vesllgpr 2 [4(2))

* Sequence of streaming, coin & simple unitary operators — |1t + Af)) = Vi Vi

-~

Ugra = UyUx . -
. pr A Bex A Ben il Gird f—mf EprAl fdx A Aem Al 557 = (lg) {gel+gs ) {gi )@ ST=Y @) C
Ux = 8350 S5 O ST O ST Ox S5 Cx 857 O ST Cn ST C .

Y lad (gel®Tae s L

" Gt Sl GuA amn Al Gt A G-ws atusl SHe S omu Al
Uy = 525 f:rvf"zﬁ ﬁ'}-’-ﬁ'[m '5:'1*511:5 GFE‘EE lI':-:‘--"5:?'255 lI'::rﬂ.-f'::?'tlﬂ. c‘:"sms '5}* b= {i.5} |p> S

] [(t + At))

Quantum walks have been prioritized over relevant Hamiltonian algorithms (QHS) due to their natural
alignment with QLA procedure, as well as due to simpler/explicit quantum encoding.

Quantum circuit implementation of all operators (— application envisaged using 2-qubit registers).

o o ) o o ey o L2 | —— | il R, 20
Tl i a l ] r i j — E_,: g l 1

"l_ 1y IlI L e h
e TA IIIll | | T |
] ﬁ:l.rltgﬁlr:i} | fi‘.lr':z‘gm:] I L rL | |
Ll L

h
L=y

- Wl

@Jr - Algorithm ready to port
I to quantum hardware

[ e (i
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\_) QC implementation for EM waves in cold magnetized plasma

(

 Comparison with FDTD & investigation of limitations & advantages of each method.

e Challenges in computationally defining appropriate initial conditions for simulations in Qiskit.

» Traditional response theory is not formulated as an initial value problem!
* Resource-efficiency in the asymptotic limit for the quantum walk algorithm over (3D) FDTD method.
* Case study: EM scattering in 3D lattice with N nodes. o] N (V) N () N ()

» QLA poly[log(N)] logical gates vs FDTD O(N) operations.  FDTD  Ojpoly(N)] ON"poly ] O(T* epoly(* ']
» Supported by QLA data in reduced non-dispersive cases. QLA Oflos ) - ON) OWNT"hog ) - ON =) OIT/e)lon (T7/e)" 1~ OCT/e) 2 |

* Setup similar FDTD simulations of EM wave propagation in cold plasma to benchmark with QC method.

» First results show sufficient agreement.
Pursue further improvement in scaling via geometric methods

1

n+1 A= t 7 i
Hygl. . = Hsgl..,” — ——Wa(Es|: . ). . .
saliji saliji noir it sliju) * Geometric representation of Geomietric
1 . .

s s , 3 2 cold magnetized plasmas - }'J representation of a
n+l _ n H+ b t . . \ : :
Eglife = ;ZI%; [’észsmliJ,kJr\llq(Hsl,-J-,f) Atk using Clifford algebra (CLA). k grade-3 trivector in

=1m= . the framework of CLA
ntd .. . S A .
—crg,,,Eiml'?;ﬁ — (&tm — Sime0) agﬂ - B * Offers a geometric invariant / corresponding to
1], t ol . e 7 . .
kLo / framework that benefits K / synthesis of spatial
T A Al / computations notonly inQC vy \_— ' r°tat'°'|‘s afgitime
: = ; . . / translations in
VALY = Y m| Adllm — Al " 5 but also in classical plasma
(Aij) Zl ;;,k+7 ‘ ;+7,;,k . . _ P Minkowski spacetime.
" Ay|f+5§uf:ff _AX|1'J+5’_%JC T s oan w0 e oW ows ow simulation techniques.
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@) Optimization of variational circuits for 3-wave interaction C )
/!

* VQE simulations of 0D 3-wave mixing scenarios under different QC parameters.
* Study of 0D setup: Mapping of the occupation probability of each wave to a 2-qubit system.

* Variational approach has the advantage of shorter circuit depth & wavefunction reconstruction.
» Standard QHS algorithm may accumulate errors after several time-steps.  #(4) = () Hlp(@) 5 - _ @)
» Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical , /--« (_” {:‘Zén(ﬂ} | (_I} ) m»}m-_
method to model the system as a cost function minimization problem. S S
» Requires variational principle to map QC states to the VQE parameters. (t+At) = argmax; [(W(@) WO

. : : . . 0) (=] 1w
* VQE noiseless simulation for 2 ansatzes of different expressibility.
» Deeper circuits appear more robust than shallower circuits. 0) —UO) [ e = e )
» Optimal observable retrieval depends on robustness of ansatz to noise.

0) —U@) [ (t + At))

:E% IT:EZ;';TZ@EEZEZZE VQE ansatzes of 3-wave mixing problem
X for 2 different variational blocks.

x . \/\/\/\/\/\/\/\/ (from top to bottom) The quantum circuit,

se —— with a block including the corresponding

parametrized rotations, and simulation

ro results. The 3 rows represent the time

= /\AAAA/\/\/\ evolution of the relative probabilities or

weights of each of the 3 waves.

i

A
]
5
Al
p
:

o
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@) Optimization of variational circuits for 3-wave interaction ( )
i

* Quantum implementation & analysis of 3-wave interaction scenarios.

* Simulation results yield particular variational ansatz that allows for shallower & more robust circuits.
» Support simulation input via Gaussian-like wavefunctions using only few parameters. ou(2,0) 1
» Provision of improved chances for efficient use in quantum hardware computers!

* Quantum circuit implementation for the 0D version of the 3-wave system.
» All the (first in sequence) n — 1 qubits are based on a Y-rotation gate with a parameterized variable.
» Employment of CNOT logical (gate) operations assuming a general (n-1)-qubit wavefunction.
» Circuit depth minimization by enforcing mirror symmetry around the midpoint of the computational basis.
» The last block introduces a series of advection operations which shift the wavefunction by §,.

y y
=1 e

. [
(2m)1/1,/a

______ I ?P??E ff_ El_“}'ﬁfs_ o enf?x_'c_c_ _SEPEIPFU}' 0.4 Gaussian ansatz wavefunction

10y — Ry-(6,) ': b Ry (0x.1) E ' D | Shlftlng of — Pt =0,8.0, = {J-:I centered
| ' the Gaussian osf — ¥ =04, 0,) shifted

10y — Ry (62) b Ry (61.2) 1 P - variational |= |

. L L [U©w) ansatzand | £°%f
|0) —— Ry (63) — H—e Ry (0k,3) H——P E — position of the &
P e B : T : wavefunction

o - 1
- ! after time t. 005 2 =
shift by 6, cell index x;
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@) Optimization of variational circuits for 3-wave interaction C )
1]

* Quantification of error reduction based on different variational algorithms.

* Optimal VQ circuits for scenarios mapped to physical problems. y Mod Fig2: Occupation number states
» Prediction of required resources for large-scale QC simulations.
» Study expansions on analytic solutions to n-wave mixing problems. 5
» Calculation of probabilities of occupation number states for n = 3.

* Gaussian-like ansatz shows possibility of efficiently reproducing
symmetrical functions (to be used as simulation input).
» Performed tests on robustness of the ansatz by varying the quantum circuit size & depth.
» Quantum circuit needs to have the same number of controlled rotations blocks as its number of qubits.
» Caveat of method: Fails to reproduce effects owed to asymmetry (like skewness).

(left) The evolution of variational
parameters for nonlinearity
parameter X, = 1073, (right) The
linear correlation between the
average energy from the
wavefunction and the parameter
of the wavefunction translation.

A “TEST-CASE” PROBLEM 1 o

Quantum Radiation Reaction at % ] i
T e———— 1 < 00f

afit,y) @ 1a Fokker-Planck S
=3 —(Af) + 547 (Bf

+ s W ‘-
ot 20y ) equation 2 ,

2

—0.2F

2 et 9 55 ovine 4

. B~ v X I
~ X : h N —_——
3 h 2 l\.fﬁ 0 100 200 300 400

VarQITE time steps
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@) QC representation of Maxwell’s equations in dissipative plasma

* Formulation of non-Hermitian plasma permittivity tensors for modeling dissipation.

* Unitary evolution structure in Schrodinger representation of Maxwell’s equations is broken!
» Dissipation appears as a sparse diagonal operator occupying a multi-dimensional subspace.
» Suzuki-Trotter approximation for the evolution operator enables isolation of its non-unitary part.
» The unitary part is implemented with QLA on n qubits, whereas the non-unitary part needs more effort...

 Example: Algorithmic approach to efficiently handle collisional dissipation effects in dispersive media.

» Introducing a phenomenological collision frequency between the plasma species (ions & electrons).
» Generalization of quantum-walk QLA formulation with post-selective time marching procedure.

. ' A 22 s b (t + 2407 b {4 (V= DAS]T ho(t+ T
E.|:'II|.II ! _l'll_lI I s = T = t'l"-.-'l'l ] II.-:ll__ll'l.l I p””m“ﬂﬂ[:.]q] _ "'Ill-r-’b.{f + ﬂf]”_- |1,J'rp_.|: .]lL o ”w“{‘ + I:J rll :I :Il.-_. ) . |yu’|: r—|_ ]ll _
[t (2 + A" [l (E 4+ (N = 2)ABT  [leb, (4 (Ve — D)AL)]"
- —Ah : —1 Al y P S Y TN,
K=e o = ding( ey wen. € Tensn) (|0} @ 19, (£1)) = |0} I [, ()35 |1} (R~ I [eb (8]} B Poyecess (T = e = g7 = :
= - .'“-'|—}ﬂn'_'l [
o —& 0 —{& a ~
I |’:',L'(t - .&t)) Useiect T
) & 1%0) e—15tD —— [1(5¢))

QC circuits of the QLA-based unitary (left) and Trotterized non-unitary (right) evolution operators for collisionally dissipative systems.
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ﬁ) QC representation of Maxwell’s equations in dissipative plasma

* Probabilistic dilation QC algorithms for plasma wave propagation including dissipation.

* Algorithm #1: Linear damping-type, completely positive trace-preserving (CPTP) guantum channel.
» An unspecified environment interacts with the system & produces the non-unitary evolution.

» The unspecified environment is modeled by one ancillary qubit, resulting in implementation scaling of
0(2™"'n?) elementary gates for the (closed) system-environment evolution operator in the dilated space.

* Algorithm #2: Approximation of non-unitary operators as a Linear Combination of Unitaries (LCU).
» Diagonal structure of dissipation — Optimized representation of non-unitary part over 0(2") gates.
» LCU method further reduces the implementation scaling into O[poly(n)] basic gates.

* Algorithm #3: Biorthogonal representation of the non-unitary evolution operator.

» Mapping non-unitary process to isomorphic unitary matrix in the orthonormal computational basis.

» Option to implement non-unitary operators with eigenvalues > 1 (— modeling of wave instabilities).
» Implementation cost of the method scales as O(N?2") using a single unitary oracle (“black box”).

i H R.(0) (@) e P Ryp(0) Ky
isy — A plat) = ~ A ; - -
4 ! W[1|K[]|Wn} ] 'I'}I —,»-"Il"— e —E} IfJF_T — *"'f
1 o] |oeey ‘ oLcy! il
Ugiss 10} g} = 103 Ky |y} + | ) (K. - K ) wo) ]
- o | aN ‘N T P
crU, (Ve 1)(|9) ® [0)*) = ;Z ) @ Vamem ln) | 1oy 51 T} Toa] - 0™ = Un ¥ )out

QC implementations of the CPTP-based, LCU-based and biorthogonal-based evolution operators for waves in dissipative plasma.
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@ Additional activity on QC for complex/nonlinear plasma systems

e Transitioning to quantum algorithms for nonlinear physical problems and plasmas.

* Problem #1: Classical fluid dynamics in the presence of nonlinearities.
» QC reformulation via 2-stage generalized Madelung transformation on a scalar Gross-Pitaevski equation.

I:'--:'.1:"'I - ) p a a L0 1 N 1
o = SV V A glul?) 0 BT =y (901 + T6f) - ol B rg - (—v2+ les?) ¥

dpnie; ) _ o | - |
g:l-a + i [ + pdy 4| = [4::15;@[*}.!—‘_,."5 — vgﬂﬁg] = Jpe B » ;

P (t + At) = Uy Uxp(t)

> Unitary QLA determined as 2nd-order discrete representation. |, _ 710,850 85 C.855C, S5 0.8+ 0.8 0.8 C.

» Time-marching algorithm combined with QC-arithmetic o
. . gt =Y ek, " =1, s_|k=|k-1 =)
Hadamard model for constructing the nonlinear terms. ciea = 1y 5= @RI O=le-te) [ ©

» Caveat: QNC theorem — Nested recursive structure scaling worse than RK solvers.

* Problem #2: Chaotic dynamics of the Lorentz attractor. 9™ ) = Y|y = 5 8 awlly ) T gy

Comparisons with
classical ODE solvers

, show very good \

5 O 0 o

agreement! e
QLA computation of initial 2D Taylor-Green vortices, following the Lorentz attractor trajectory (left) as computed
time evolution (left to right) of a nonlinear conservative fluid equation. by a 2"9-order recursive QC algorithm (right)
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C_@)‘ Simulation of lower-dimensional n-wave interaction problems C )
1/

 QMC simulations of interacting photon beams in different parameter regimes.

* Investigation of pair production via linear Breit-Wheeler mechanism. ®
» Strong connection with applications envisaged in the current era of Gt
Noisy Intermediate-Scale Quantum (NISQ) computers. @ e ki
» In the course of lower-dimensional phase space representations on § '
gubits (leading to implementations of quantum algorithms). C
* Physics setup: Two photon beams with uniform & o = a2 2 - Y 2y -2 21n(1 4 )] + ff_f: (1 - 20)1n(1 —v)
Gaussian-like energy distributions collide head-on. _ - _ .2 LY
. . . . r, is the classical electron radius (r, = 5 )
» Breit-Wheeler cross section & pair-production mecT g
probability readily calculated from theory. v=1- ﬁf“’“ere# = % L
e Estimation of the pair production number.
» Calculation via Quantum Monte Carlo o0 Breit-Wheeler
(QMC) integration algorithm. Lon cross section (left)

L

and number of

£ produced pairs
16000 (right) for head-on

» Requires to construct a Grover operator & \ - photon collision.

i 1 b i [) i 9 L]

apply an amplitude estimation algorithm. L e 3 By o photon | (MeY)

E,, (MeV)

m—1

|
A|0)x[0) = Z{; VEivBili)all) + Y V1~ fiy/pili)al0)

1=l

E
& 000 |
E
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@ Simulation of lower-dimensional n-wave interaction problems

C,,J

* Programming simulation algorithms for the 2-photon interaction in Qiskit emulator.

* Overview of requirements for the quantum circuital structure towards QC simulations.
» Beam energy initialization into quantum state — Variational approach + Fourier Series Loader (FSL).

jmmmmmmmmmmm - g ?!‘I_ ________________________ . Step b Find a Fourier series approximation Step 2 Find a suitalde L such that T -
' . () E Flx) % () 1= Ty eam eae” 25 L =+ = 13 as in ﬁ —
: |U:I U{{E{z}}) |1,!:"{E'{E:I}::I -"'7! I:':'th'Lg {G} : P . . |[]}3‘CI_JL-- n— 1]
T | PR S S 5 ,’\/ &) 1= 22 S e [y 2 ey 2 — R
it + di} — % k=0 k=1 " et [ foy = 1.7}

» Offline post-processing (— avoid repeated simulations on real hardware).

[y ety [,

» Embedding of cross-sections using controlled rotations (via QC gates).

* Results of QC simulations compared for each initialization technique (Qiskit vs FSL vs variational).
» Qiskit & variational method give better accuracy than FSL (below truncation number limit of n-1 qubits).

3.0

20000, as Theoretical = FSL (left) Calculated number of pairs
£ £,,. Variational " Qiskit 7 produced by 2 interacting photon
25000 = - o
s E . St N <\ beams by varying the energy of the
< 20000 £ s\ monoenergetic photon beam, and
E Z10{ - .
" 15000 1 =V . o _ (right) relative error of the results
0000 S NetA e, 479 from FSL, variational and Qiskit’s own
. ] : . T e S . o S .
2 3 5 6 7 8 10 2 3 4 5 6 7 8 9 10 jnijtialization vs the theoretical results.

Energy of photon 1 (MeV)

Energy of photon 1 (MeV)
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7

@) Additional activity on QC simulation of plasma instabilities C )

e Setup of variational QC models for simulating kinetic wave-plasma instabilities.

* Quantum algorithms have the potential to efficiently solve certain classes of eigenvalue problems.
» Quantum Phase Estimation (QPE) algorithm recovers real spectra of Hermitian Hamiltonians.
» Characterization of instabilities require access to complex eigenvalue calculation!

 Variational framework encodes non-Hermitian plasma coire £10,)= (40 - o
Hamiltonians into measurable Hermitian cost functions. Updsie Updac
» Cost function’s minima yield the desired eigenvalues. o TR | .
. . . . . . epege i ” (v Hs] L
» Potential applications to kinetic plasma instabilities of 0 o —s . !
complex nature (nonlinear, resistive, multi-branch, ...). © —l— o —
e PrOOf Of Concept glven Over Slmple Dispersion Relation Expectation value
. . o . ; ;
plasma dispersion problems! 20 031 S ioell  (left) Dispersion
> Cold 2 . bilitv d . 02 O k=ka relation of the 2-
old 2-stream insta .| ity ynarmcs 15 = 5] ? stream instability
encoded to 4x4 matrix of density & 2. F aojored ) 000l foracold plasma
velocity beam perturbations. E 011 £ fluid and (right)
» QC algorithm recovers the wave’s °% 021 expectation values
frequency & growth rate. 00 R o of the dispersion
000 025 050 075 1.00 1.25 -1 0 1 equation roots.
» Ran on present-day QC (— lonQ)! Ko/ VZ (Re(F) = w) / VE
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/@) Results published in peer-reviewed journals & book chapters

| Authors Title of manuscript Journal/Book

E. Koukoutsis, K. Hizanidis, Quantum simulation of dissipation for Maxwell’s Future Gener. Comput. Syst.,
A. K. Ram, G. Vahala equations in dispersive media vol. 159, pp. 221-229 (2024)
, - . . Variational quantum simulation of the Fokker—Planck equation J. Plasma Phys., vol. 91,
O. Amaro, L. I. lhigo Gamiz, M. Vranic ] o )
applied to quantum radiation reaction pp. 122 (2025)
E. Koukoutsis, P. Papagiannis, ) ) ) )
S Quantum implementation of non-unitary operations Quantum Inf. Comput., vol. 25,
K. Hizanidis, A. K. Ram, G. Vahala, i . )
. . . with biorthogonal representations pp. 141-155 (2025)
O. Amaro, L. I. I. Gamiz, D. Vallis
M. Soe, G. Vahala, L. Vahala, ) ) ) ) ) Radiat. Eff. Defects Solids,
. e Quantum lattice representation of nonlinear classical physics
A. K. Ram, E. Koukoutsis, K. Hizanidis vol. 180, pp. 98-102 (2025)
A. K. Ram, E. Koukoutsis, Mathematical foundation for quantum computing of Emerging Applications of lons &
G. Vahala, K. Hizanidis electromagnetic wave propagation in dielectric media Plasmas, Springer Nature (2025)
K. Hizanidis, E. Koukoutsis, ) ) . Phys. Plasmas, vol. 32,
o Spacetime algebra formulation of cold magnetized plasmas
P. Papagiannis, A. K. Ram, G. Vahala art. 092110 (2025)
E. Koukoutsis, G. Vahala, M. Soe, Time-marching quantum algorithm for simulation

Entropy, vol. 27, p. 871 (2025
K. Hizanidis, L. Vahala, A. K. Ram of the nonlinear Lorenz dynamics bY. P ( )

E. Koukoutsis, K. Hizanidis, G. Vahala, A quantum walk inspired algorithm for simulating wave propagation

.. .. , . . arXiv, art. 2503.24211 (2025)
C. Tsironis, A. K. Ram, M. Soe, L. Vahala and scattering in conservative and dissipative magnetized plasma

2 articles in preparation: QM C Simulations for Strong Field QED (Gamiz et al) QC Framework for Transient Scattering of EM Waves by Dielectric Structures (Ram et al)
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@) Results presented in conferences, workshops & meetings

—

=
m Oral contribution NTUA Young Minds Physics Day 2024 (Greece, 17/5/2024)
m Poster presentation 50th EPS Conference on Plasma Physics (Spain, 8 — 12/7/2024)
Poster presentation 37t European Conference on Laser Interaction with Matter (Portugal, 16 — 20/9/2024)
m Poster presentation 66t APS Division of Plasma Physics Meeting (United States, 7 — 11/10/2024)
m Poster presentation European Quantum Technologies Conference 2024 (Portugal, 18 — 20/11/2024)
Poster presentation European Quantum Technologies Conference 2024 (Portugal, 18 — 20/11/2024)
m Oral contribution Quantum Science & Technology Activities @ NTUA (Greece, 17/3/2005)
Poster presentation Quantum Day @ PT (Portugal, 14/4/2025)
Poster presentation Quantum Day @ PT (Portugal, 14/4/2025)

0. Amaro Poster presentation 2" FoQaCiA Workshop (Portugal, 2 —6//2025)

0. Amaro Oral contribution 515t EPS Conference on Plasma Physics (Lithuania, 7 —11/7/2025)
m Poster presentation 515t EPS Conference on Plasma Physics (Lithuania, 7 —11/7/2025)
m Invited lecture 215t European Fusion Theory Conference (France, 23 — 26/9/2025)
m Poster presentation 215t European Fusion Theory Conference (France, 23 —26/9/2025)
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("\,) Scientific events organized for project dissemination

Satellite meeting “Quantum Computing for Plasma Physics” Colloquium “Quantum for Plasmas & Plasmas for Quantum”
(part of the 2025 EPS Plasma Conference at Lithuania) (series of lectures on QC organized regularly by IPFN)

w TECNICO LISBOA Porugues  Apps I

About Técnico Education Research and Innovation Alumni and Partners

for Plasma Physics and rechnology

Satellite Meeting Sgﬁ"'“m s =

AMD TECHHOLO BT

Event Schedule Quantum for Plasmas & Plasmas for Quantum - Marija

Vranic

PPCF Special
Issue on QC

Presentation title Affiliation
BIE=E

MaZena Qumnmmobgynamcoldnmemsdldsm
Mackolt-Sinkevitiend mmuodellngwrtm
S e

ol May

I ANICHD.

~@ 5=

) e e e I I
T Harnessing the microscopic quantum particles
Quani Tensor Trains
R
- m“‘mm quantum algorithms m:‘-m Wﬂ:"d carriers and computational microprocessors for

AQuunmm Mm for Nonlinear Electramagnetic breakthrough advancements in large-scale
- u.?.ﬁ:%va':ﬂummm kyushu gnivershy plasma fusion research.

“
Guest Eitor
kil . . Everyone is welcomed to attend (registration required). Each session will include a

_ Efstratios Koukoutsis ! (reg E )

Coffea Break

‘m = e surmmary or review talk of 30 minutes followed by a discussion of 30 minutes. The

1700 - 18:00 Panel Discizasion on PIasma Physica, Quantim Technologiss and European Guantum Inltiatives Lucas I. |nigo Gamiz ) _ ) ) _ o
discussion sessions will run once per month, and will be hosted by Técnico Professors

e o v S
- = Sk Marija Vranic Yasser Omar (DM/IST & IT) and Luis Oliveira e Silva (GoLP/IPFN/IST).

22 Christos Tsironis | ENR-MOD.02.NCSRD (Final Reporting of 2024 — 2025 activities) | 25 November 2025



e

7 :
Q) Summary of project outcome

* QC algorithms for various problems relevant to plasma fusion.

23

QC implementation for EM waves in cold magnetized plasma.
» QLA simulations of EM propagation & scattering in cold magnetized plasmas.
» Implementation of quantum-walk QLA & comparison with classical methods.

QC representation of Maxwell’s equations in dissipative plasma.

» Formulation of non-Hermitian plasma permittivity tensors for modeling dissipation.

» Probabilistic dilation algorithms for plasma wave propagation including dissipation.
» Transitioning to quantum algorithms for nonlinear physical problems and plasmas.

Optimization of variational circuits for 3-wave interaction.
» VQE simulations of OD 3-wave mixing scenarios under different QC parameters.
» Quantum implementation & analysis of 3-wave interaction scenarios.

Simulation of lower-dimensional n-wave interaction problems.

» QMC simulations of interacting photon beams in different parameter regimes.
» Programming algorithms for the 2-photon interaction in Qiskit emulator.

» Setup of variational QC models for simulating kinetic wave-plasma instabilities.

Project dissemination

7 articles in peer-
reviewed journals
(+2 in preparation)

1 chapter in books

14 presentations in
conferences

4 Organization of 1 N
conference satellite
meeting (+ special
issue in peer-

\_ reviewed journal) /

Built fruitful collaboration between NTUA & IST teams on various topics in plasma physics within the QC umbrella!!!
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@) Challenges for the future

=7

* Pursue QC developments in problems relevant to plasma fusion.

24

* QC implementation for EM waves in magnetized plasma.

» Program QC algorithms for plasma EM wave propagation in Qiskit emulator.

» Further explore geometric representation of cold magnetized plasmas.
» NTUA QCLab acquired 4 2-qubit NMR QCs from SPINQ — Hands-on training.

* Transitioning to quantum algorithms for nonlinear plasma physics problems.

» Redefining key questions surrounding the use of QC for nonlinear systems.

» Work on microscopic, first-principles Hamiltonian frameworks that integrate
canonical perturbation methods with geometric quantum description.

» Allow transition from dense phase-space portraits to n-qubit QC states.

» Variational QC models for simulating kinetic wave-plasma instabilities.
» Develop QMC framework for studying collisions in plasmas.

» Employ more advanced algorithms (like QSVT) to increase problem dimensions.
» Investigate more complex scenarios (like nonlinear MHD & kinetic instabilities).

High-level quantum
algorithm

QFT]

Compilation into
algorithmic primitives

& Y& |-

&

Fault-tolerant
implementation
1

Solution on
quantum hardware

[

# Simulation in hardware QC may include inherent noise — Error mitigation techniques (e.g. Pauli twirling)
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