
He effects in concentrated equiatomic
refractory alloys with increasing chemical 
complexity: From medium to high entropy 

alloys (HeRHEA)

EUROFUSION ENR-MAT.02.VTT-T002-D001
01/01/2024          31/12/2025

PI: Prof.Flyura Djurabekova

1



Partners of the HeRHEA project
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Timeline of HeRHEA project
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WP1(exp) "Synthesis and characterization 
of REAA with different compositions"
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Cutting of the bulk as-

fabricated material 

subcontractor in France for EDM cutting

Material fabrication at VTT

Materials sent to CNRS-CEMHTI and UHEL for ex 

situ ion implantation and characterizations

Available material(s) to be studied

W, W-Ta, W-Mo, W-V
Electrical Discharge Machining

Polishing performed 

on W, W-V, W-Ta and 

the ternary alloys
WTaV, WTaMo

Mirror-polished samples (mid

August / Sept.)

Other materials from Portugal

W-Ta-V, W-Ta-Mo half discs

Quick SEM-EDX characterization 

of binary alloys

Surface mechanical 

polishing

Samples
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Electrical Discharge Machining

half discs

Samples attached on the implantation sample holder

Ion implantation performed

in Sept. 2025 using 190 kV IRMA 

ion implanter

He energy: 100 keV

He fluence : 1x1017 cm-2

Temperature of the samples: 500°C

WV

WTaV

WTaW

WTaMo

From literature: should be enough He to see bubbles in W 
SRIM calculations using average Ed = 44 eV, see J. Byggmästar, F. Djurabekova, and K. 

Nordlund, Phys. Rev. Materials 8 (2024) 115406

He bubbles observed in W by TEM starting 5x1015 cm-2 fluence (12 keV, 600°C), see F.

Luo et al, Fusion Engineering and Design 125 (2017) 463, 

dx.doi.org/10.1016/j.fusengdes.2017.04.014

Samples 
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WP2(th) "Development of ML-KMC model 
of vacancy clustering in REAAs in the 
presence of He atoms"

Diffusion of helium in tungsten-based refractory alloys by molecular dynamics simulations
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Potential He-refractory alloys

• We have developed the interatomic potential to describe the interaction of He atoms with all atoms in HEA composition.

The interactions are purely repulsive, the HEA is described by previously developed tabGAP potential
• [J. Byggmästar, K. Nordlund, and F. Djurabekova, Simple machine-learned interatomic potentials for complex alloys, Phys, Rev.

Materials 6 (8),2022.]

• Tabel 2 illustrates the comparison of formation, migration and binding energies for He atoms in monoelemental metals.
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Binding energy  

Pure metals W and W-based alloys

References for the DFT values:

Ta: You et al, Jour. of Nucl. Mat.,

2018(499).

W: Becquart et al, Jour. of Nucl.

Mat., 2009(385).

W: Becquart et al, Jour. of Nucl.
Mat., 2009(385).
Mo: Runnevall et al, Jour. of Phys.:
Cond. Mat., 2009(21).
Ta: Omori et al, Nucl. Mat. and
Ener., 2018(16).
Nb & V: Jiang et al, Phys. Chem.
Chem. Phys., 2018(25).

He-He

He-Vac
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Average migration energy of a He atom
(calculated by NEB)

He position​ WMo WTa WTaMo WV​ WTaV WTaVMo WTaVMoNb

(0.5,0.25,0)*a 

(0.5,0,0.25)*a

(a: lattice 

constant)

0.2576±

0.0034​

0.3021±

0.0056

0.3234±

0.0040​

0.6313±

0.0095​

0.5300±

0.0068​

0.5152±

0.0060

0.4584±

0.004​9

Migration 

energy
Mo Nb Ta V W

DFT data[1] 0.07 0.11 0.09 0.11 0.12

Our results 0.06 0.09 0.09 0.09 0.06

[1]: Jiang et al, Ab initio theory of noble gas atoms in bcc transition metals, Physical Chemistry Chemical Physics, 2018(25).

Pure metals

10Migration path



Migration energy of a He atom

The distribution of migration energies

Effect of W concentration in the environment on 

the migration of He atoms 11



Cascade simulations with He implantation

Snapshots of He atoms in systems of 0.3 dpa radiation

damage, showing vacancies (gray atoms) and He (pink

atoms).

Binding energy of a single He atom with a void 

(100vacancies) and a ⟨1 0 0⟩ vacancy loop (101 

vacancies) in W and WV . 12



WP3(exp) "He irradiation of REAA in three energy 
regimes (low, medium and high) at fusion reactor relevant 
temperatures. In-situ and ex-situ characterization of He 
bubble growth in REAA of different compositions"
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Samples and methodology

• We have prepared two types of samples:

1. Bulk samples (Sample preparation : cutting, polishing)

• from VTT (Arc Melting binary alloys, WMo, WTa, WV, + pure W)

• from IPFN (Institute for Plasma Research and Nuclear Fusion, Portugal)

2. Thin layers (Magnetron sputter deposition, WV binary alloys, 50-100nm on MgO substrates)

• University of Helsinki

• Two ways to insert 3He into the samples:

1. 3He plasma exposure (low energy 300 eV, medium flux 1014 cm-2.s-1

2. 3He implantation (Pelletron accelerator) 0.5 MeV, low flux 7x1010 cm-2.s-1

• Characterization techniques:
• Nuclear reaction Analysis (NRA): Detection of 3He with a deuteron beam (900 keV) using 2H (3He, 4He)1H reaction
• Rutherford Backscattering (RBS)  
• Scanning Electron Microscopy Electron Dispersive spectroscopy (SEM-EDS)
• Atomic Force Microscopy (AFM)
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3He plasma exposure in thin layers + bulk samples 
3He plasma exposure in thin layers in PIMAT:  

[1] PE Lhuillier, PhD thesis (2010) Université d’Orléans

[1]
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He release in DIADDHEM
• He release as a function of temperature () in W bulk alloys and thin layers

exposed to 3He in PIMAT:  

DIADDHEM - Device for Analyzing the 

Diffusion of Deuterium and Helium in Materials

[1] PE Lhuillier, PhD thesis (2010) Université d’Orléans

[1]
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In situ release in DIADDHEM

• W single crystal (W-M-M-04)

Release = ~ 0% at 1073K
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In situ release in DIADDHEM
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SEM-EDS
ZH-WV-VTT-C1B

- Zones with pure W and pores

Zones with heterogeneous concentration of V 

Zones enriched in V

1

2
3

1

2

3

VTT : Evaporation of V during arc melting
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Cutting of the bulk as-

fabricated material 

subcontractor in France for EDM cutting

Material fabrication at VTT

Available material(s) to be studied

W, W-Ta, W-Mo, W-V
Electrical Discharge Machining

Other materials from Portugal

W-Ta-V, W-Ta-Mo
half discs

Materials sent to CNRS-CEMHTI and UHEL for ex 

situ ion implantation and characterizations

TEM thin foils 

preparationby FIB 
(end Sept./Oct., IEMN and NCBJ)

Observation if any He bubbles are seen
Transmission Electron Microscopy

ex situ (in October/November)

Cutting of the bulk as-

fabricated material 

subcontractor in France for EDM cutting

Material fabrication at VTT

Available material(s) to be studied

W, W-Ta, W-Mo, W-V
Electrical Discharge Machining

Other materials from Portugal

W-Ta-V, W-Ta-Mo
half discs

Through focus series of bright 

field images showing bubbles
See details next slides

Beware ! Not the same scale (to be updated ;-) )

W WTa WV WTaV WTaMo

250924_1015_WTaMo_G3

250924_1016_WTaV_G2

4C_W_1700X_0091

He ions

Pt protective layer

surface

depth

TEM results
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Alternative BCC HEA with Ta-based composition:

He distribution after annealing---microstructure
Ir
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• He bubbles are more concentrated at the damage peak in BCC HEA.

• In pure metal Ta, long-range He migration leads to cracks and holes

Irradiation: 5 × 1016

25 keV He (ions/cm2) , 

at room temperature

Samples:  Arc-melted 

Ta, MoNbTa, 

MoNbTaWV, BCC,

large grain size (around 

100 um), 
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He depth profile by ERDA 

He profiles obtained by ERDA (=Elastic Recoil Detection Analysis) support TEM microstructure 

results, which suggest that long-range helium migration is limited in BCC HEA 
23



Molecular Dynamics simulation 
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Single He atom diffusion

He tend to trap around Group 5 elements (V, Nb and Ta)
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WP4(th) "Simulations of He bubble 
growth in REAA due to He irradiation with 
different irradiation energies by means of 
ML-KMC and ML-MD"

Suppression of He clustering in W across temperature via dilute V alloying

AKMC simulation of He-vacancy complex mobility in W and WV
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He cluster fraction in WVx and WTax

He cluster fraction = 1 – Number of single He atom / Total He number

Box size: 20 × 20 × 20 unit

cells = 16000 atoms + 1% He

(160 atoms)​​

Minimize first​

NPT relax 5 ns at 300 K, 900

K and 1500 K

Verification by a thermal cycle.
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Self trapping 

Evolution of the average number of interstitials in W–V and W–Ta alloys at 300 K, 900 K, and 1500 K 

without He atoms. (Statistics is given by the three independent runs)
28



Elements around He

Evolution of the solute concentration around He atoms, in W95V5 and W95Ta5

alloys at 300 K, 900 K, and 1500 K (Statistics is given by 3 independent runs)

The energy differences were calculated using 

a 20 * 20 * 20 W supercell with a central 

solute atom. Values represent the potential 

energy change when a He atom moves from 

a bulk-like W environment to a tetrahedral 

site adjacent to the solute (V/Ta).
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Pressure-volume 

He atomic pressure-volume contour plots and corresponding distributions for W95V5 (blue)and W95Ta5 (red) at (a) 

300 K, (b) 900 K, and (c) 1500 K.
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MLP-AKMC Flowchart

Atomic Defect High-temperature MLP-MD simulation

Search for transition events

Rk,1 Rk,2 Rk,3

K 𝑟𝑘,𝑖 = 𝐴𝑒𝑥𝑝(
−𝐸𝑘,𝑖
𝑘𝑏𝑇

)

𝑅𝑘,𝑖 =
σ𝑗=1
𝑖 𝑟𝑘,𝑖

σ
𝑗=1
𝑁𝑘 𝑟𝑘,𝑖

Generate a 

random number 

μ∈(0,1]

Update Rate Table

Select the ith event if

𝑅𝑘,𝑖−1 < μ ≤ 𝑅𝑘,𝑖

New state with time 

accumulated

∆𝑡 =
ln(μ)

σ
𝑗=1
𝑁𝑘 𝑟𝑘,𝑖

Xu, L. & Henkelman, G. J Chem Phys 129, 114104 (2008).

To accurately observe the evolution of vacancies on experimental time scales
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The importance of V₃ cluster

G. Wei, et al. Acta Materialia, 301 (2025) 121529.

V₃ clusters exhibit extremely fast migration rates and serve as a key

intermediate for vacancy-cluster nucleation and growth in W.
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The effect of V/He on the migration of V3

He and V effectively slow down V₃ migration and thus inhibit 

the nucleation and growth of vacancy clusters inside the W.

5% V atoms are randomly and uniformly distributed in W

V3He1

0~0.0027s

0~4.2 s
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Summary

1. Simulation Validation

• The accurate tabGAP-pair potential for He-Mo-Nb-Ta-V-W proved effective for simulating irradiation damage and He diffusion.

2. The Critical Role of Vanadium (V)

• Controls Radiation Damage: The presence of V effectively controls radiation damage in refractory alloys.

• Suppression Mechanism: V suppresses He clustering at high temperatures (900-1500 K) and inhibits He self-trapping and the creation of 

vacancy traps (Frenkel pairs).

• Trapping Sites: V acts as a potent trapping site for mobile He atoms, creating stable, low-pressure "comfort sites" via elastic strain 

compensation.

3. Helium Diffusion & Defect Evolution

• Inhibited Bubble Formation: He atoms are less likely to form bubbles in V-containing alloys; diffusion is heavily influenced by lattice 

distortions.

• He Release: Unlike pure W where no release is detected, W-V binary alloys show significant He release (~20-30% at 1073K).

• Cluster Inhibition: He and V effectively slow down migration, inhibiting the nucleation and growth of vacancy clusters inside the W matrix.
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Current published results

•G.Wei, J.Byggmästar, J.Cui,K.Nordlund, J.Ren, F.Djurabekova,Revelaing the critical role of vanadium 

in radiation damage of tungsten-based alloys, Acta materialia,V.274,(1) 2024,119991,

DOI:10.1016/j.actamat.2024.119991

•G.Wei, J.Byggmästar, T.Sutinen, Z.Chen,F.Tuomisto, F.Djurabekova, Diffusion of helium in tungsten-

basd refractory alloys by molecular dynamics simulations, Journal of Nuclear 

Materials,V.618,2026,156237, https://doi.org/10.1016/j.jnucmat.2025.156237

•Z.Chen, E.Lu, K.Mizohata, A.Liski, X.An, T.Suhonen, A.Laukkanen, J.Lagerbom, A.Pasanen, 

A.Vaajoki, F.Tuomisto, Journal of Nuclear Materials, V.599,2024,155238,

https://doi.org/10.1016/j.jnucmat.2024.155238

•Z.Chen, G.Wei, K.Mizohata, E,Lu, , J.Byggmästar, F.Djurabekova, F.Tuomisto, Elemental diversity in 

high entropy alloy MoNbTaVW: complex He diffusion paths and improved radiation resistance, under 

review to Nature communications, https://doi.org/10.21203/rs.3.rs-7820411/v1 (pre-print)

•G.Wei, J.Byggmästar, Z.Chen, F.Tuomisto, F.Djurabekova, Suppression of helium clustering in tungsten 

across temperature via dilute vanadium alloying, to be submitted shortly.
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Thank you for your attention!
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