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Split in mean + fluctuating components
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Application to electrostatic turbulence (no 𝐵-fluctuations)
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• Average fluxes

o ഥ𝜞 = ത𝑛෥𝒖 = ത𝑛 ෤𝑢||𝐛 + ത𝑛 ෥𝒖∗ + ത𝑛෥𝒖𝑝 + ത𝑛෥𝒖𝜈 + ത𝑛 ഥ𝒖𝐸×𝐵 + 𝑛′𝒖𝐸×𝐵
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(for ഥ𝑸𝑖, neglecting some fluctuations of smaller drifts)
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• Fluctuating 𝐸 × 𝐵-terms need closure; stick to diffusive closure (for now):
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RANS approach for electrostatic interchange turbulence
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• Proposal: relate to turbulent kinetic energy 𝜅⊥ as measure of local 

intensity of the turbulence/transport

• Diffusive transport model based on 2D interchange simulations
[Coosemans et al., CPP 2022, e202100193.]

o 𝐷𝐸×𝐵 = 𝐶𝐷𝜌𝐿
𝜅⊥

𝑚𝑖
 

o 𝜒𝑖/𝑒,𝐸×𝐵 = 𝐶𝑖/𝑒𝐷𝐸×𝐵 ~
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• Need transport equation for 𝜅⊥!
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Sources and transport of 𝜅⊥ for interchange turbulence
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• Transport equation for 𝜅⊥ for 2D electrostatic interchange turbulence
𝜕

𝜕𝑡
ത𝑛𝜅⊥ + ∇ ⋅ 𝚪𝒊𝜅⊥ + 𝜙′𝑱||

′ = 𝑆𝐼𝐶 + 𝑆||

• Total heat flux due to 𝐸 × 𝐵 fluctuations drives production of 𝜅⊥

 𝑆𝐼𝐶 = −
2

3
𝑸𝑖+𝑒,𝐸×𝐵 ⋅ ∇ln 𝐵2

o Source in ‘bad-curvature’ regions, sink in ‘good-curvature’ regions

• Parallel transport of 𝜅⊥ governed by plasma conductivity

𝜙′𝑗||
′ ∼ −𝜎||∇||

𝜙′2

2
∼ −𝐶𝜎1𝜎||𝜌𝐿

2𝐵2∇||𝜅⊥

o Strongly exceeds parallel convection with ෤𝑢||

• Proxy to account for mean ExB flow shear 𝑆𝑚 suppressing anomalous 

transport

  𝐷𝐸×𝐵 = 𝐶𝐷
𝜅⊥ /𝑚𝑖

𝜅⊥/𝑚𝑖/𝜌𝐿+𝐶𝑆|𝑆𝑚|

…coupled to ‘regular’ mean field equations [Dekeyser et al., CPP  2022, e202100190.]
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Intrinsic ballooning character 

and ‘self-saturation’

[R. Coosemans et al., J. Plasma Phys. 90 (2024) 90590020.]



Energy transfer channels
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[Coosemans et al., JPP 2024, 905900202.]



TCV-X23 showcase
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• First-of-a-kind simulations including

o Extended grids

o AFN model

o k-model for anomalous transport

o Drifts

• Grid built with GOAT, exploiting new boundary layer grid option
[S. Van den Kerkhof et al., PET 2025]

• Simulation setup based on TCV-X23 experiment
[D. Mancini et al. Nucl. Fusion 64 (2024) 016012.]

• 𝜅⊥ -model parameters optimized via LSQ [S. Carli et al., PET 2025]

based on TCV-X21 data [D.S. Oliveira et al 2022 Nucl. Fusion 62 096001];

compare with constant 𝐷⊥ ~ 0.4 m2/s



TCV X23 edge plasma parameters
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TCV-X23 showcase: turbulent kinetic energy and 𝐷⊥
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[eV, log] [m2/s]



TCV-X23 showcase: wall fluxes
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• Clear signature of magnetic field structure on wall loads

• Peak loads near strike points similar

• Up to factor two higher wall fluxes near outboard side for 𝜅⊥ -model, 

despite nearly identical density/temperature profiles
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Summary and challenges

20/10/2025 11

• Anomalous transport model based on RANS approach integrated in SOLPS-ITER

o Includes features such as ballooned transport and self-saturation, but also remaining uncertain 

closure constants

o Need for extensive validation with turbulence simulation data and experiment, incl. predicted 

turbulence characteristics

o Need for continued development: additional energy exchange mechanisms, updated closures, 

BCs,…

• First application to TCV-X23 case

o Including drifts and grids-to-the-wall

o As for TCV-X21: limited ballooning in near SOL for the selected model parameters

o Pronounced increase in k towards outer wall, and ‘notable’ changes in wall fluxes. Potential to 

discriminate between models?



Thank you! Questions?
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