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Where to optimize in the space of all magnetic fields?
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Traditional stellarator optimization
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What is different today that allows much better designs?

*  Much faster computing (can explore more space)

* Devised efficient recipes for finding QI and QS (better target functions)

* Developed faster codes (can include more evaluations inside optimization loop)

* Derived new reduced models (more physics in optimization loop)

* Combined plasma-coil optimization or “single-stage” (potentially accessing much better optimum)

[Henneberg et al, JPP 2021]
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» GVEC improves upon VMEC on many aspects (numerics).

> General coordinate frame “G-frame” implemented in GVEC.

» G-frame aligns planar cross-sections (not R-Z) with plasma shape.
» Reduces degree-of-freedom to represent equilibrium.

> Enables exploration of strongly shaped configurations!
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> GVEC integrated into optimization code SIMSOPT.
» Ql-optimized stellarator with planar coils!

> It’s a figure-8 with nearly-elliptical cross-sections and stable magnetic well.

i
i
=
LI ]
x
x

[Plunk et al, PPCF 2025]



» SPEC allows fast calculation of free-boundary equilibria with islands
& chaos, including effect of bootstrap current. [Baillod et al, JPP 2021]
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» Quantified f above which volume of chaos V 4,,,s> 0. [Baillod et al, JPP 2023]

» SPEC integrated with SIMSOPT, allowing topology optimization. [Baillod et al, PolP> 2022]
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Efficient single-stage optimization of islands at finite-f
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> Retrieved ideal MHD stability in a stellarator with SPEC. [Kumar et al PPCF 2022]
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» Reproduced nonlinear saturation of tearing modes with SPEC. [Loizu et al JPP 2023; Balkovic PPCF 2024]
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[Niihrenberg et al JPP 2025]

Linear phase agrees with ideal
MHD stability predictions (CAS3D)

Nonlinearly, low-m modes can drive

islands and ergodization, potentially
affecting confinement
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» Diversion in stellarators largely governed the existence & properties of fixed points (X-points/O-points).

» Topological methods used to understand and optimize fixed points to improve stellarator divertors.

tentacles
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Topological optimisation in W7-X
Using optimisation schemes to “automatically” move the

island chain by targeting X-point location

[Goodman et al, JPP 2025, accepted]

[Davies et al, NF 2025]

[Davies et al, in preparation]
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manifolds in a turnstile area
perturbed versus

tokama perturbation
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As the perturbation strength increases,
islands appear and merge, and Poincaré
trajectories jump, but the manifolds and
turnstile areas vary smoothly.

All tools are being integrated in simsopt!

In W7-X configurations where the
divertor island region is chaotic,
intersecting turnstile lobes coincide
with low connection length regions.

[Smiet et al, Chaos 2025]
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) . Validation at W7-X
Heat transport equation solve by EMC3-Lite: Expemm EMC; ki

V'(_KeV//T_ ;(nVLT) =0 % EF
Bohm condition at target: =
qp=—k,V,T =nCyT, %JTJA Q-

Numerics: lus=0A

. I, =-1000 A {
Monte-Carlo integrated with L %.

Reversible Field-Line Mapping (RFLM) ‘

I, OA
ey Ky

o 10 times faster than conventional diffusive-field-line-tracing = wom o = & o e w
o heat load distribution including the target shadow region [Gao et al NF 2023]

[Feng et al PPCF 2022] 13




» Fluid turbulence simulations have been performed with BOUT++ in the edge of an analytic
stellarator configuration with an island divertor. [Shanahan et al JPP 2024]

> Synergy with TSVV-3 work, with GBS simulations of the same configuration. [Coelho et al NF 2022]
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> Opens the way to V&V studies for stellarator edge turbulence simulations. [Coelho et al NF 2023]
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» MONKES: accurate neoclassical code [Escoto et al NF 2024]

> SIMPLE: fast a -particle orbit follower with simplectic integrators

very fast (< minute / point, using 1 core )

evaluation of monoenergetic transport coefficients
bootstrap current calculation can be put into optimization loop

long-term stability at large time steps [Albert et al PPCF 2025]
applied to calculate confined fraction of a’s in a SQuID
applied to study alpha particle heat loads on a reactor wall
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CIEMAT-QI family of reactor-relevant configurations

CIEMAT-QI4, first QI configuration with: [Sanchez et al NF 2023]

o (profile avoides low order rationals, compatible with island divertor,
o Ideal MHD stability up to g = 5%,

«  Low neoclassical transport and bootstrap current,

o Very good fast ion confinement for 1.5% < f < 4%,
o  Reduced turbulent transport,

o  Setof filamentary coils preserving properties.

pra g \\ M“':A'I"‘
CIEMAT-QI4X: [Sanchez et al, submitted NF] N _\A:h‘k‘;":-'i:';’f}f;ﬁ

o Improved flux surface quality & robustness of divertor island,

o  Simpler coils with larger separation,

«  Ongoing study of breeding blanket feasibility.



Fast-ion loss fraction
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» SQulDs: Stable Quasi-Isodynamic Designs [Goodman et al PRX Energy 2024]

Very close to perfect QI

Ideal MHD stability up to = 3%,

Low bootstrap current (~ 15 kA)

Very good fast ion confinement at target f
Reduced turbulent transport

Filamentary coils with complexity ~ W7-X

17



QSTK: QH with reduced ITG turbulence

Better fast-ion confinement than W7-X
Lower thermal neoclassical transport than W7-X
MHD stable

[Roberg-Clark et al PRR 2023]
SQUID-t: stable QI with enhanced turbulent particle pinch

Zero losses (collisionless) of fusion-born alphas.
Mercier stability to () ~7 %

Coil compatibility

KBM stability

Negligible bootstrap current (~ 10 kA)

[Plunk et al, submitted 2025]
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Can optimize for E, > 0 in the core

In most stellarators, radial electric field determined by requirement 20 g
of ambipolar neoclassical transport: 151 g
= 10[ =
Usually E, < 0 in stellarators (ion root) N 5 - decreasing density-
- C
*  Causes strong inward neoclassical transport for highly charged impurities. ) 0F
SE
E, > 0 (electron root) observed in low-density plasmas with T, > T;, 10 3
- C11 | L1 1 | L1l ‘ L1 1 ‘ | —
but has recently been found to be possible in the core if T, = T;. 00 02 04 0.6 08 1.0

normalized radius
. Beneficial for impurity expulsion

Onset of electron root approximately when

1/7 3/7
DY > DY = L (mz) ( €il/si )
i Coff Pxi

e Sharp transition may cause transport barrier.

* Canbeachieved through targetted optimsation.
[Beidler et al., Nucl. Fusion 2024], [Helander et al., JPP 2024]
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6_J) Discovery of pwO enlarges optimization space
=7

> Piecewise omnigeneous pwO fields: a new class of fields with tokamak-like neoclassical transport

 B=B,,,1s parallelogram-shaped (different from omnigeneous)

* can be optimized for zero bootstrap current [Calvo et al PRE 2025] All magnetic fields

* less constraining, potentially requires less shaping
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[Velasco et al PRL 2024]
[Velasco et al PPCF 2025]




A nearly pwO configuration made reactor relevant

CIEMAT-pwl1 fulfills a standard set of plasma physics criteria required for a stellarator reactor:

*  Mercier MHD stability,

* 5/6 <1<5/5= no low order rationals, compatible with island divertor,

* Reduced neoclassical transport and bootstrap current (At;cps <1 %),

* Good fast ion confinement at reactor $ (> 95 % alpha-heating, most losses for t > 0.01 s),

* Reduced turbulence (maximum-] property)

[Fernandez-Pacheco, in preparation] 21



Revived concept of tokamak-stellarator hybrid

> Optimized compact tokamak to preserve good QA, flux surfaces, and external rotational transform.

» Optimization with self-consistent bootstrap current and magnetic well.

> 4 “banana coils” coils of a single type (in addition to TF coils + PF coils).

» Also possible with modular coils.
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Conclusion: a new ecosystem of tools & stellarator designs

» European collaboration TSVV-12 has pushed the frontier of stellarator optimization.
» Thanks to a excellent team with broad expertise, ~50 zoom meetings, strong links with other TSVVs
and with the Simons Collaboration (5 in-person meetings in NY), and fantastic ACH support.

> The result is 66 journal publications and a new ecosystem of modern tools and stellarator designs.

hybrids

SQUID family CIEMAT-QI family

» TSVV-i will bring these (and other) designs to further maturity, incorporating latest tools & metrics.
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