

# Development of COMPASS-U LMD module and scenario modeling

WPPRD/LMD End-of-Year Meeting, 15th December 2025

R. Dejarnac, J. Horáček, J. Cecrdle, S. Lukes, O. Stukavec and B. Smith (UKAEA)







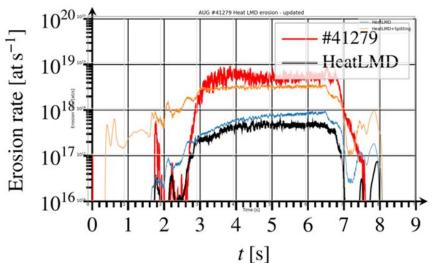
#### **Task Specification (TS)**



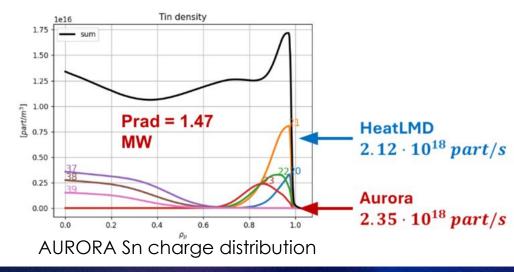
#### **Deliverables of the task:**

| Deliverable              | Description                                                                                                                                                                                                                        |                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| PRD-9.PRC.01-T009 - D001 | The deliverable will report on:                                                                                                                                                                                                    |                   |
|                          | Thermally enhanced sputtering measurements Li     HeatLMD modelling of ELM and core response in COMPASS-U                                                                                                                          | Modelling part    |
|                          | <ol> <li>Optimization of CPS mesh attachment</li> <li>Final design of LM-CPS concepts for COMPASS-U</li> <li>Manufacture CPS prototypes</li> <li>Feasability study of COMPASS-U operation with vapour box/cave divertor</li> </ol> | Design part       |
|                          | [Several concepts still use CPS and likely we still want to test CPS-based desi                                                                                                                                                    | gns in COMPASS-U] |




## **Modeling: HeatLMD**

#### **Deliverables:**


- Li thermally enhanced sputtering measurements DONE (data still under analysis)
- HeatLMD modelling of ELM and core response in COMPASS Upgrade DONE
- **Publication** J. Horacek et al., Scaling of HeatLMD-simulated impurity outflux from COMPASS-U liquid metal divertor, Nucl. Fusion **65** (2025)

#### Main work:

- Parallelization heat conduction solver (current bottleneck) speed up by >100x at a commercial GPU Par
- **Sn spitting implemented** simple sputtering yield calculation
- Planned Coupling with vapor shielding code (Made by PoliTo)
- Revised AUG modelling
- Extend to other past works like C-U in the future
- HeatLMD+AURORA coupling match bolometry core radiation within 11% (PoliTo collaboration)
- Strong Type I ELM resilience and compatibility modelling current results show negligible core impurity radiation (work still ongoing)



Comparison of HeatLMD and OES Sn erosion rates

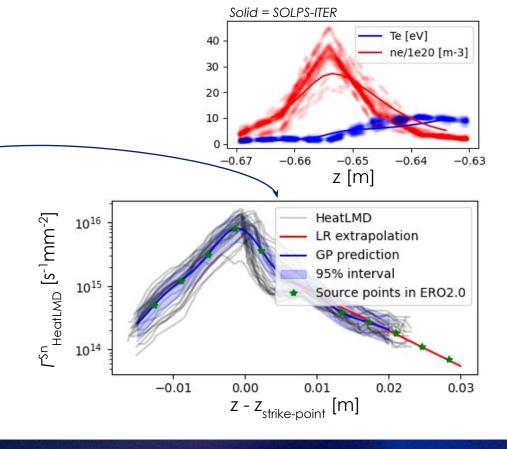


Blurred dashed = HeatLMD



### **ERO2.0** code (edge impurity transport)

2024: 1<sup>st</sup> validation and predictions for Li and Sn (presented at PSI-26, S. Lukes)


#### Improvements in 2025 – mid-term meeting:

 $E_{//}$ ,  $E_{\perp}$  and  $q_{\rm cond}$  (thermal force) directly from SOLPS-ITER 2nd simulated scenario #24300 Centrifugal force and new  $D_{\perp}$ ,  $v_{\perp}$  (FACIT + METIS) and many other ...

#### Mid-term meeting – now:

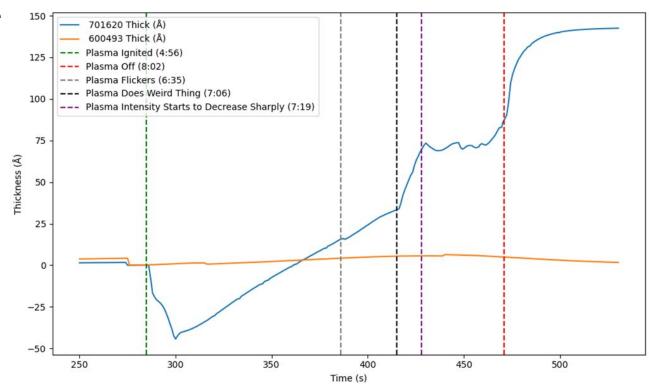
Q1-3 2026: Wide-grid SOLPS-ITER inputs and sensitivity study

Q4 2026: ELMs and deposition areas








## Modeling: Li thermally enhanced sputtering

- A commercial DC magnetron utilized to measure Li erosion across a wide range of parameters (E<sub>i</sub>,T<sub>surf</sub>) under Ar, H and He bombardment
- Erosion rate measured by QCM
- Li TES observed
- Data analysis and more runs ongoing
- Work done at University of Illinois Urbana-Champaign, USA (Jan Cecrdle PhD research stay)





Views of the experimental setup during a discharge



QCM measured layer thickness over time with notable timestamps



## Design: tasks summary

#### Design related tasks

#### 3. Optimisation of CPS mesh attachment

- Not done
- To be performed in collaboration w/ENEA (CPS mesh provider + expertise), KoM done (July 2025), Technical specification written, no common time to work on it together

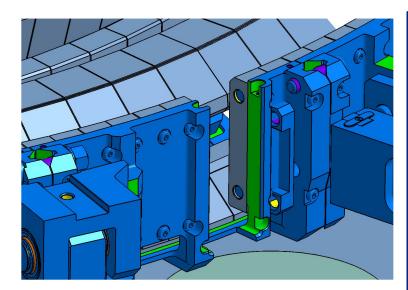
#### 4. Final design of LMD-CPS concepts for COMPASS-U

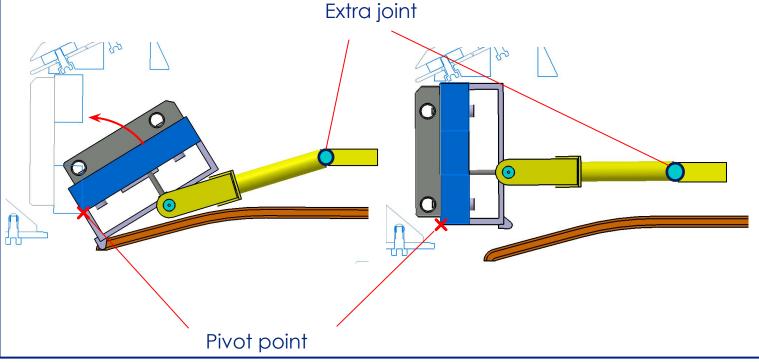
Done, see details in next slides

#### 5. Manufacturing of CPS prototypes

- No budget for material ⇒ cannot be considered as a deliverable but...
- Collaboration between UKAEA and University of Huddersfield (UK) to provide 3D printed CPS prototypes (see <u>D. Horsley's talk</u>)
- Done

#### 6. Feasibility of vapor box / cave divertor in COMPASS-U


Done, see details in next slides



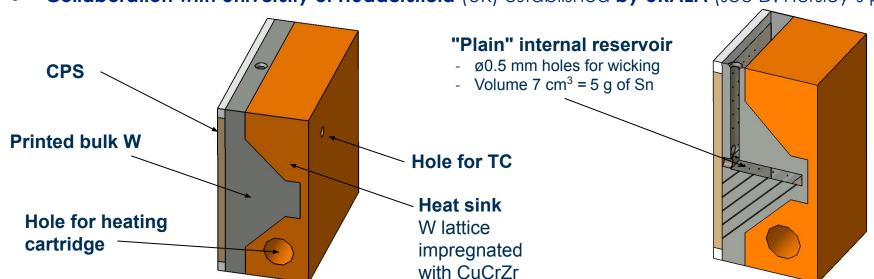

## Design: Divertor Manipulator

#### 4. Final design of LMD-CPS concepts for COMPASS-U (1/3)

- LMD-CPS modules design strongly depends on the divertor manipulator design = in conceptual state, at present time
- Different manipulator concepts can have to strong limitations in our CPS\_LMD modules (global volume, attachments, etc.)
- A concept was chosen (ASDEX-like divertor manipulator concept) and design moving forward to preliminary
- As a consequence, fixing the BC lead to have now LMD-CPS modules in final design phase (see next slide)









## Design: LMD-CPS concepts for COMPASS-U

#### 4. Final design of LMD-CPS concepts for COMPASS-U (2/3) - Task in collaboration with UKAEA

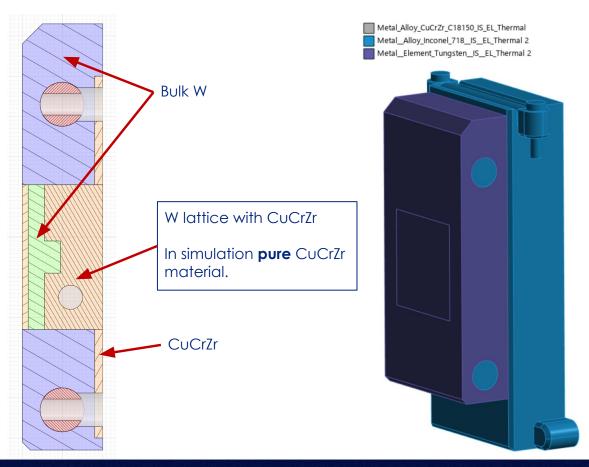
- The 2024 design was modified and integration of the 3D-printing CPS block changed (design for the mesh concept unchanged)
- Focus was put on details (new orientation of heating cartridge & reservoir, printing venting hole added, etc.)
- 4 prototypes were developed (see D. Horsley presentation for more details):
  - 1) plain reservoir, impregnated W lattice (shown below)
  - 2) tree reservoir, impregnated W lattice
  - 3) tree reservoir, direct CuCrZr-W printing
  - 4) fully printed tile

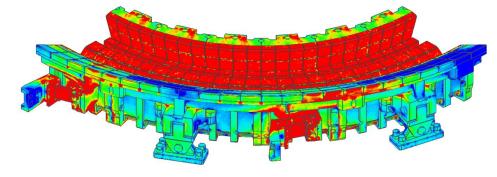
Collaboration with University of Huddersfield (UK) established by UKAEA (see D. Horsley's presentation)



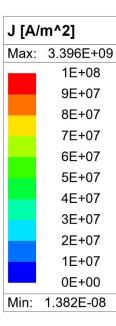








### Design: EM loads on LMD-CPS modules

#### 4. Final design of LMD-CPS concepts for COMPASS-U (3/3)

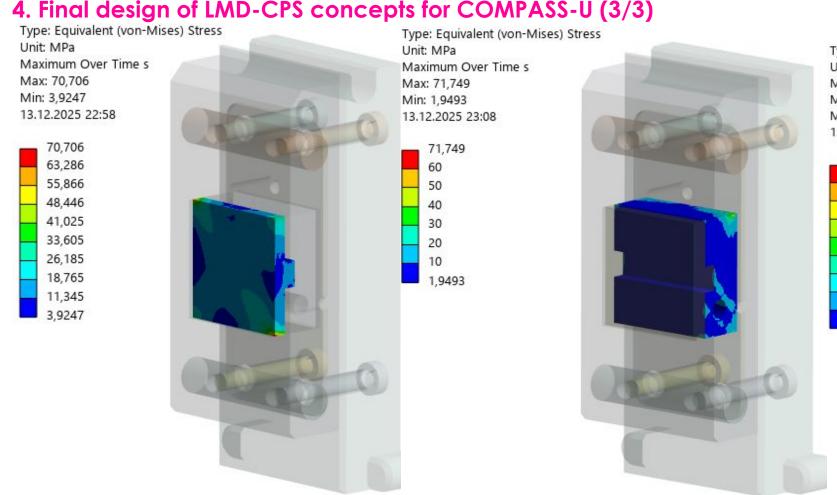

• New geometry was created in our EM model with opening for divertor manipulator in DIV cassette and special LMD-CPS tiles

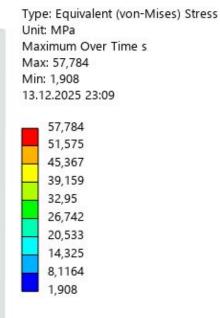
EM loads were calculated for the most severe disruption scenario and structural analysis performed by FEM

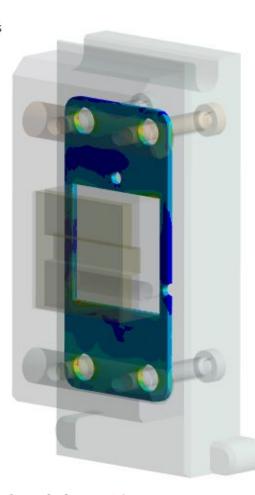




- → Bolts pretension change
- Contact forces between:
  - CPS bulk W and surrounding tile
  - W lattice and surrounding tile
  - W lattice and CPS bulk W part
- → Stresses




## Design: EM loads on LMD-CPS modules

#### 4. Final design of LMD-CPS concepts for COMPASS-U (3/3)







Stress in 3D printed W: < 70 MPa

Stress in W lattice: < 70 MPa

Stress in Cu plate: < 60 MPa



## Design: Vapor box / cave divertor for COMPASS-U?

#### 6. Feasibility study of a vapor box / cave divertor in COMPASS-U

General principle & concepts for NSTX-U

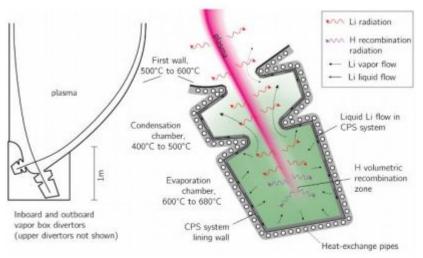
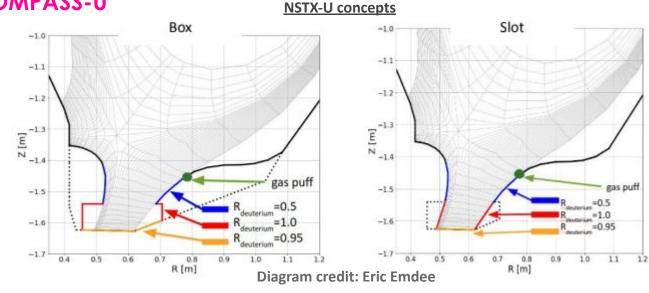
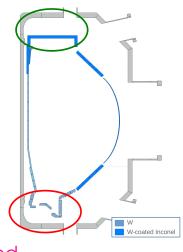
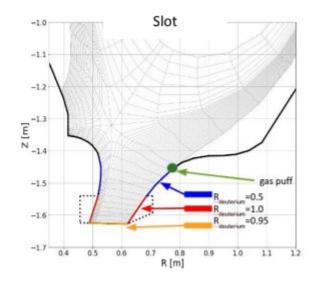
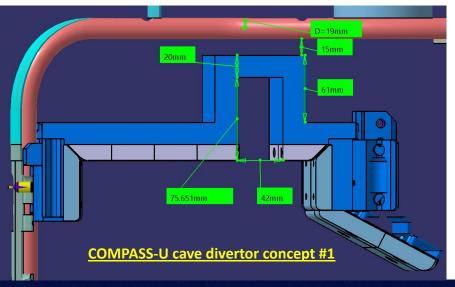
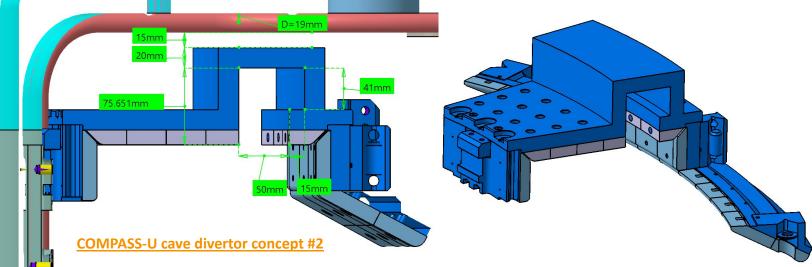




Diagram Credit: Jacob Schwartz





## Design: Vapor box / cave divertor for COMPASS-U?


#### 6. Feasibility study of a vapor box / cave divertor in COMPASS-U

- General principle & concepts for NSTX-U
- In COMPASS-U, no space available at the lower closed divertor
- Possible to be implemented in the upper open divertor
  - ⇒ gravity pointing towards plasma = issue?
- Inconel support could be modified (3D printing) to host a slot/cave
  - A: Yes, a vapor box / cave divertor could be feasible in COMPASS-U
  - ⇒ Big modifications of entire upper DIV support structure needed
  - ⇒ Poloidal extent of the box is important [1,2] ⇒ (SOLPS) simulations needed











### Planned activities for 2026-2027

#### **Modeling activities**

- HeatLMD (2026), ERO2.0 (2027) model of the cave divertor concept for COMPASS-U
- Performing refined models of the SOLPS-ITER wide grid to study COMPASS-U divertor parameters (in collaboration w/ PoliTo)
  - Plasma profiles will be used as a background for HeatLMD and ERO2.0.
- Support IPPLM team in CoreDiv modeling of COMPASS-U
  - Plasma profiles can be used for HeatLMD

#### Design activities

- Integration of divertor CPS mock-up design into COMPASS-U divertor manipulator
- Coordinate COMPASS-U CPS prototypes manufacturing activities
- Prepare specifications for future HHF tests of COMPASS-U CPS module prototypes