

Integrated Digital Twin Framework for Breeding Blanket Systems: Coupling Plasma, Fuel Cycle, and Thermal Hydraulic dynamics

C. Moreno¹, F. R. Ugorri², A. Rueda³, J. Serna³, A. Onieva³, J. M. Gómez³, A. Tassone⁴, C. Ciurluini⁴

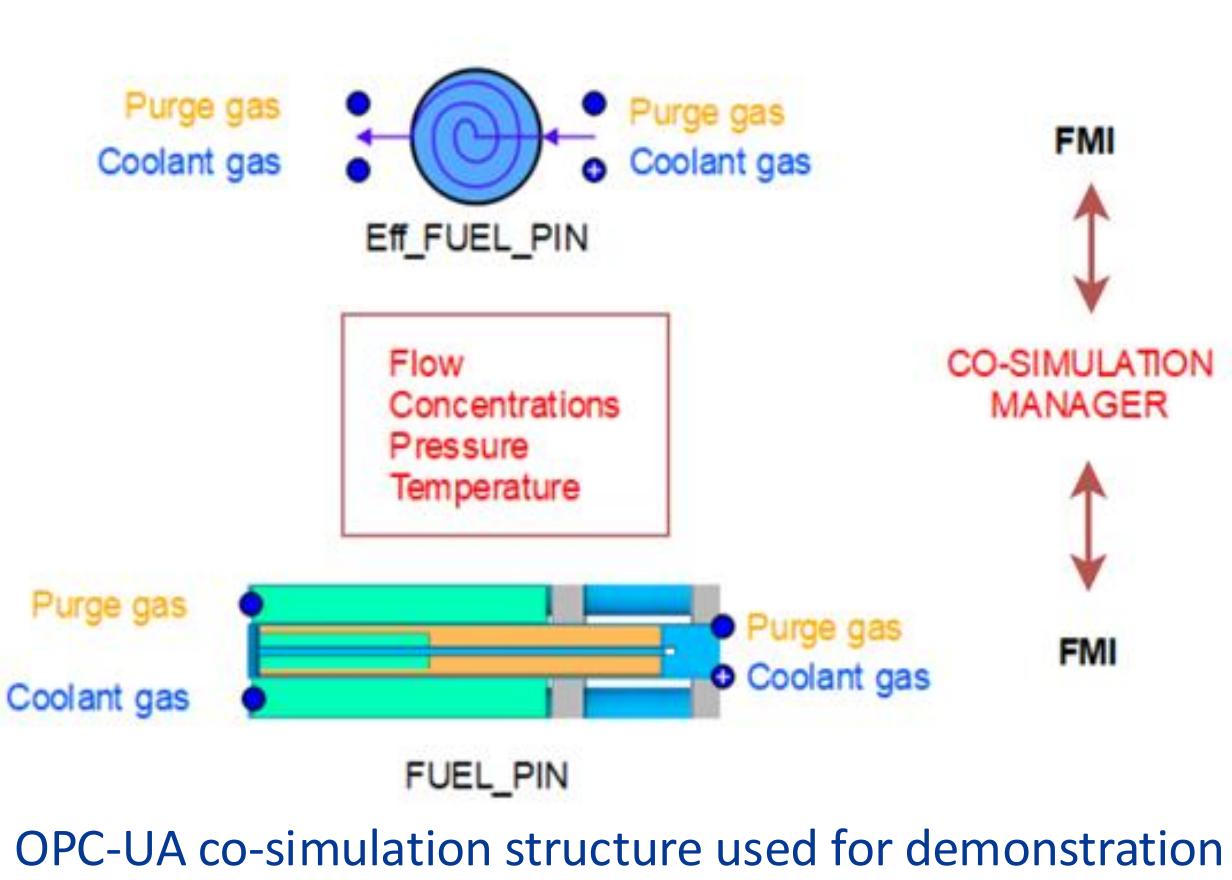
Heffen Technologies¹, CIEMAT², EAI³, Sapienza University of Rome⁴

¹Lamarque de Novoa 1, 41008 Sevilla (Spain), ²Avda Complutense 40, 28040 Madrid (Spain),

³Magallanes, 3, 28015 Madrid (Spain), ⁴Corso Vittorio Emanuele II 244, 00186 Rome, (Italy)

BACKGROUND: 2025 ACHIEVEMENTS

PROOF OF CONCEPT FOUNDATIONS ESTABLISHED

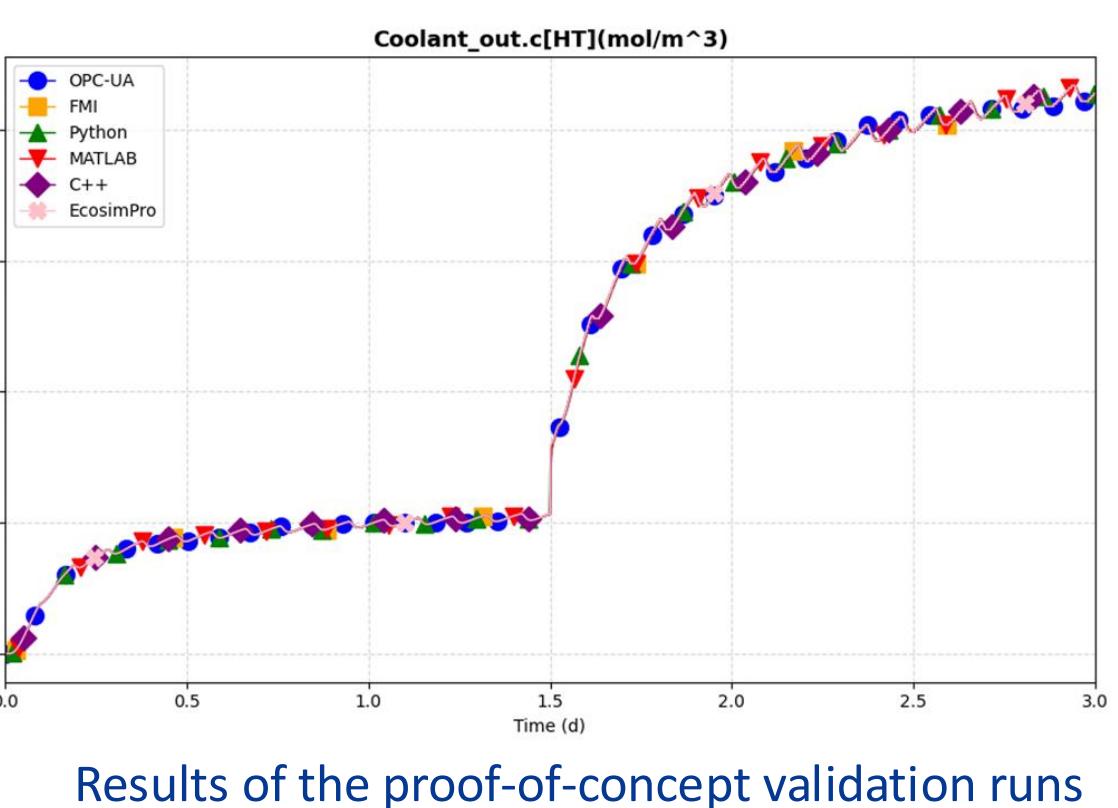

The 2025 project (AC-DTE.DT.CIEMAT-T001) successfully laid the groundwork for developing a Digital Twin of the Breeding Blanket (BB) and its ancillary systems:

Exchanged Variables Identification:

- Tritium Extraction System (TES) → Inner fuel cycle
- Coolant Purification System (CPS) → Inner fuel cycle
- First Wall → Plasma scrape-off layer (SOLPS/EIRENE)
- Pipe forest → Exhaust de-tritiation system
- Steam generators → Environmental impact systems

Mathematical interfaces defined:

- Heat transport models (RELAP5)
- Hydraulics models
- Balance of Plant models


COMMUNICATION PROTOCOLS DEMONSTRATED

Five standardized communication interfaces successfully validated between EcosimPro® models:

- OPC-UA (Open Platform Communications - Unified Architecture)
- FMI (Functional Mock-up Interface)
- Python-based communication scripts
- MATLAB integration
- C++ program interfaces

Proof of Concept Validation

- Coupled fuel pin model with simplified TES/CPS model
- All protocols showed excellent numerical consistency
- Real-time data exchange demonstrated via UA
- Expert OPC-UA client
- Dynamic modification of extraction efficiencies (TES: 80%→50%, CPS: 90%→60%) validated

DIGITAL TWIN FRAMEWORK FOR BREEDING BLANKET SYSTEMS (2026-2027)

OBJECTIVES

Main Objective

Develop a dynamic, integrated simulation framework for tritium transport, coupling EcosimPro® models with fuel cycle and incorporating thermal-hydraulic temperature profiles from RELAP5/mod3.3, while preparing the plasma-edge interface.

Specific Objectives

Domain	Objective
Fuel Cycle Integration	Develop dynamic interface between EcosimPro® and fuel cycle simulators (Julia-based TFV code or ASPEN); exchange tritium partial pressures and extraction fluxes at every simulation timestep
Thermal Integration	Implement two-way coupling between EcosimPro® and RELAP5/mod3.3; enable dynamic feedback of temperature distributions to update tritium transport parameters (diffusion coefficients, solubility, release rates)
Plasma-Edge Interface	Consolidate and validate exchange variables at plasma-facing first wall; ensure compatibility with plasma-edge codes (TRIM, SOLPS)
Validation & Demonstration	Apply framework to realistic DEMO breeding blanket scenarios; benchmark against standalone simulations
AI/ML Enhancement	Explore surrogate modelling approaches; develop reference surrogate model for system element; establish computational/accuracy criteria for surrogate model usability

Parallel AI/ML PHASE

- Study surrogate model types applicable to tritium transport
- Define selection criteria between surrogate and first-principles models
- Export datasets from EcosimPro® models
- Train and validate surrogate models for specific system elements
- Benchmark computational performance vs. accuracy

PHASE 1:

PHASE 2:

PHASE 3:

PHASE 4:

PHASE 5:

Interface Specification & Protocol Definition:

- Review BB, fuel cycle, and thermal system interfaces
- Consolidate variable exchange requirements
- Define data exchange protocols and synchronization strategy

Fuel Cycle Integration

- Develop modular interface (EcosimPro® ↔ Julia/ASPEN)
- Implement timestep-based exchange (co-simulation)
- Test with simplified extraction/purification loop models

Thermal Integration

- Establish coupling routines (EcosimPro® ↔ RELAP5/mod3.3)
- RELAP5 provides temperatures → EcosimPro® updates
- Validate with simplified BB geometries under transient heat loads

Plasma-Edge Interface Preparation

- Define exchange variables at first wall
- Ensure TRIM/SOLPS compatibility
- Test data exchange with synthetic inputs

Integrated Demonstration & Validation

- Execute co-simulations for representative DEMO pulses
- Compare integrated vs. standalone simulation results
- Analyse multi-physics coupling impact

EXPECTED OUTCOMES

TECHNICAL DELIVERABLES

Year	Deliverable
2026	D1: Interface Specification Report – Analysis of exchanged variables between tritium implantation (plasma) ↔ tritium transport ↔ fuel cycle ↔ thermal systems
2027	D2: Prototype Systems Integration: Fuel cycle (EcosimPro® ↔ Julia/ASPEN), Plasma-edge (EcosimPro® ↔ TRIM/SOLPS), Thermal profiles (EcosimPro® ↔ RELAP5/mod3.3)
2027	D3: AI/ML Exploration Report – Surrogate model development for specific system element with selection criteria and results analysis

SCIENTIFIC & TECHNICAL IMPACT

- Working prototype of integrated framework allowing dynamic co-simulation between tritium transport, fuel cycle, and thermal profiles
- Improved predictive accuracy for tritium inventories and permeation
- First demonstration of integrated Pulse Design Tool (PDT)–plasma–BB workflow
- Foundation for future extensions to plasma-edge interactions and predictive operational tools for DEMO
- Preliminary surrogate models embedded in EcosimPro® or FMUs for real-time execution