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INTRODUCTION
Challenge: Traditional high-fidelity fusion simulations are too computationally
expensive for real-time reactor feedback.
Need: Devices like ITER and DEMO require fast feedback and continuous monitoring
through Digital Twin Environments (DTE).
Problem: Fusion research currently lacks an integrated, end-to-end data-driven
framework, often focusing on isolated components.

Build and prove the feasibility of a SHRED-based DT for
the WCLL Breeding Blanket with reconstruction,

prediction, forecast capabilities, to be integrated within
larger DTE frameworks.

E-TASC INTERLINKS

Modular DTE Framework: This proposal advocates for a modular DTE where each
component (e.g., Breeding Blanket) has a dedicated, high-performing DT.
Multi-Physics Integration: The project aligns with the Data-Driven Predictive
Modelling and Integrated Physics/Engineering Simulation Framework key areas.
Collaborative Modelling: SHRED-based DTs will be integrated with plasma and
balance-of-plant surrogate models, and interfaced with existing platforms like JINTRAC.

PLANNED WORK

2026 WP1: Trained SHRED-based DT of the WCLL
Breeding Blanket, using existing ENEA BB data for
training, capable of operating in reconstruction, pre-
diction and ensemble mode.

Deliverable: First scientific report,
first main commit of the code with
documentation and a representative
benchmark dataset.

WP2.1: Initial integration of the DT into a Python-
based DTE, creating surrogate models for the plasma
and the BOP for demonstration.

Deliverable: Second scientific re-
port, second main commit of the
code.

2027
WP2.2: Integrate the DT within existing modelling
platforms (ASTRA/JINTRAC), ensuring compatibil-
ity and interoperability.

Deliverable: Third scientific report,
third main commit of the code.

WP3: DT-based control and optimisation frame-
work, with closed-loop control mechanisms in the DT,
assessing sensor optimisation and fault tolerance.

Deliverable: Fourth scientific re-
port, fourth main commit of the code.

Final Deliverable: Final report summarising the activity and the main results, final commit
of the code with complete documentation and tutorial cases for reproducibility.

2026 2027
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1. BB data production

2. Training SHRED-based DT

3. DT Performance Evaluation

4. Mitigation Actions

5. Initial DTE Integration

6. JINTRAC / ASTRA Integration

7. Control & Optimization

8. Sensor Opt. & Fault Tolerance

Light activity Continued development Peak activity / completion

Foreseen Mitigation Actions:
WP1: Switching architecture or surrogate models if training underperforms, running new
simulations if training data are not sufficient.
WP2: Use of simple lumped models for plasma and BOP for demonstration purposes.
WP3: If control is not satisfactory, the DT will be used as a simulator and predictor only,
focusing on sensor optimisation and fault tolerance.

ARCHITECTURE: SHRED
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Selected ML Architecture: SHRED (SHallow REcurrent Decoder).
TL;DR: A Long Short-Term Memory (LSTM) network creates a latent temporal model zt from
some input measurements yT (t), which a Shallow Decoder Network (SDN) maps to the reduced
POD coefficients v̂t, which encode the temporal dynamics of the field variables; through SVD
projection on the spatial basis functions U, the full-order fields (u, T, p) are recovered.

Key Advantages
Data Efficient: Can

operate with as few as three
sensors, located anywhere in

the domain.

Resource Efficient: Compressive
training allows for laptop-level training
and offline operation. Can operate in

Ensemble Mode, providing an
estimation of uncertainties and

enabling faulty sensors detection.

Interpretability:
Mathematically based on

Takens’ embedding theorem
and separation of variables.

No Tuning: The same
architecture can be used for

different applications,
provided a suitable dataset.

Physical-Digital Twin Linking:
Experimental data from the physical

twin act as input to the deployed DT.

Inverse Problem: Can use
easy-to-measure quantities

in easy-to-reach locations to
infer unobservable fields.

DEMONSTRATIVE BENCHMARK: 3D MHD CHANNEL

Scope: Demonstrate the performance of SHRED on a somewhat simple 3D liquid metal
channel under an external magnetic field, measuring only temperature data at three random
points located near the external boundary.

FOM Solver: https://github.com/ERMETE-Lab/MHD-magnetoHDFoam
Dataset Size: Np = 10 × Nt = 120 × Nh = 121176 (SVD compressed size r = 100)
Data Preprocessing:

Normalisation (MinMaxScaler)
Dataset splitting (train - validation - test)
Dataset compression through Singular Value
Decomposition (r = 100 << Nh)
Ensemble mode: nine sensor configurations (three sensor
each, randomly selected near the boundary)
Parametric Space µ

SHRED I/O: Three (noisy) temperature measurements near the boundaries per each SHRED
model → (Averaged) reduced POD coefficients Vk

µi
= (Uk)TSk

µi
→ Projection back to the

full-order space and error computation.
Training times (shared Workstation Intel Core i7-988X CPU @ 3.80 GHz, 32 GB RAM):
between 4 and 8 minutes total (23 seconds for SHRED configuration on average).
Training MRE 4.72% (σ 6.73%), Test MRE 6.59% (σ 6.24%).

KEY RESULTS
µ = By (T) µ̂ ϵ%

0.5 0.52 -3.99%
0.65 0.63 -2.69%
0.75 0.73 2.88%
0.8 0.79 1.03%
1 0.99 0.75%

1.3 1.47 -13.11%
1.6 1.43 10.83%
1.85 1.74 5.97%

2 1.79 10.48%
2.5 1.9 24.08%

Table 1. Parameter estimation with
SHRED for train (blue), validation
(green), test interpolated (red), test
extrapolated (purple). Low error
up to 1 T (more data), then
worst performance.
Extrapolation beyond the
training range (By = 2.5 T) up
to 25% error on parameter.

Figure 1. First five POD coefficient for unobservable field Uz, capturing the
temporal dynamics, for test parameter By = 2.5 T. True value is continued
line, SHRED average prediction is dashed line, band is estimation uncertainty.
The temporal behaviour is correctly captured (within the
uncertainty band) even for the extrapolated case), and even
without any direct observations on the velocity field.

https://github.com/ERMETE-Lab/MHD-magnetoHDFoam

