

A Novel Machine Learning-Based Digital Twin Architecture for Real-Time Monitoring, Integration and Control of the Breeding Blanket

A. Cammi ¹ C. Introini ¹ C. Tripodo ¹ A. del Nevo ² M. Eboli ² R. Marinari ² L. Savoldi ³

¹Energy Department, Nuclear Engineering Division, Politecnico di Milano, 20156, Milano (IT).

²ENEA Brasimone Research Center, Bacino del Brasimone 1, 40032 Camugnano (IT)

³MAHTEP Group, Dipartimento Energia "Galileo Ferraris", Politecnico di Torino (IT)

Contacts: antonio.cammi@polimi.it, carolina.introini@polimi.it

INTRODUCTION

- Challenge:** Traditional high-fidelity fusion simulations are too computationally expensive for real-time reactor feedback.
- Need:** Devices like ITER and DEMO require fast feedback and continuous monitoring through Digital Twin Environments (DTE).
- Problem:** Fusion research currently lacks an integrated, end-to-end data-driven framework, often focusing on isolated components.

Build and prove the feasibility of a SHRED-based DT for the WCLL Breeding Blanket with reconstruction, prediction, forecast capabilities, to be integrated within larger DTE frameworks.

E-TASC INTERLINKS

- Modular DTE Framework:** This proposal advocates for a modular DTE where each component (e.g., Breeding Blanket) has a dedicated, high-performing DT.
- Multi-Physics Integration:** The project aligns with the Data-Driven Predictive Modelling and Integrated Physics/Engineering Simulation Framework key areas.
- Collaborative Modelling:** SHRED-based DTs will be integrated with plasma and balance-of-plant surrogate models, and interfaced with existing platforms like JINTRAC.

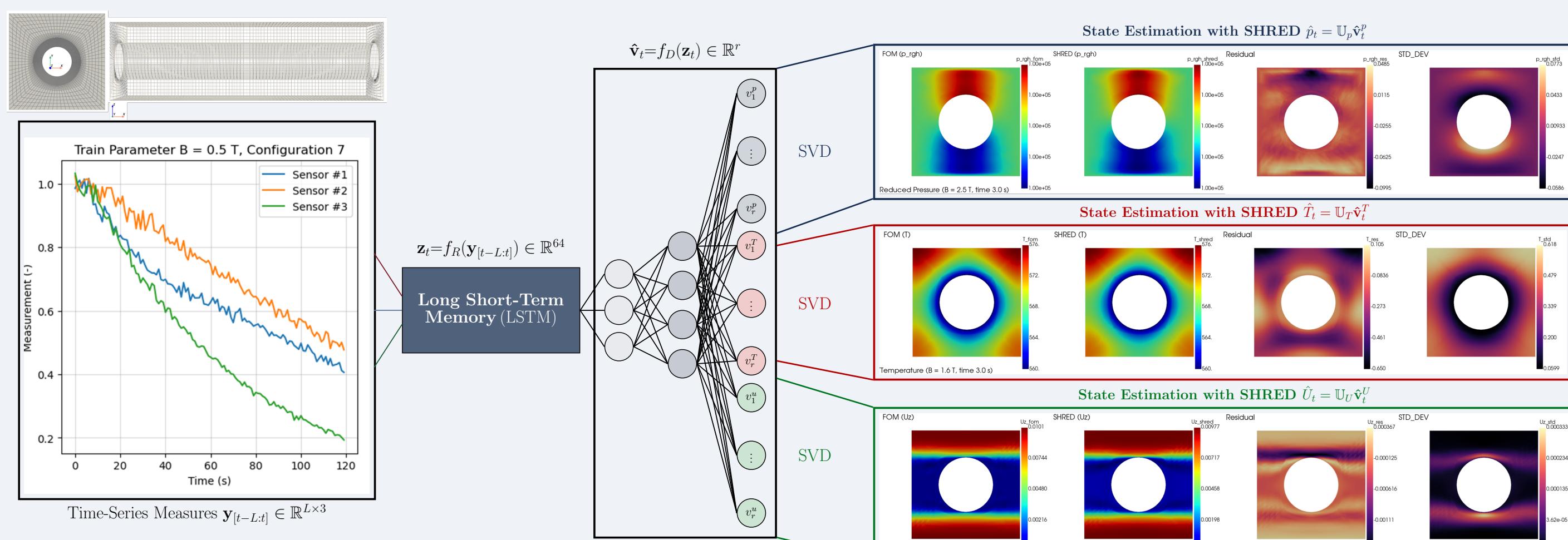
PLANNED WORK

2026	WP1: Trained SHRED-based DT of the WCLL Breeding Blanket, using existing ENEA BB data for training, capable of operating in reconstruction, prediction and ensemble mode.	Deliverable: First scientific report, first main commit of the code with documentation and a representative benchmark dataset.
	WP2.1: Initial integration of the DT into a Python-based DTE, creating surrogate models for the plasma and the BOP for demonstration.	Deliverable: Second scientific report, second main commit of the code.
	WP2.2: Integrate the DT within existing modelling platforms (ASTRA/JINTRAC), ensuring compatibility and interoperability.	Deliverable: Third scientific report, third main commit of the code.
	WP3: DT-based control and optimisation framework, with closed-loop control mechanisms in the DT, port, fourth main commit of the code. assessing sensor optimisation and fault tolerance.	Deliverable: Fourth scientific report, fourth main commit of the code.
	Final Deliverable: Final report summarising the activity and the main results, final commit of the code with complete documentation and tutorial cases for reproducibility.	
	<p>Legend: Light activity (blue), Continued development (light blue), Peak activity / completion (dark blue).</p>	

Foreseen Mitigation Actions:

- WP1:** Switching architecture or surrogate models if training underperforms, running new simulations if training data are not sufficient.
- WP2:** Use of simple lumped models for plasma and BOP for demonstration purposes.
- WP3:** If control is not satisfactory, the DT will be used as a simulator and predictor only, focusing on sensor optimisation and fault tolerance.

ARCHITECTURE: SHRED



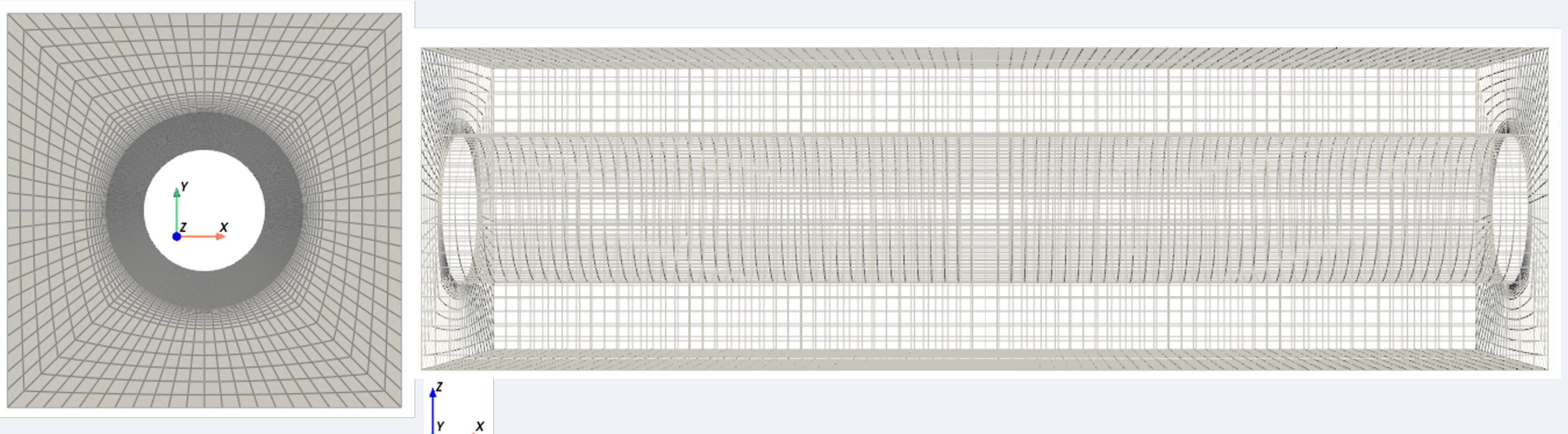
- Selected ML Architecture:** SHRED (SHallow REcurrent Decoder).
- TL;DR:** A Long Short-Term Memory (LSTM) network creates a latent temporal model z_t from some input measurements $y^T(t)$, which a Shallow Decoder Network (SDN) maps to the reduced POD coefficients \hat{v}_t , which encode the temporal dynamics of the field variables; through SVD projection on the spatial basis functions \mathbb{U} , the full-order fields (\mathbf{u}, T, p) are recovered.

Key Advantages

Data Efficient: Can operate with as few as three sensors, located anywhere in the domain.	Resource Efficient: Compressive training allows for laptop-level training and offline operation. Can operate in <i>Ensemble Mode</i> , providing an estimation of uncertainties and enabling faulty sensors detection.	Interpretability: Mathematically based on Takens' embedding theorem and separation of variables.
No Tuning: The same architecture can be used for different applications, provided a suitable dataset.	Physical-Digital Twin Linking: Experimental data from the physical twin act as input to the deployed DT.	Inverse Problem: Can use easy-to-measure quantities in easy-to-reach locations to infer unobservable fields.

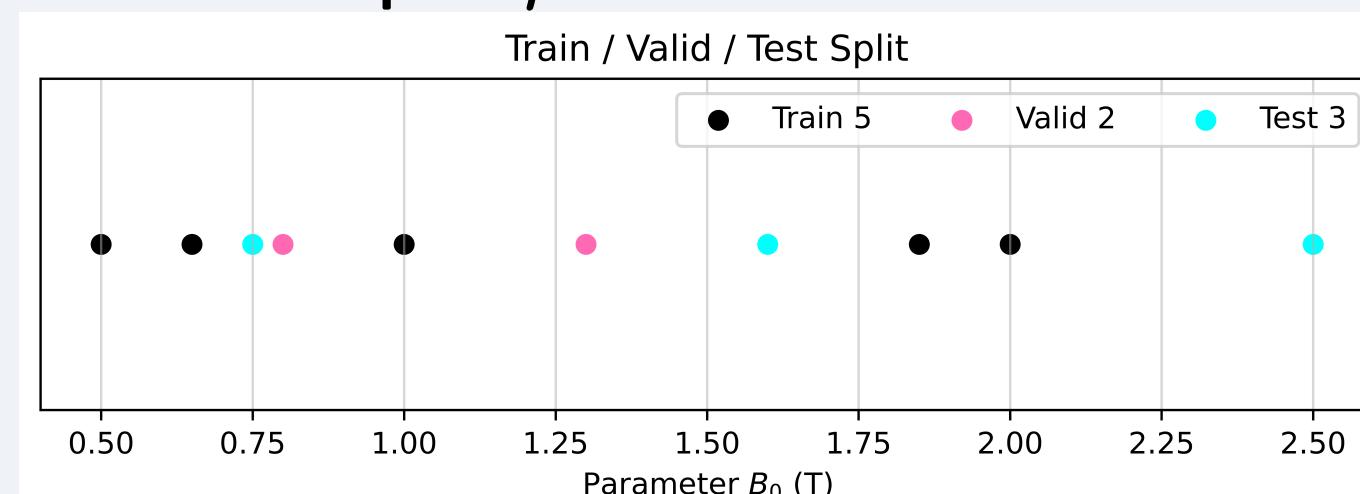
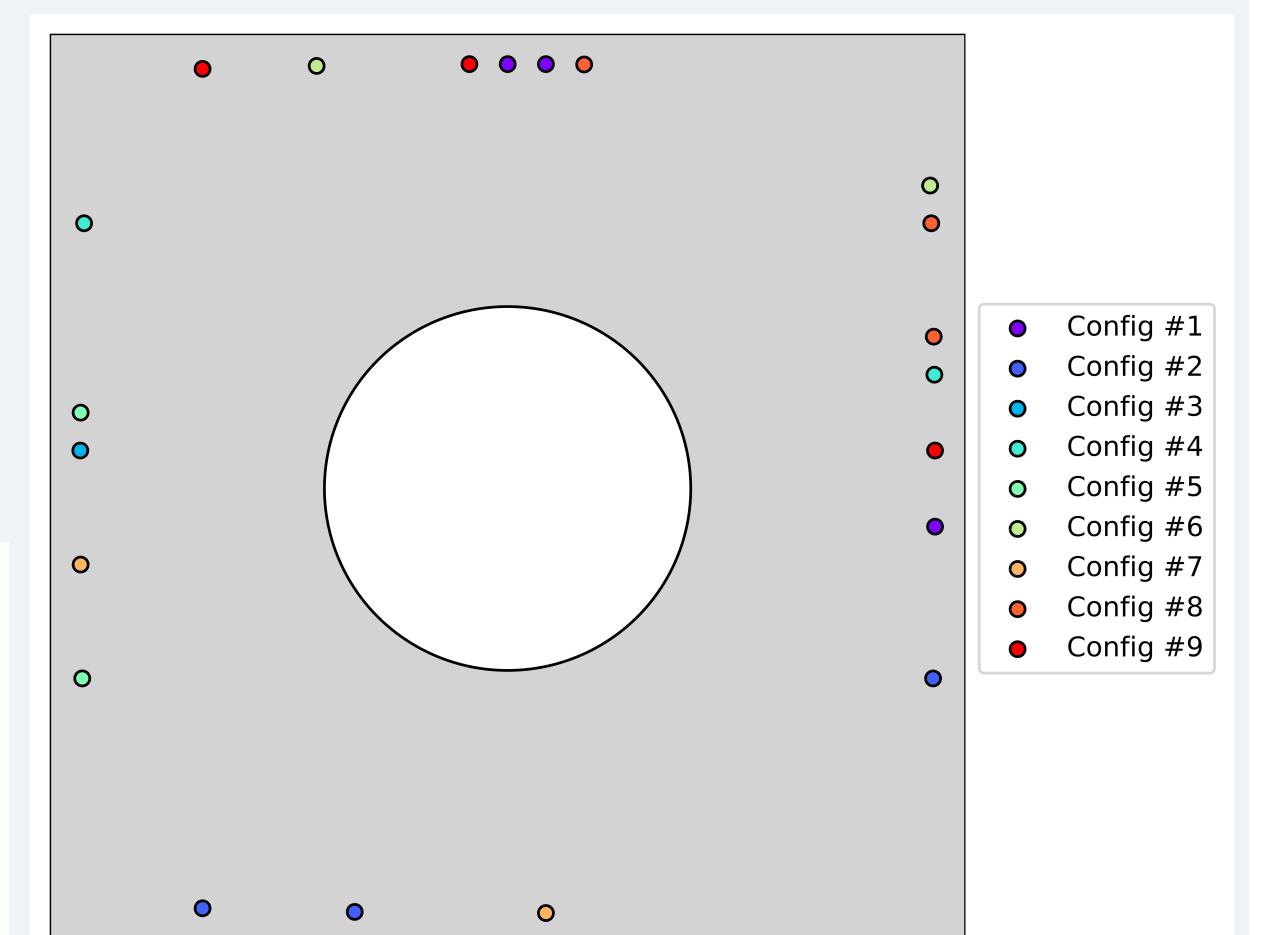
DEMONSTRATIVE BENCHMARK: 3D MHD CHANNEL

- Scope:** Demonstrate the performance of SHRED on a somewhat simple 3D liquid metal channel under an external magnetic field, measuring only temperature data at three random points located near the external boundary.



- FOM Solver:** <https://github.com/ERMETE-Lab/MHD-magnetoHDFoam>
- Dataset Size:** $N_p = 10 \times N_t = 120 \times \mathcal{N}_h = 121176$ (SVD compressed size $r = 100$)
- Data Preprocessing:**

- Normalisation (MinMaxScaler)
- Dataset splitting (train - validation - test)
- Dataset compression through Singular Value Decomposition ($r = 100 \ll \mathcal{N}_h$)
- Ensemble mode: nine sensor configurations (three sensor each, randomly selected near the boundary)
- Parametric Space μ**



- SHRED I/O:** Three (noisy) temperature measurements near the boundaries per each SHRED model \rightarrow (Averaged) reduced POD coefficients $\mathbb{V}_{\mu_i}^k = (\mathbb{U}^k)^T \mathbb{S}_{\mu_i}^k \rightarrow$ Projection back to the full-order space and error computation.
- Training times** (shared Workstation Intel Core i7-988X CPU @ 3.80 GHz, 32 GB RAM): between 4 and 8 minutes total (23 seconds for SHRED configuration on average).
- Training MRE** 4.72% (σ 6.73%), **Test MRE** 6.59% (σ 6.24%).

KEY RESULTS

$\mu = B_y$ (T)	$\hat{\mu}$	$\epsilon\%$
0.5	0.52	-3.99%
0.65	0.63	-2.69%
0.75	0.73	2.88%
0.8	0.79	1.03%
1	0.99	0.75%
1.3	1.47	-13.11%
1.6	1.43	10.83%
1.85	1.74	5.97%
2	1.79	10.48%
2.5	1.9	24.08%

Table 1. Parameter estimation with SHRED for train (blue), validation (green), test interpolated (red), test extrapolated (purple). **Low error up to 1 T (more data), then worst performance.**

Extrapolation beyond the training range ($B_y = 2.5$ T) up to 25% error on parameter.

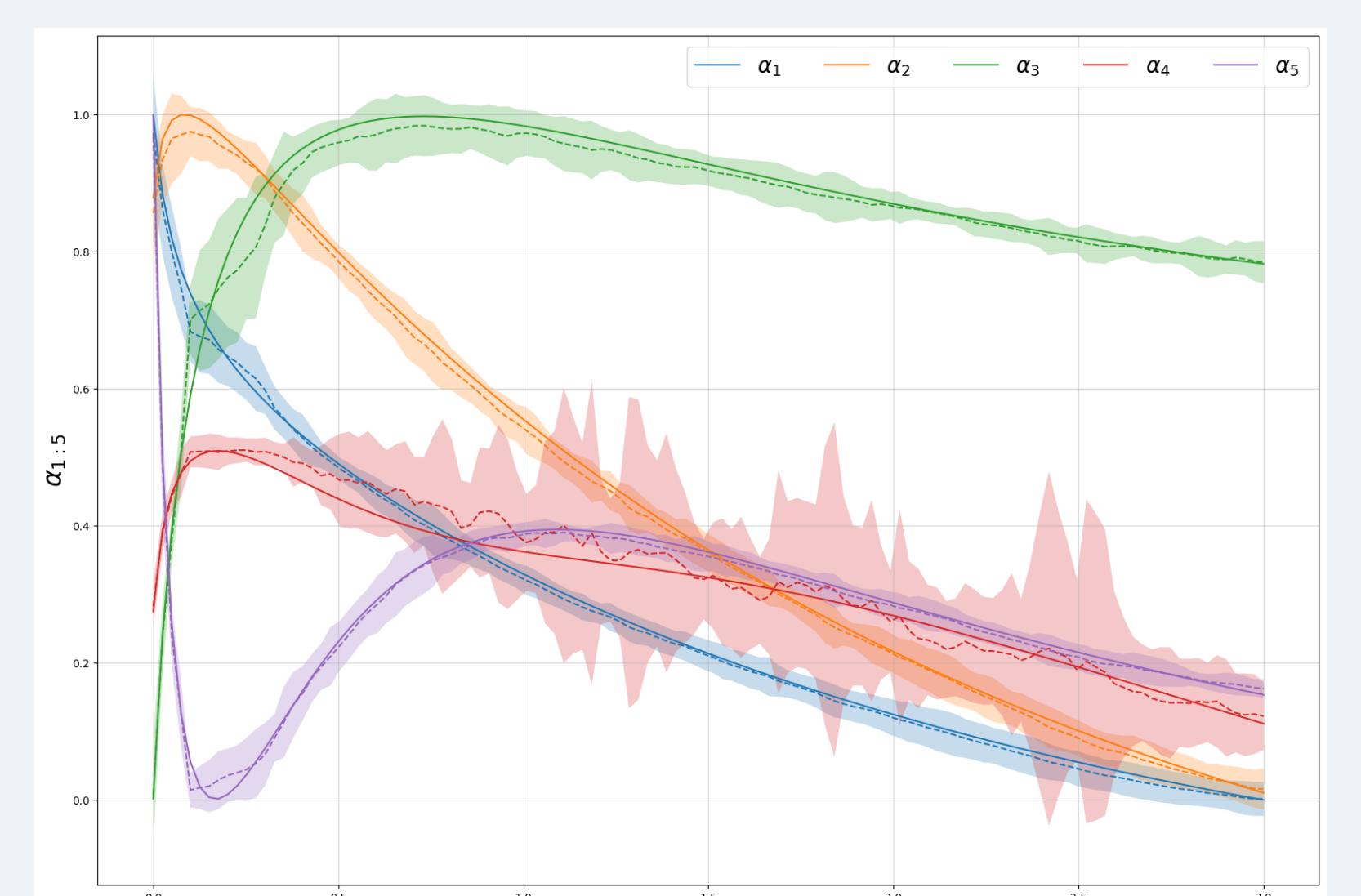


Figure 1. First five POD coefficient for unobservable field U_z , capturing the temporal dynamics, for test parameter $B_y = 2.5$ T. True value is continued line, SHRED average prediction is dashed line, band is estimation uncertainty. **The temporal behaviour is correctly captured (within the uncertainty band) even for the extrapolated case), and even without any direct observations on the velocity field.**

