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INTRODUCTION

m Challenge: Traditional high-fidelity fusion simulations are too computationally

expensive for real-time reactor feedback.

m Need: Devices like ITER and DEMO require fast feedback and continuous monitoring
through Digital Twin Environments (DTE).

m Problem: Fusion research currently lacks an integrated, end-to-end data-driven
framework, often focusing on isolated components.

E-TASC INTERLINKS

m Modular DTE Framework: This proposal advocates for a modular DTE where each
component (e.g., Breeding Blanket) has a dedicated, high-performing DT.

m Multi-Physics Integration: The project aligns with the Data-Driven Predictive
Modelling and Integrated Physics/Engineering Simulation Framework key areas.

m Collaborative Modelling: SHRED-based DTs will be integrated with plasma and
balance-of-plant surrogate models, and interfaced with existing platforms like JINTRAC.

PLANNED WORK

DEMONSTRATIVE BENCHMARK: 3D MHD CHANNEL

2026 WP1: Trained SHRED-based DT of the WCLL
Breeding Blanket, using existing ENEA BB data for
training, capable of operating in reconstruction, pre-
diction and ensemble mode.

WP2.1: Initial integration of the DT into a Python-
based DTE, creating surrogate models for the plasma
and the BOP for demonstration.

WP2.2: Integrate the DT within existing modelling
2027 platforms (ASTRA/JINTRAC), ensuring compatibil-

ity and interopera

oility.

Deliverable: First scientific report,
first main commit of the code with
documentation and a representative
benchmark dataset.

Deliverable: Second scientific re-
port, second main commit of the
code.

Deliverable: Third scientific report,
third main commit of the code.

Build and prove the feasibility of a SHRED-based DT for
the WCLL Breeding Blanket with reconstruction,
prediction, forecast capabilities, to be integrated within
larger DTE frameworks.

m Scope: Demonstrate the performance of SHRED on a somewhat simple 3D liquid metal
channel under an external magnetic field, measuring only temperature data at three random
points located near the external boundary.
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m FOM Solver: https://github.com/ERMETE-Lab/MHD-magnetoHDFoam

m Dataset Size: N, = 10 x N; = 120 x N}, = 121176 (SVD compressed size r = 100)
m Data Preprocessing:

m Normalisation (MinMaxScaler)

WP3: DT-based control and optimisation frame- Deliverable: Fourth scientific re-
work, with closed-loop control mechanisms in the DT, | port, fourth main commit of the code.
assessing sensor optimisation and fault tolerance.
Final Deliverable: Final report summarising the activity and the main results, final commit

of the code with complete documentation and tutorial cases for reproducibility.
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Foreseen Mitigation Actions:

m WP1: Switching architecture or surrogate models if training underperforms, running new
simulations if training data are not sufficient.

m WP2: Use of simple lumped models for plasma and BOP for demonstration purposes.

m WP3: If control is not satisfactory, the DT will be used as a simulator and predictor only,
focusing on sensor optimisation and fault tolerance.

ARCHITECTURE: SHRED
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Shallow Decoder

m Selected ML Architecture: SHRED (SHallow REcurrent Decoder).

m TL;DR: A Long Short-Term Memory (LSTM) network creates a latent temporal model z; from
some input measurements y (¢), which a Shallow Decoder Network (SDN) maps to the reduced
POD coefficients v;, which encode the temporal dynamics of the field variables; through SVD
projection on the spatial basis functions U, the full-order fields (u, T’, p) are recovered.

Key Advantages
Data Efficient: Can Resource Efficient: Compressive Interpretability:
operate with as few as three training allows for laptop-level training Mathematically based on
sensors, located anywhere in and offline operation. Can operate in Takens' embedding theorem
the domain. Ensemble Mode, providing an and separation of variables.
estimation of uncertainties and
enabling faulty sensors detection.
No Tuning: The same Physical-Digital Twin Linking: Inverse Problem: Can use
architecture can be used for Experimental data from the physical easy-to-measure quantities
different applications, twin act as input to the deployed DT. in easy-to-reach locations to
provided a suitable dataset. infer unobservable fields.
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m SHRED 1/0: Three (noisy) temperature measurements near the boundaries per each SHRED
model — (Averaged) reduced POD coefficients Vi = (U")'S} — Projection back to the
full-order space and error computation.

m Training times (shared Workstation Intel Core i7-988X CPU @ 3.80 GHz, 32 GB RAM):

between 4 and 8 minutes total (23 seconds for SHRED configuration on average).

m Training MRE 4.72% (0 6.73%), Test MRE 6.59% (o 6.24%).

KEY RESULTS

p=DB,(T) [ €0
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Table 1. Parameter estimation with
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SHRED for train (blue), validation
(green), test interpolated (red), test
extrapolated (purple). Low error
up to 1 T (more data), then
worst performance.
Extrapolation beyond the
training range (B, =2.5T) up
to 25% error on parameter.
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Figure 1. First five POD coefficient for unobservable field U, capturing the
temporal dynamics, for test parameter B, = 2.5 T. True value is continued
line, SHRED average prediction is dashed line, band is estimation uncertainty.
The temporal behaviour is correctly captured (within the
uncertainty band) even for the extrapolated case), and even
without any direct observations on the velocity field.
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https://github.com/ERMETE-Lab/MHD-magnetoHDFoam

