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The project

● “Integral kernel approach to modelling wave heating of stellarator 
plasmas: breaking further ground in theory and numerical 
implementation”

● Funded by EUROfusion theory & modelling ENR over 2026 - 2027
“CfP-FSD-AWP26-ENR-05-LPP-ERM-KMS-02”

● Continuation of our 2024-2025 ENR, with MPG Garching NMPP now 
officially included. 
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Background

● Kinetic description of hot plasma HF response in realistic toroidal geometries 
is challenging: rotational transform, curved                         .       

● Very different world from ^ - stratified, straight-      equilibria

Þ Traditional approach to realistic full-wave modelling of wave heating in 
tokamaks and stellarators relies on Fourier expansions of the HF fields along 2 
or 3 spatial coordinates. 

● Indeed allows convenient kinetic theoretical treatment of wave dispersion 
along curved      ;

Þ 

- Mixed spectral-finite element or fully spectral numerical formulations,  
   - Plasma described by dielectric tensor formulated in Fourier space  
     involving the well-known          dispersion functions  for Maxwellians,
   - Used in most ICRH codes: TORIC, CYRANO, EVE, AORSA, LEMan...

● Waves in hot fusion plasmas: long range wave - particle interactions 
along equilibrium    
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Reference set of equations: linearized Vlasov - Maxwell system

● Maxwell-Vlasov system (frequency domain):

(E: RF electric field)
 

●  RF current density of each species b :

 
● Vlasov HF perturbed distribution function:
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Reference set of equations: linearized Vlasov - Maxwell system
● Maxwell-Vlasov system (frequency domain), ‘weak’ form:

(E: RF electric field, F: arbitrary test function field, F º E Þ Poynting’s theorem)
 

●  This formulation emphasizes the dielectric response of each species b :

 … rather than the RF current density
● Vlasov HF perturbed distribution function:

● Interests: 
   Theory:         facilitates consistent treatment of geometry
   Applications: ideally suited for implementation in FEM codes 
                        & extraction of power balance
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Notations

● Field components: left (+) and right (-) circular polarizations, parallel (//)

                                                                          : cyclotron and TTMP
● ‘        index’:                                                       : Landau   

                                                                           : mixed Landau-TTMP

● Lowest order FLR: only ‘diagonal’ contributions               ,  

i.e. the bilinear dielectric response only involves               terms

● We use    for the cyclotron harmonic index:
          : ion fundamental,         : Landau,           : electron fundamental 
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Integral kernels in configuration space

● Focus of our ENR: alternative approach, with the plasma dielectric response 
formulated as a nonlocal integral operator in physical space, involving new 
Maxwellian ‘kernel dispersion functions (KDF)’.

● Max. analytical developments 
                                Þ extra physics insight and faster numerical simulations.

● Current emphasis on long-range dispersion effects along     , outstanding in 
applications. Implementation in progress.

● N.B. For the sake of clarity, presentation only shows lowest order FLR.
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Advantages of the configuration space integral approach

-  Leaves complete freedom of choice for numerical discretization.

  Þ Enables FEM methods in 2D and 3D to model wave propagation and 
      absorption in hot inhomogeneous fusion plasmas; 

- Enables local mesh refinements (ruled out with spectral methods), essential
  to address FLR effects in 2D / 3D;

- Better suited field representations to deal with FLR in toroidal geometry; 

- Straightforward connection with RF antenna models  based on the FEM.

Þ Main goals of the project: 

- Efficient implementation in new full-wave code & existing FEM packages; 

- Validation, demonstration of attractiveness, model RF heating in tokamaks  
  and stellarators.
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Earlier work on the configuration space approach 

- Sauter & Vaclavik 1992, 1994, Smithe et al 1997: ^-stratified plasma, focus 
  on ^ nonlocal effects, spectral in // direction

- Meneghini, Shiraiwa & Parker 2009: LHCD, integral treatment of Landau 
  damping, iterative solution

- Svidzinski 2016: very general approach, hot conductivity kernel evaluated 
  numerically by orbit integration

- Fukuyama, 2019 RFPPC

- Lamalle, 2019 RFPPC, 2023 EFTC, 2024 Varenna: 
  tokamak theory, // treatment

- Machielsen, Rubin & Graves 2023: full FLR theory for homogenous plasmas, 
  both // and ^ treatments. Applied to ^ but not yet to //.

Other recent treatments of // dispersion, using iterative methods:
Vallejos et al 2018, Zaar et al 2024
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Configuration space approach: infinite //-homogeneous plasmas

● Plasma response, showing 0th order FLR: involves nonlocal integrals (       ) along 
magnetic field lines

The kernel dispersion functions (KDF) are derived from the usual PDF:

●          : standard plasma dispersion functions (PDF)
● Odd     kept for completeness,           enters the FLR theory
● The form of       appears in Svidzinski (2016)’s conductivity kernel. 

Lamalle (2023, 2024), equivalent to Machielsen et al (2023) S1, S2, S3 but ¹ def.
 [Lamalle et al, RFPPC2025]

11

Correspondence

● Kernel dispersion functions:                          on uniform RF field, 
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● Plasma dispersion functions:                                at              ,
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Latest analytical results (2025): 
● The following double // integrals are evaluated analytically in terms of the same 

family of special functions:

● A KDF of arbitrary index can be evaluated in terms of                     alone.

● The nonlocal interactions between FE (or B-spline) basis functions can be 
evaluated semi-analytically, using the            as building blocks. 
Þ Code simplification and strong acceleration!

● Detailed theory paper on the KDF soon to be submitted for publication.

Detailed analytical study of the KDF
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Tokamak: full configuration space result
● Analytical developments remove the poloidal & toroidal Fourier expansions.
● Plasma response result, showing 0th order FLR: involves nonlocal integrals (s, s’) 

along magnetic field lines,

● These are the same KDFs as for infinite homogeneous plasmas!
● Here, their argument is evaluated at the mid-point between field (s) and test (s’) 

points:

● This is essentially a triple integral over plasma volume + an extra integral 
accounting for // nonlocality. (NB with suitable Jacobians in curved geometries)
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● Same method applied to spectral Maxwellian plasma response of [Vdovin 1996, 
Fukuyama 2000, Murakami 2006]*   Þ same formal expression as for tokamaks:

   * Ignoring drift waves and specific              effects; and assuming integrable orbits.

Stellarator: configuration space result

● Interaction mostly involves close neighbour points, except 
near 2 cyclotron layers

● Helps determine system sparsity pattern for 3D stellarator 
geometry

Cyclotron kernel variation along sample field line:
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Progressive FEM implementation
● Following three paths:

- In-house PLIKES code, 2.5D slab model (quadratic Nédélec+Lagrange)
- NMPP Garching’s Psydac (tensor product B-splines): implementation under way.
- ULiège’s Gmsh-FEM (high degree polynomials): in progress, 
  PhD started in October 2024,
  Specific goal: enabling / optimizing very large scale computing.  
  Linear system preconditioning, domain decomposition and iterative methods 
  (innovative for Maxwell’s equations).

● Staged development, initially FLR0 Þ minority & 3-ion ICRH scenarios

 [Reman et al, RFPPC2025]
16

Sample PLIKES ICRH simulation

 ^-stratified plasma (2-ion hybrid layer at x=-0.1m)

Left-hand circular RF field polarization RF field radial component

 The antenna toroidal spectrum is captured in a single finite element simulation.
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Status

● We have so far demonstrated the capability of our configuration space integral 
approach to treat warm plasma wave dispersion effects along B0, in simplified 
plasma slab geometry.

● Theory & graded implementation with three concurrent FEM tools under 
vigorous development.

● Offers a configuration space integral approach to modelling // kinetic effects in 
toroidal devices, i.e. in presence of poloidal field and           .

● Derives from spectral theory & shares its physics contents, providing 
complementary viewpoint and specific advantages.

● Integral kernels obtained for Maxwellian tokamak & stellarator plasmas, 
properties investigated in detail, unexpected analytical results obtained in 2025 
highly beneficial.

● Extension to realistic toroidal geometries under way in 2026-2027.
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Forthcoming developments (2026-2027): a graded approach

● Primary goals: code extension to realistic toroidal geometries and exploitation.
● Exploit toroidal symmetries à la Jaeger 2002: e.g. 5 simulations on a single 

W7-X sector (using generalized periodicity conditions) Þ RF field over whole 
device.

● In-house PLIKES code: field-aligned mesh in high favour; covariant mapping 
from FE to physical space will generalize 3D slab model. 

● Other approaches may suit Gmsh-FEM and Psydac.

● Code optimization ‘by all possible means’; scaling with problem size being 
documented (PLIKES on Pitagora).

● Essential to develop local mesh refinement / auto-adaptive meshing in view of 
future FLR physics.

● Scalability to very large problems: dedicated developments in Gmsh-FEM.
● The three FEM codes may call for different optimized solutions.
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Priorities for additional physics, on the longer term: 
(theory: throughout 2026-2027; numerics: to be considered from mid-2027)

● FLR effects:
- The theory is available with FLR ‘full-wave’ operator expansion
- Different possible approaches:
 ° Integral approach // & truncated expansion in powers of             : modifies 
  partial differential operator, needs suitable FE basis functions.
° Van Eester & Budé - like approach, see e.g. [Van Eester et al, Maquet et al, 
  RFPPC2025]: integro-differential operator obtained from polynomial fit in k space.
  ° Integral approach // & ^ integral operator similar to Machielsen’s in general 
  geometry: ^ nonlocality on the thermal LR scale.
- First step: carefully balance pros and cons, and select one.

● Non-Maxwellian RF response, with consistent QLFP diffusion coefficient.

Forthcoming developments (2026-2027): a graded approach

20

QR codes to our contributions at the 2025 RF Power in Plasmas Conference 
(Hohenkammer, Germany)

P. Lamalle et al, invited presentation: B. Reman et al, proceedings paper and poster:


