

EUROfusion		The project		Background		Reference set of equations: linearized Vlasov - Maxwell system							
		<p>Integral kernel approach to modelling wave heating of stellarator plasmas: breaking further ground in theory and numerical implementation (ENR-05-LPP-ERM-KMS-02)</p> <p>P. U. Lamalle¹, B. C. G. Reman¹, Chr. Slaby², D. Van Eester¹, M. Campos Pinto³, Y. Gürz⁴, E. Moral Sanchez⁵ In collaboration with Chr. Geuzaine⁶ & J. Zaleski⁷</p> <p>¹Plasma Physics Laboratory, Partner in TEC, Royal Military Academy, Brussels, Belgium ²Max-Planck-Institut für Plasmaphysik, Greifswald and Garching, Germany ³Dept. of Electrical Engineering and Computer Science, University of Liège, Belgium</p> <p>E-TASC 2nd General Meeting Garching, February 9-13, 2026</p>		<ul style="list-style-type: none"> "Integral kernel approach to modelling wave heating of stellarator plasmas: breaking further ground in theory and numerical implementation" Funded by EUROfusion theory & modelling ENR over 2026 - 2027 "CFP-FSD-AWP26-ENR-05-LPP-ERM-KMS-02" Continuation of our 2024-2025 ENR, with MPG Garching NMPP now officially included. 		<ul style="list-style-type: none"> Waves in hot fusion plasmas: long range wave - particle interactions along equilibrium B_0 Kinetic description of hot plasma HF response in realistic toroidal geometries is challenging: rotational transform, curved B_0, $\nabla_\perp B_0 \neq 0$. Very different world from \perp-stratified, straight-B_0 equilibria ⇒ Traditional approach to realistic full-wave modelling of wave heating in tokamaks and stellarators relies on Fourier expansions of the HF fields along 2 or 3 spatial coordinates. Indeed allows convenient kinetic theoretical treatment of wave dispersion along curved B_0: ⇒ Mixed spectral-finite element or fully spectral numerical formulations, - Plasma described by dielectric tensor formulated in Fourier space involving the well-known $Z^{(\perp)}$ dispersion functions for Maxwellians, - Used in most CRH codes: TORIC, CYRANO, EVE, AORSA, LEMAN... 							
		<p>Reference set of equations: linearized Vlasov - Maxwell system</p>		<p>Notations</p>		<p>Integral kernels in configuration space</p>							
<p>Maxwell-Vlasov system (frequency domain), 'weak' form:</p> $\frac{1}{2} \int_V \left[\frac{1}{\omega \mu_0} (\nabla \times \mathbf{F})^* \cdot (\nabla \times \mathbf{E}) - \omega \epsilon_0 \mathbf{F}^* \cdot \mathbf{E} \right] d\mathbf{r}^3 + \sum_\beta W_{FE,\beta} = -\frac{1}{2} \int_V \mathbf{F}^* \cdot \mathbf{j}_S d\mathbf{r}^3 \quad (\mathbf{E}: \text{RF electric field, } \mathbf{F}: \text{arbitrary test function field, } \mathbf{F} \rightarrow \text{Poynting's theorem})$ <p>This formulation emphasizes the dielectric response of each species β:</p> $W_{FE,\beta} = \frac{1}{2} \int_V \mathbf{F}^* \cdot \mathbf{j}_S d\mathbf{r}^3 = \frac{q_\beta}{2} \int_V d\mathbf{r}^3 \int_V d\mathbf{v}^3 f_\beta \mathbf{F}^* \cdot \mathbf{v}$ <p>... rather than the RF current density $j_\beta(r) \equiv \sigma_\beta \cdot \mathbf{E} = q_\beta \int_V f_\beta \mathbf{v} d\mathbf{v}^3$</p> <p>RF HF perturbed distribution function:</p> $f_\beta(r, \mathbf{v}) = -\frac{q_\beta}{m_\beta} \int_{-\infty}^r e^{-i\omega(t-t')} [\mathbf{E}(r') + \mathbf{v}' \times \mathbf{B}(r')] \cdot \frac{\partial f_\beta}{\partial \mathbf{v}'} dr'$ <p>Interests: Theory: facilitates consistent treatment of geometry Applications: ideally suited for implementation in FEM codes & extraction of power balance</p>		<p>Field components: left (+) and right (-) circular polarizations, parallel (II)</p> $\mathbf{E} = \mathbf{E}_+ e_+ + \mathbf{E}_- e_- + \mathbf{E}_{II} e_{II} \quad \mathbf{E}_\perp = \sum_{L=-1}^{+1} \mathbf{E}_L e_L \quad \mathbf{F} = \sum_{L'=-1}^{+1} \mathbf{F}_L e_{L'}$ <table border="1" data-bbox="471 680 569 718"> <tr> <td>L</td> <td>$+$</td> <td>$-$</td> <td>$/$</td> </tr> <tr> <td>L</td> <td>$+1$</td> <td>-1</td> <td>0</td> </tr> </table> <p>v_{II}^0 index: $\alpha = \delta_{L,0} + \delta_{L',0}$ $\alpha = 0$: cyclotron and TTMP $\alpha = 2$: Landau $\alpha = 1$: mixed Landau-TTMP</p> <p>Lowest order FLR: only 'diagonal' contributions $L = L'$, $\alpha = 2\delta_{L,0}$ i.e. the bilinear dielectric response only involves $\mathcal{E}_L \mathcal{E}_L$ terms</p> <p>We use p for the cyclotron harmonic index: $p = +1$: ion fundamental, $p = 0$: Landau, $p = -1$: electron fundamental</p>		L	$+$	$-$	$ / $	L	$+1$	-1	0	<p>Focus of our ENR: alternative approach, with the plasma dielectric response formulated as a nonlocal integral operator in physical space, involving new Maxwellian 'kernel dispersion functions (KDF)'.</p> <p>Max. analytical developments ⇒ extra physics insight and faster numerical simulations.</p> <p>Current emphasis on long-range dispersion effects along B_0, outstanding in applications. Implementation in progress.</p> <p>N.B. For the sake of clarity, presentation only shows lowest order FLR.</p>	
L	$+$	$-$	$ / $										
L	$+1$	-1	0										
<p>Earlier work on the configuration space approach</p>		<p>Configuration space approach: infinite // homogeneous plasmas</p>		<p>Correspondence</p>		<p>Advantages of the configuration space integral approach</p>							
<p>- Sauer & Vaclavik 1992, 1994, Smithe et al 1997: \perp-stratified plasma, focus on \perp nonlocal effects, spectral in // direction</p> <p>- Meneghini, Shiraiwa & Parker 2009: LHCD, integral treatment of Landau damping, iterative solution</p> <p>- Svidzinski 2016: very general approach, hot conductivity kernel evaluated numerically by orbit integration</p> <p>- Fukuyama, 2019 RFPPC</p> <p>- Lamalle, 2019 RFPPC, 2023 EFTC, 2024 Varenna: tokamak theory, // treatment</p> <p>- Macielsen, Rubin & Graves 2023: full FLR theory for homogenous plasmas, both // and \perp treatments. Applied to \perp but not yet to //</p> <p>Other recent treatments // dispersion, using iterative methods: Vallejos et al 2018, Zaar et al 2024</p>		<p>Plasma response, showing 0th order FLR: involves nonlocal integrals (z, z') along magnetic field lines</p> $W_{FE,0} = -\frac{i\alpha}{2} \sum_{L=-1}^{+1} \delta_{L,0} \omega^{2n/2} \int d\mathbf{r} \frac{\omega^2}{v_T} \int d\mathbf{z} \int d\mathbf{z}' F_L^2(z') \Upsilon_\alpha(z) z-z' E_L(z) \quad (\alpha = 2\delta_{L,0})$ $\lambda = \frac{\omega - p\omega c}{2v_T}$ <p>The kernel dispersion functions (KDF) are derived from the usual PDF: $\Upsilon_\alpha(\xi) = \frac{1}{\pi} \int_0^{+\infty} d\zeta \frac{2\zeta}{t} \left[\frac{\cos t}{\sin t} \right] \frac{dt}{t}, \quad \alpha \begin{cases} \text{even} \\ \text{odd} \end{cases} \quad \text{Im } \xi > 0$</p> <p>$Z^{(\alpha)}$: standard plasma dispersion functions (PDF) α odd \perp kept for completeness, $\alpha = 1$ enters the FLR theory α The form of Υ_α appears in Svidzinski (2016)'s conductivity kernel. Lamalle (2023, 2024), equivalent to Macielsen et al (2023) S₀, S₁, S₂ but + def [Lamalle et al, RFPPC2025]</p>		<p>Plasma dispersion functions: at $k_{\perp}/\lambda = 0$, $\text{Im } Z^{(\alpha)}(\pm\infty) = 0$</p> <p>Kernel dispersion functions: on uniform RF field, $\int_0^\infty \text{Im } \Upsilon_\alpha(\beta z) d\zeta = 0$</p> <table border="1" data-bbox="781 1015 1059 1199"> <tr> <td>Cyclotron (p=0), TTMP</td> <td>Mixed TTMP-Landau</td> <td>Landau (p=0)</td> </tr> </table>		Cyclotron (p=0), TTMP	Mixed TTMP-Landau	Landau (p=0)	<p>Leaves complete freedom of choice for numerical discretization. ⇒ Enables FEM methods in 2D and 3D to model wave propagation and absorption in hot inhomogeneous fusion plasmas;</p> <p>Enables local mesh refinements (ruled out with spectral methods), essential to address FLR effects in 2D / 3D;</p> <p>Better suited field representations to deal with FLR in toroidal geometry;</p> <p>Straightforward connection with RF antenna models based on the FEM.</p> <p>Main goals of the project: - Efficient implementation in new full-wave code & existing FEM packages; - Validation, demonstration of attractiveness, model RF heating in tokamaks and stellarators.</p>				
Cyclotron (p=0), TTMP	Mixed TTMP-Landau	Landau (p=0)											
<p>Tokamak: full configuration space result</p>		<p>Stellarator: configuration space result</p>		<p>Progressive FEM implementation</p>		<p>Detailed analytical study of the KDF</p>							
<p>Analytical developments remove the poloidal & toroidal Fourier expansions.</p> <p>Plasma response result, showing 0th order FLR: involves nonlocal integrals (s, s') along magnetic field lines,</p> $W_{FE,0} = -\frac{i\alpha}{2} \sum_{L=-1}^{+1} \delta_{L,0} \omega^{2n/2} \int d\mathbf{r} \frac{\omega^2}{v_T} \int ds \int ds' F_L^2(s') \Upsilon_\alpha \left[\hat{\xi}_p(s, s') \right] E_L(s) \quad (\alpha = 2\delta_{L,0})$ <p>These are the same KDFs as for infinite homogeneous plasmas!</p> <p>Here, their argument is evaluated at the mid-point between field (s) and test (s') points: $\hat{\xi}_p(s, s') = \frac{\omega - p\omega c(s^2 + s'^2)}{2v_T} s - s'$</p> <p>This is essentially a triple integral over plasma volume + an extra integral accounting for // nonlocality. (NB with suitable Jacobians in curved geometries)</p>		<p>Same method applied to spectral Maxwellian plasma response of [Vedren 1996, Fukuyama 2000, Murakami 2006] → same formal expression as for tokamaks:</p> $W_{FE,0} = -\frac{i\alpha}{2} \sum_{L=-1}^{+1} \delta_{L,0} \omega^{2n/2} \int d\mathbf{r} \frac{\omega^2}{v_T} \int d\mathbf{s} \int d\mathbf{s}' F_L^2(s') \Upsilon_\alpha \left[\hat{\xi}_p(s, s') \right] E_L(s) \quad (\alpha = 2\delta_{L,0})$ $\hat{\xi}_p(s, s') = \omega - p\omega c \frac{(s^2 + s'^2)}{2v_T} s - s' $ <p>Cyclotron kernel variation along sample field line: Interaction mostly involves close neighbour points, except near 2 cyclotron layers Helps determine system sparsity pattern for 3D stellarator geometry * Ignoring drift waves and specific $\partial f_\beta / \partial \mathbf{v}$ effects; and assuming integrable orbits.</p>		<p>Following three paths: - In-house PLIKES code, 2.5D slab model (quadratic Nédélec+Lagrange) - NMPG Garching's Psydac (tensor product B-splines): implementation under way, PhD started in October 2024. - GHD's Gmsh-FEM (high degree polynomials): in progress.</p> <p>Specific goal: enabling / optimizing very large scale computing. Linear system preconditioning, domain decomposition and iterative methods (innovative for Maxwell's equations).</p> <p>Staged development, initially FLR \perp ⇒ minority & 3-ion ICRH scenarios</p>		<p>Latest analytical results (2025): • The following double // integrals are evaluated analytically in terms of the same family of special functions: $(z_2 - z_1)(z_2' - z_1') D_\alpha^{(m,n)} = \int_{z_1'}^{z_2'} dz' \frac{(z' - z_2')^m}{(z_2' - z_1')^n} \int_{z_1}^{z_2} dz \Upsilon_\alpha(\beta z - z') \left(\frac{z - z_1}{z_2 - z_1} \right)^n$</p> <p>A KDF of arbitrary index can be evaluated in terms of $\Upsilon_0, \Upsilon_1, \Upsilon_2$ alone.</p> <p>The nonlocal interactions between FE (or B-spline) basis functions can be evaluated semi-analytically, using the $D_\alpha^{(m,n)}$ as building blocks. ⇒ Code simplification and strong acceleration!</p> <p>Detailed theory paper on the KDF soon to be submitted for publication.</p>							
<p>Status</p>		<p>Forthcoming developments (2026-2027): a graded approach</p>		<p>Sample PLIKES ICRH simulation</p>		<p>Sample PLIKES ICRH simulation</p>							
<p>We have so far demonstrated the capability of our configuration space integral approach to treat warm plasma wave dispersion effects along B_0 in simplified plasma slab geometry.</p> <p>Theory & graded implementation with three concurrent FEM tools under vigorous development.</p> <p>Offers a configuration space integral approach to modelling // kinetic effects in toroidal devices, i.e. in presence of poloidal field and $\nabla_\perp B_0$.</p> <p>Derives from spectral theory & shares its physics contents, providing complementary viewpoint and specific advantages.</p> <p>Integral kernels obtained for Maxwellian tokamak & stellarator plasmas, properties investigated in detail, unexpected analytical results obtained in 2025 highly beneficial.</p> <p>Extension to realistic toroidal geometries under way in 2026-2027.</p>		<p>Primary goals: code extension to realistic toroidal geometries and exploitation. Exploit toroidal symmetries à la Jaeger 2002: e.g. 5 simulations on a single W7-X sector (using generalized periodicity conditions) ⇒ RF field over whole device.</p> <p>In-house PLIKES code: field-aligned mesh in high favour; covariant mapping from FE to physical space will generalize 3D slab model.</p> <p>Other approaches may suit Gmsh-FEM and Psydac.</p> <p>Code optimization 'by all possible means', scaling with problem size being documented (PLIKES on Pitagora).</p> <p>Essential to develop local mesh refinement / auto-adaptive meshing in view of future FLR physics.</p> <p>Scalability to very large problems: dedicated developments in Gmsh-FEM.</p> <p>The three FEM codes may call for different optimized solutions.</p>		<p>Priorities for additional physics, on the longer term: (theory: throughout 2026-2027; numerics: to be considered from mid-2027)</p> <p>FLR effects: - The theory is available with FLR 'full-wave' operator expansion - Different possible approaches: - Integral approach // & truncated expansion in powers of $\nabla_\perp, \nabla_\perp$: modifies partial differential operator, needs suitable FE basis functions. - Van Eester & Budé - like approach, see e.g. [Van Eester et al, Maquet et al, RFPPC2025]; integro-differential operator obtained from polynomial fit in k space. - Integral approach \perp & integral operator similar to Macielsen's in general geometry: \perp nonlocality on the thermal LR scale. - First step: carefully balance pros and cons, and select one.</p> <p>Non-Maxwellian RF response, with consistent QLFP diffusion coefficient.</p>		<p>QR codes to our contributions at the 2025 RF Power in Plasmas Conference (Hohenkirchen, Germany):</p> <p>P. Lamalle et al, invited presentation: </p> <p>B. Reman et al, proceedings paper and poster: </p>							