

Proxima
Fusion

Strengthening Europe's modelling ecosystem through public-private collaboration

E-TASC General Meeting #2
Max Planck IPP Garching
9-13 Feb. 2026

by **Orso Meneghini**

Proxima Fusion: building on IPP's Wendelstein experience

- **Mission:** Accelerate progress through **optimized high-field stellarators**

- Founded in **2023**

- Rapidly growing **team of 140+**

- Tight integ. of **engineering & physics**

Reactor-grade
Stellarators
2035++

Classical Stellarators
And heliotrons
1960-1990

Modular Stellarators
1990-2005

Neoclassical Optimized
Stellarators
2015++

Q>1 Stellarator
2030++

Stellaris (concept)

Wendelstein II

Wendelstein 7-AS

Wendelstein 7-X

Alpha (concept)

Stellarators avoid tokamaks' issues linked to plasma-current, at the cost of higher engineering complexity

- primary technology choice of the most recently funded MCF fusion companies in Europe and the US
- pursued with priority in Germany

They avoid:

- 1 Disruptions
- 2 Density limit
- 3 Kink, tearing, sawteeth, RWM...
- 4 Pulsed operations
- 5 Non-inductive current drive

on the other hand:

- 1 3D geometry
- 2 Vast design space
- 3 Tighter tolerances
- 4 Less flexibility once built
- 5 Worse neoclassical \Rightarrow W7-X!

Machine design optimization is critical but difficult because:

- large number of parameters \Rightarrow HPC & AD to the rescue!
- cost/inability of evaluating certain models \Rightarrow we need your help!

How the public sector can help. Personal thoughts as a private-industry newcomer.

- **Different time horizons**
Private: deliver now
Public: long-term science
Both are needed
- **The keyword is “accelerate”**
Partnerships must help go faster.
Long onboarding ⇒ capability must be truly unique.
- **Fidelity needs to grow with the company**
Early: rapid design iteration, systems codes. HPC and high-fidelity come later.

- **Companies want/need to be the integrators**
More likely to adopt on individual models, than frameworks
- **Cost of writing code is → 0**
Agentic coding is changing everything. More value in the science, less in the software.
- **Open software is essential**
Trust, no vendor lock-in, and freedom to modify and extend

Three possible collaboration threads...

1) We need further development of fast & open theory-based stellarator models for extrapolation to reactor

Long-term science that industry needs but cannot do alone
Strong alignment with gaps identified by WP-STEL

- **Transport & confinement**

- Impurity (W, He ash)
- Turbulence surrogates
- Pellet fueling with drifts

- **Edge & exhaust physics**

- Edge-core boundary conditions
- 3D SOL, divertor & wall

- **MHD & energetic particles**

- Beyond ideal nested flux surfaces
- Soft beta limits, EP-MHD coupling

- **Reduced order models**

- Enable fast design iterations

Ideally everything open:

- Publications
- Code (w/ high QA)
- Permissive license

Win-Win-Win

- Researchers get pubs, code ownership, visibility
- Community gets high-quality models
- Industry improves designs and reduces uncertainties

2) We need to verify and validate theory-based models, across codes and against multiple experiments

Reducing risk is key: **Verification** to know that a code is correct.

Validation to know it captures reality. **Redundancy** lowers uncertainty.

- **W7-X data is essential**
 - Most relevant for QI stellarators
- **Multi-machine validation** adds confidence theory can extrapolate
 - LHD, TJ-II, HSX, CTH, ...
 - [LHD public database](#) as model for open data sharing
- **Ideally a stellarator-standard as common data interface**
 - IMAS greatly facilitated V&V in tokamak-land
 - A format becomes a standard only when it broadly used by the community

FAIR stellarator data:

- W7-X & codes in IMAS format would be game-changer for V&V

Win-Win-Win

- Researchers get pubs, visibility, new experiments
- Community knows how to prioritize work
- Industry gets extrapolation confidence

3) We need to build high-fidelity simulation databases, to be used for training ML surrogate models

ML surrogates effectively democratize access to HPC

US companies access DOE HPC

EU private sector needs a similar pathway through EUROfusion

- **High-fidelity codes need leadership-class HPC**
 - GENE for turbulence
 - HINT for eq. w/ magnetic islands
 - EMC3-EIRENE for SOL
- **Often surrogates are device-specific**
 - W7-X \neq Alpha \neq Stellaris
 - Need retraining for each configuration
- **Pooling different DBs nice in theory, in practice often not useful**
 - DB uniformity critical for ML

Joint simulation campaigns:

- Leverage EUROfusion HPC to build open datasets that benefit everyone

Win-Win-Win

- Researchers get pubs, data, visibility
- ML community gets open DBs to exercise methods
- Industry gets surrogates in the regime of interest

What Proxima brings to the table

For European fusion industry:

- **Alpha + Stellaris**
EU stellarator path to fusion
- **Industrial anchor**
Expertise and IP in EU
- **Bridge to commercialization**
Research finds path to impact

Integration expertise:

- **Whole system view**
Plasma embedded in engineering reality
- **Clear requirements**
What targets and with what accuracy?

Hardware & software hand in hand

- **Hardware engineering**
 - HTS technology
 - Prototype coil
 - Alpha CDR
- **Software engineering**
 - Model integration
 - Versioning
 - Provenance
 - Sharing
 - Single source of truth

We're extending Proxima's integrated modeling capabilities based on the lessons learned in the tokamak community

Why we're adopting IMAS?

- **Mature ontology** saves years of trial-and-error!
- Community-tested, well-defined interfaces
- Lower barrier of entry into stellarators from tokamak community

Mostly stellarator ready

- Flux-surface-averaged quantities work as-is
- Actuators and diagnostics already natively 3D
- Extension needed for some 3D eq. and build descriptions

Path towards open sourcing

- Can serve as basis for a **community standard** for stellarators
- ITER already indicated interest
- Looking for engagement with W7-X and EUROfusion

Integrating a growing set of models:

- VMEC equilibrium
- Mercier/ballooning stability
- Flux-matching transport
 - temperatures, densities, E_r
 - stationary or time-dependent
- GK and neoclassical surrogates
- Simplified actuators (EC, IC, NBI, pellets, gas)
- Coil optimization

Features

- Natively IMAS
- Julia, JIT
- Fast, scalable
- End-to-end differentiable (critical for optimization and sensitivity analysis)

Designed to support:

- Predictive scenarios
→ current focus ←
- Machine design
- Data analysis

Engage with us! With your help we can accelerate Europe's stellarator path to fusion energy

- **Models** (Thread 1)
 - Joint research projects
 - Co-publications, co-supervised students
- **V&V** (Thread 2)
 - FAIR IMAS W7-X data access
 - Multi-code verification
 - Multi-machine validation
- **Compute & data** (Thread 3)
 - Joint proposals for HPC
 - Open simulation databases

Win-Win-Win:

- Researchers get publications, code, and visibility
- Community gets tools and open data
- Industry improves machine design and reduces uncertainties

Proxima-Academic Research Series for European Collaboration

One-day twice a year to engage with broad EU research community?

Contact: omeneghini@proximafusion.com