
EPFL-ACH: Instrumentation and profiling for efficient GPU porting

SCientific IT and Application Support Platform (SCITAS)
Swiss Plasma Center (SPC)
EUROfusion Advanced Computing Hub

EUROfusion E-TASC meeting #2

,

■ SCITAS

Agenda

▪ Introduction

▪ HPC Profiling Tools

▪ ASCOT5 Case Study

▪ SOLEDGE3X Case Study

▪ Mini-Apps

▪ Lessons Learned

▪ Conclusions

■ SCITAS

▪ HPC performance challenges

▪ Motivation for profiling

▪ Objectives of this work

Introduction

■ SCITAS

HPC Profiling Methodology

■ SCITAS

▪ Intel VTune

▪ Intel Advisor

▪ NVIDIA Nsight Systems

▪ NVIDIA Nsight Compute

▪ AMD Rocprof

▪ Perf / Score-P

▪ TAU

▪ Extrae / Paraver

Overview of HPC Profiling Tools

■ SCITAS

▪ Intel oneAPI (icx / ifx / icpx):

• -g, -O2 : Debug + profiling

• -qopt-report=5 : Optimization report

• -qopt-report-phase=vec,loop : Vectorization info

• -qopt-zmm-usage=high : AVX-512 usage

• -march=native / -xHost : CPU tuning

▪ NVIDIA NVHPC (nvc / nvc++ / nvfortran):

• -g, -O2 : Debug + profiling

• -Minfo=vec : Vectorization report

• -Minfo=all : Full optimization info

• -gpu=lineinfo : Nsight source mapping

• -fast : Aggressive optimizations

Profiling and Optimization Flags:
Examples

▪ Recommended workflow:

▪ - Debug: -g -O0

▪ - Profile: -g -O2

▪ - Analyze SIMD: reports

▪ - Production: tuned flags

■ SCITAS

▪ Plasma simulation code

▪ CPU and GPU kernels

▪ Main performance bottlenecks

ASCOT5 Overview

■ SCITAS

▪ ASCOT5 is a test particle orbit-following code for toroidal magnetically confined fusion devices
▪ The code uses the Monte Carlo method to solve the distribution of particles by following their

trajectories.
• The evolution of the distribution function for a test particle species a is described by the

Fokker-Planck equation

and approximated by the Langevin equation for a large number of markers that represent the
distributed function:

▪ The particles undergo collisions with a static Maxwellian
background plasma

▪ The detailed magnetic fields and the first wall can be
fully 3D

▪ MPI + OpenMP (task-based) and highly vectorized

ASCOT5

■ SCITAS

■ CPU: MPI - OpenMP - Vectorized implementation:

○ The time evolutions of each particle are independent from each
other, particles having different lifetimes

○ One + two levels of parallelism:

○ MPI: Particles distributed among tasks, fields replicated

○ OpenMP: queue based approach

○ highly vectorized using the SIMD, originally developed for
KNL manycore systems as target

○ to enable multithreading, a number of worker threads, each
operating on a single set of NSIMD arrays, are launched and
allowed to perform their simulation independently

○ swapping mechanism

■ after each iteration, particles that have reached their end
condition are stored in an array for completed particles

■ a fresh particle is retrieved from a queue to continue
simulation in the particular slot in the NSIMD arrays

9

ASCOT5 - CPU version

■ SCITAS

▪ Intel VTune profiling
• srun vtune -collect hotspots -result-dir ./results_vtune3 -- ./ascot5

ASCOT5 - CPU profiling

■ SCITAS

▪ Use of Intel-Advisor on ASCOT5:

srun advisor --collect=survey --project-dir=./advi_results -- ./ascot5

srun advisor --collect=tripcounts --flop --project-dir=./advi_results -- ./ascot5

ASCOT5 - CPU profiling

■ SCITAS

■ GPU porting strategy
➢ Maintain a single version of the code

➢ Ensure code portability and readability

➢ Generic pragma for OpenMP/OpenACC

12

#ifndef gpu_commands
#define gpu_commands
/**
 * @brief Applies parallel execution to loops
 */
#if defined(GPU) && defined(_OPENMP)
#define GPU_PARALLEL_LOOP_ALL_LEVELS \

str_pragma(omp target teams distribute parallel for simd)
#elif defined(GPU) && defined(_OPENACC)
#define GPU_PARALLEL_LOOP_ALL_LEVELS str_pragma(acc parallel loop)
#else
#define GPU_PARALLEL_LOOP_ALL_LEVELS str_pragma(omp simd)
#endif

/**
 * @brief Maps variables to the target device
 */
#if defined(GPU) && defined(_OPENMP)
#define GPU_MAP_TO_DEVICE(...) \

str_pragma(omp target enter data map (to: __VA_ARGS__))
#elif defined(GPU) && defined(_OPENACC)
#define GPU_MAP_TO_DEVICE(...) str_pragma(acc enter data copyin
(__VA_ARGS__))
#else
#define GPU_MAP_TO_DEVICE(...)
#endif
............

#endif
#endif

 GPU_LOOP_ALL_LEVELS
 for(i = 0; i < n_queue_size; i++) {
 if(p->running[i]) {
 posxyz[0] = posxyz0[0] + pxyz[0] * h[i] / (2.0 * gamma *
mass);
 posxyz[1] = posxyz0[1] + pxyz[1] * h[i] / (2.0 * gamma *
mass);
 posxyz[2] = posxyz0[2] + pxyz[2] * h[i] / (2.0 * gamma *
mass);
 }
 GPU_END_LOOP_ALL_LEVELS

ASCOT5 - GPU version

■ SCITAS

■ Implement a new version by splitting the initial kernel:
○ parallelize over events instead of particles
○ small kernels independent of each other
○ pack particles

ASCOT5 - GPU version

■ SCITAS

■ Benchmark:
○ Spline interpolation of a analytical ITER circular equilibrium bfield
○ 2D wall rectangular, No coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
○ Leonardo: A100
○ Comparison of three GPU implementations on GPU A100

■ Event-based packing algorithm is most efficient in all cases
■ Impact of Packing:

● test_loadBalanced: Minimal impact due to majority of particles reaching end of simulation
● test_loadUnbalanced: Significant impact with speedup of up to 1.41 compared to history-based

algorithm and up to 1.22 compared to event-based one.

14

Benchmarks

Comparison of the 3 particle-following GPU implementations - 1
Millions markers - 1 A100

Comparison of the 3 particle-following GPU implementations -
10 Millions markers - 4 A100

■ SCITAS
15

● srun nsys profile --stats=true -t cuda,openacc

 Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
 -------- --------------- --------- ----------- ----------- -------- --------- ----------- ------------------------------
 69.6 293,966,172,960 102,042 2,880,835.1 3,059,920.0 48,880 3,237,080 534,642.4 step_fo_vpa_38_gpu
 7.4 31,226,396,320 102,042 306,015.1 322,440.0 10,280 473,640 52,712.6 simulate_fo_fixed_125_gpu
 5.8 24,687,683,640 102,042 241,936.5 251,920.0 23,560 463,040 37,128.6 endcond_check_fo_88_gpu
 3.6 15,089,905,240 102,042 147,879.4 154,200.0 16,960 171,000 23,098.7 dist_COM_update_fo_90_gpu
 3.1 13,018,526,000 102,042 127,580.1 135,040.0 7,920 161,640 28,709.7 dist_COM_update_fo_127_gpu
 2.1 8,935,938,360 102,042 87,571.2 92,200.0 7,960 95,440 15,142.1 dist_rho5D_update_fo_129_gpu
 1.9 8,172,358,320 102,042 80,088.2 84,040.0 7,960 87,000 13,206.1 dist_5D_update_fo_126_gpu
 1.8 7,472,436,880 102,042 73,229.0 76,920.0 8,080 80,760 12,332.8 dist_rho6D_update_fo_129_gpu
 1.7 7,021,646,480 102,042 68,811.3 72,200.0 8,000 76,920 11,463.7 dist_6D_update_fo_127_gpu
 0.7 2,986,112,440 102,042 29,263.6 30,360.0 7,920 47,800 4,277.9 simulate_fo_fixed_203_gpu
 0.3 1,379,537,280 102,042 13,519.3 13,760.0 7,920 15,400 1,057.5 dist_rho5D_update_fo_191_gpu
 0.3 1,361,297,040 102,042 13,340.6 13,600.0 7,880 15,040 1,061.3 dist_rho6D_update_fo_182_gpu
 0.3 1,359,132,040 102,042 13,319.3 13,560.0 7,920 14,960 1,005.6 dist_5D_update_fo_180_gpu
 0.3 1,342,167,360 102,042 13,153.1 13,440.0 7,880 15,000 1,046.7 dist_6D_update_fo_174_gpu
 0.3 1,187,350,360 102,042 11,635.9 11,720.0 7,760 13,280 500.3 simulate_fo_fixed_133_gpu
 0.3 1,156,788,280 102,042 11,336.4 11,440.0 7,400 13,280 455.5 simulate_fo_fixed_160_gpu
 0.2 946,637,680 102,042 9,276.9 9,280.0 8,480 12,640 148.3 simulate_fo_fixed_283_gpu
 0.2 927,622,400 102,042 9,090.6 9,080.0 8,520 11,960 136.8 simulate_fo_fixed_283_gpu__red
 0.0 465,080 1 465,080.0 465,080.0 465,080 465,080 0.0 simulate_fo_fixed_321_gpu
 0.0 8,560 1 8,560.0 8,560.0 8,560 8,560 0.0 simulate_fo_fixed_316_gpu

[7/8] Executing 'cuda_gpu_mem_time_sum' stats report

 Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Operation
 - ------- --------------- ------- --------- --------- -------- -------- ----------- ------------------
 45.7 195,716,120 102,148 1,916.0 1,520.0 1,080 639,600 13,689.2 [CUDA memcpy DtoH]
 29.4 125,764,080 219 574,265.2 674,360.0 1,440 811,400 218,978.6 [CUDA memcpy HtoD]
 24.9 106,789,160 102,043 1,046.5 1,040.0 960 2,200 27.4 [CUDA memset]

Profiling

■ SCITAS

■ 1M Benchmark:
○ Spline interpolation of a analytical ITER circular equilibrium bfield
○ 2D wall rectangular, No coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time

step
○ Jed: 2x Platinum 8360Y, intel/2021.6.0
○ Pitagora: H100
○ srun nsys profile -t cuda,openacc …

16

Profiling

■ SCITAS

■ Benchmark:
○ Spline interpolation of a analytical ITER circular equilibrium bfield

○ 2D wall rectangular, No coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time
step

○ Pitagora: H100

17

Benchmarks

Event-BasedHistory-Based

■ SCITAS

■ HistoryBased

18

Profiling NCU:

■ EventBased

srun ncu \
--set full \
--export report2
…

■ SCITAS
19

Profiling

■ EventBased
○ kernels mostly memory-bound
○ multiple branch divergences in end_condition kernel

involving lower Memory SOL due to thread divergence

Main kernels %
move_particle 64.8
end_condition 6.2

collisions 4.1
diagnostics 9.6

copy_P_to_P0 7.5
sorting < 0.1
packing < 0.1

kernel Memory
SOL

Compute
SOL

move_particle 68 30
end_condition 36 12

collisions 40 56
diagnostics 80 26

■ SCITAS

▪ Nsight Compute

▪ Kernel analysis

▪ GPU utilization

▪ srun ncu -k
regex:move_particle
--set full

ASCOT5 - GPU profiling

■ SCITAS

▪ Code annotations

▪ Phase identification

▪ Correlation with profilers

NVTX instrumentation in ASCOT5

■ SCITAS

■ 10M markers Benchmark:
○ Collisional full-orbit simulation of prompt-losses of fusion alpha particles
○ 2D wall; ITER-like but circular equilibrium interpolated with cubic splines
○ 2D wall rectangular, coulomb collisions, gyro orbit, simulation time = 0.0001s, fixed time step
○ Jed (@EPFL): 2x Platinum 8360Y, intel/2021.6.0
○ NVIDIA Grace Hopper Superchip engineering sample early access courtesy of NVIDIA
○ Intel Ponte-Vecchio 600W engineering sample early access courtesy of INTEL
○ LUMI-G (GPU partition): AMD MI250x

22

Benchmarks

■ SCITAS

■ SOLEDGE3X: multi-fluid modelling tool for the edge plasma

■ Key features:
● Neutrals either fluid (embedded) or kinetic (EIRENE)
● Complete plasma geometrical flexibility (arbitrary number of

X-points)
● Usable in 2D or 3D
● Usable as mean-field or self-consistent turbulence code

▪ The numerical scheme uses:
• mix explicit-implicit scheme
• based on 2D or 3D finite volumes
• WENO methods for the advection
• following terms are treated implicitly

➢ Parallel viscosity
➢ Parallel heat conduction
➢ vorticity

2D
turbulence

2D
mean-field

3D
turbulence

SOLEDGE3X: a versatile fluid code for the edge
plasma

■ SCITAS

■ 3 level domain decomposition:

1. Structured zones for magnetic topology

2. MPI blocks: prioritized by flux surface across zones

� If N
MPI

≤N
FS

 each MPI process in charge of a set of FS

� If NMPI>NFS largest flux surfaces will be shared by a team of MPI processes

3. Thread chunks: no direction priority, aiming at load balance between chunks

� OpenMP loops are on chunks and species, not on mesh points inside chunks

SOLEDGE3X: Domain Decomposition

■ SCITAS

▪ CPU profiling

SOLEDGE3X: Profiling of CPU version

■ SCITAS

▪ GPU porting
• Maintain a single version of the code

• Ensure code portability and readability

• Generic pragma for OpenMP/OpenACC

▪ Same approach for other codes such

as ASCOT5 and CAS3D
• Open ACC/MP for advection and matrix

construction

• PETSC (with CUDA/HIP) for linear solvers

#ifndef gpu_commands
#define gpu_commands
#ifdef _OPENMP

#define GPU_MAP_TO_DEVICE !$omp target enter data map(to:
#define GPU_MAP_FROM_DEVICE !$omp target exit data map(from:

#define GPU_ALLOC_ON_DEVICE !$omp target enter data map(alloc:
#define GPU_DELETE_FROM_DEVICE !$omp target exit data map(delete:

#define GPU_LOOP_ALL_LEVELS !$omp target teams distribute parallel do simd
#define GPU_END_LOOP_ALL_LEVELS !$omp end target teams distribute parallel do simd

#define GPU_LOOP_LEVEL_1 !$omp target teams distribute
#define GPU_END_LOOP_LEVEL_1 !$omp end target teams distribute

#define GPU_LOOP_LEVEL_2 !$omp parallel do simd
#define GPU_END_LOOP_LEVEL_2 !$omp end parallel do simd

#elif _OPENACC

#define GPU_MAP_TO_DEVICE !$acc enter data copyin(
#define GPU_MAP_FROM_DEVICE !$acc exit data copyout(

#define GPU_ALLOC_ON_DEVICE !$acc enter data create(
#define GPU_DELETE_FROM_DEVICE !$acc exit data delete(

#define GPU_LOOP_ALL_LEVELS !$acc parallel loop
#define GPU_END_LOOP_ALL_LEVELS !$acc end parallel loop

#define GPU_LOOP_LEVEL_1 !$acc parallel loop gang
#define GPU_END_LOOP_LEVEL_1 !$acc end parallel loop

#define GPU_LOOP_LEVEL_2 !$acc loop worker vector
#define GPU_END_LOOP_LEVEL_2

#endif
#endif

 GPU_LOOP_ALL_LEVELS
 do ispec=1,Nspecies
 melt(specElt(ispec))=SpecMass(ispec)
 end do
 GPU_END_LOOP_ALL_LEVELS

 GPU_LOOP_ALL_LEVELS collapse(3)
 do ipsi = ipsimin, ipsimax
 do itheta = ithetamin, ithetamax
 do iphi = iphimin, iphimax

…some work
 end do !iphi
 end do !itheta
 end do !ipsi
 GPU_END_LOOP_ALL_LEVELS

SOLEDGE3X: GPU Porting Strategy

■ SCITAS

■ 5 implicit solvers in SOLEDGE3X :

● Parallel viscosity terms

● Parallel heat conduction terms

● Vorticity equation

● (optional) fluid neutrals

● (optional) potential filter

● and more for EM …

2D

3D

SOLEDGE3X: Implicit Solvers

■ SCITAS

▪ Implicit solvers

• solvers management based on 3 Fortran classes

Matrix
Data structures for

different mat/vec formats
(CSR, TriDiag, IJV, PETSC…)

LinearSytem
Functions to build each line
of the matrix (stencil) and

each entry of the RHS

Solver
Data structures required

by solver library
Functions to solve linear

system

buildMatrix

buildRHS

Provide data storage
adapted to solver

Solve linear system

Code
dependent

SOLEDGE3X: Implicit Solvers

■ SCITAS

▪ Mix OpenACC/OpenMP and CUDA

Matrix
Data structures for

different mat/vec formats
(CSR, TriDiag, IJV, PETSC…)

LinearSytem
Functions to build each line
of the matrix (stencil) and

each entry of the RHS

Solver
Data structures required

by solver library
Functions to solve linear

system

buildMatrix

buildRHS

Provide data storage
adapted to solver

Solve linear system

GPU porting with
OpenACC/OpenMP

PETSC GPU
features

(CUDA/HIP)

SOLEDGE3X: Implicit Solvers

■ SCITAS

■ Test case:
Npsi = 64, Ntheta = 512, Nphi = 64

○ presence of a wall
○ Petsc for all implicit solvers
○ Neutrals
○ Vorticity filtering

Profiling Setup

■ SCITAS

▪ - Nsight Systems

▪ - GPU activity

▪ - MPI + GPU interaction

SOLEDGE3X - GPU profiling

■ SCITAS

▪ Fortran bindings

▪ Integration strategy

▪ Benefits for analysis

NVTX Instrumentation in Fortran
module nvtx_mod

 use iso_c_binding
 implicit none

 ! NVTX color is ARGB: 0xAARRGGBB (alpha must be FF for opaque colors)
 integer, private :: col(7) = [int(Z'FF00FF00',8), int(Z'FF0000FF',8), int(Z'FFFFFF00',8), &
 int(Z'FFFF00FF',8), int(Z'FF00FFFF',8), int(Z'FFFF0000',8), int(Z'FFFFFFFF',8)]

 ! C char buffer for the message (null-terminated). Must have TARGET for c_loc().
 character(kind=C_CHAR), private, target :: tempName(256)

 integer, parameter :: invtx_ImplicitDensities = 1
 integer, parameter :: invtx_ImplicitMomentum = 2
….
 integer, parameter :: invtx_weno = 13

 ! NVTX event attributes struct (NVTX v2-ish layout). Size must match the C struct.
 type, bind(C) :: nvtxEventAttributes

integer(C_INT16_T) :: version = 1
integer(C_INT16_T) :: size = 48

…. = C_NULL_PTR
 end type nvtxEventAttributes

 interface
integer(C_INT) function nvtxRangePushA(name) bind(C, name='nvtxRangePushA')

 use iso_c_binding
 character(kind=C_CHAR), dimension(*) :: name

end function nvtxRangePushA

integer(C_INT) function nvtxRangePushEx(event) bind(C, name='nvtxRangePushEx')
 use iso_c_binding
 import :: nvtxEventAttributes
 type(nvtxEventAttributes), intent(in) :: event

end function nvtxRangePushEx

integer(C_INT) function nvtxRangePop() bind(C, name='nvtxRangePop')
 use iso_c_binding

end function nvtxRangePop
 end interface

contains

 subroutine nvtxStartRange(name, id)
use iso_c_binding
character(kind=C_CHAR, len=*), intent(in) :: name
integer, optional, intent(in) :: id

type(nvtxEventAttributes) :: event
…..
 end subroutine nvtxStartRange

 subroutine nvtxEndRange()
use iso_c_binding
integer(C_INT) :: rid
rid = nvtxRangePop()

 end subroutine nvtxEndRange

end module nvtx_mod

■ SCITAS

▪ srun nsys profile --stats=true -t cuda,openacc
▪ build_mat_loop called by every implicit solver
▪ weno weirdly time consuming

Nsys stats

■ SCITAS

▪ weno weirdly time consuming

NCU-Roofline
 ! Loop on the cells and performs interpolation
 GPU_PARALLEL_LOOP_ALL_LEVELS collapse(3) private(reconstm, reconstp, beta, alpham, alphap)
 do ix = 1,Nx
 do iy = 1,Ny
 do iz=1+order-1,Nz-order+1
 ! Polynomial reconstructions at the faces of the cell
 do r = 0, order-1
 reconstm(r) = 0._dp
 do j = 0, order-1
 reconstm(r) = reconstm(r) + crj(r,j)*var(iz-r+j, iy, ix)
 enddo
 enddo
 do r = 0, order-1
 reconstp(r) = 0._dp
 do j = 0, order-1
 reconstp(r) = reconstp(r) + crj(r-1,j)*var(iz-r+j, iy, ix)
 enddo
 enddo
 ! Calculation of beta (smoothness) factors
 SELECT CASE (order)
 CASE (2)
 beta(0) = (var(iz+1, iy, ix)-var(iz, iy, ix))**2
 beta(1) = (var(iz, iy, ix)-var(iz-1, iy, ix))**2
 CASE (3)
 beta(0) = 13./12.*(var(iz, iy, ix)-2.*var(iz+1, iy, ix)+var(iz+2, iy, ix))**2 &
 +1./4.*(3.*var(iz, iy, ix)-4.*var(iz+1, iy, ix)+var(iz+2, iy, ix))**2
 beta(1) = 13./12.*(var(iz-1, iy, ix)-2.*var(iz, iy, ix)+var(iz+1, iy, ix))**2 &
 +1./4.*(var(iz-1, iy, ix)-var(iz+1, iy, ix))**2
 beta(2) = 13./12.*(var(iz-2, iy, ix)-2.*var(iz-1, iy, ix)+var(iz, iy, ix))**2 &
 +1./4.*(var(iz-2, iy, ix)-4.*var(iz-1, iy, ix)+3.*var(iz, iy, ix))**2
 END SELECT
 ! Calculation of WENO coefficients
 alphapsum = 0.0
 alphamsum = 0.0
 do r = 0, order-1
 alphap(r) = dplus(r)/(epsilon+beta(r))**2
 alpham(r) = dminus(r)/(epsilon+beta(r))**2
 alphapsum = alphapsum + alphap(r)
 alphamsum = alphamsum + alpham(r)
 end do
 ur(iz-1, iy, ix) = 0.0
 ul(iz, iy, ix) = 0.0
 do r = 0, order-1
 ur(iz-1, iy, ix) = ur(iz-1, iy, ix) + (alphap(r)/alphapsum)*reconstp(r)
 ul(iz, iy, ix) = ul(iz, iy, ix) + (alpham(r)/alphamsum)*reconstm(r)
 end do
 ! WENO reconstruction
 enddo
 end do
 end do
 GPU_END_PARALLEL_LOOP_ALL_LEVELS

■ SCITAS

▪ -Minfo=all
▪ inner loops are parallelized by

the compiler

GPU Compiler Optimization Reporting

■ SCITAS

▪ weno weirdly time consuming:
• inner loops are parallelized by the compiler
• use of:

#define GPU_LOOP_SEQ !$acc loop seq

NCU-Roofline

 ! Loop on the cells and performs interpolation
 GPU_PARALLEL_LOOP_ALL_LEVELS collapse(3) private(reconstm, reconstp, beta, alpham, alphap)
 do ix = 1,Nx
 do iy = 1,Ny
 do iz=1+order-1,Nz-order+1
 ! Polynomial reconstructions at the faces of the cell
 GPU_LOOP_SEQ
 do r = 0, order-1
 reconstm(r) = 0._dp
 GPU_LOOP_SEQ
 do j = 0, order-1
 reconstm(r) = reconstm(r) + crj(r,j)*var(iz-r+j, iy, ix)
 enddo
 enddo
 GPU_LOOP_SEQ
 do r = 0, order-1
 reconstp(r) = 0._dp
 GPU_LOOP_SEQ
 do j = 0, order-1
 reconstp(r) = reconstp(r) + crj(r-1,j)*var(iz-r+j, iy, ix)
 enddo
 enddo
 ! Calculation of beta (smoothness) factors
 SELECT CASE (order)
 CASE (2)
 beta(0) = (var(iz+1, iy, ix)-var(iz, iy, ix))**2
 beta(1) = (var(iz, iy, ix)-var(iz-1, iy, ix))**2
 CASE (3)
 beta(0) = 13./12.*(var(iz, iy, ix)-2.*var(iz+1, iy, ix)+var(iz+2, iy, ix))**2 &
 +1./4.*(3.*var(iz, iy, ix)-4.*var(iz+1, iy, ix)+var(iz+2, iy, ix))**2
 beta(1) = 13./12.*(var(iz-1, iy, ix)-2.*var(iz, iy, ix)+var(iz+1, iy, ix))**2 &
 +1./4.*(var(iz-1, iy, ix)-var(iz+1, iy, ix))**2
 beta(2) = 13./12.*(var(iz-2, iy, ix)-2.*var(iz-1, iy, ix)+var(iz, iy, ix))**2 &
 +1./4.*(var(iz-2, iy, ix)-4.*var(iz-1, iy, ix)+3.*var(iz, iy, ix))**2
 END SELECT
 ! Calculation of WENO coefficients
 alphapsum = 0.0
 alphamsum = 0.0
 GPU_LOOP_SEQ
 do r = 0, order-1
 alphap(r) = dplus(r)/(epsilon+beta(r))**2
 alpham(r) = dminus(r)/(epsilon+beta(r))**2
 alphapsum = alphapsum + alphap(r)
 alphamsum = alphamsum + alpham(r)
 end do
 ur(iz-1, iy, ix) = 0.0
 ul(iz, iy, ix) = 0.0
 GPU_LOOP_SEQ
 do r = 0, order-1
 ur(iz-1, iy, ix) = ur(iz-1, iy, ix) + (alphap(r)/alphapsum)*reconstp(r)
 ul(iz, iy, ix) = ul(iz, iy, ix) + (alpham(r)/alphamsum)*reconstm(r)
 end do
 ! WENO reconstruction
 enddo
 end do
 end do
 GPU_END_PARALLEL_LOOP_ALL_LEVELS

■ SCITAS

▪ srun nsys profile --stats=true -t cuda,openacc

Nsys stats

■ SCITAS

▪ Profiling specific regions

NVTX Instrumentation in Fortran

srun ncu --nvtx --nvtx-include "WENO" --set full -f -o report3
../../../build_gpu/soledge3x -ksp_type gmres -pc_type gamg -mat_type
mpiaijcusparse -vec_type mpicuda -log_nvtx 0

■ SCITAS

▪ If RDMA is not used, cuda Mem copy appears

SOLEDGE3X - Multi-GPU profiling

■ SCITAS

▪ Nsight Systems

▪ If RDMA on, No cuda Mem copy

SOLEDGE3X - Multi-GPU profiling

■ SCITAS

▪ MPI + GPU interaction (GPU Direct)

• export UCX_LOG_LEVEL=debug

• Enable UCX debug logs (e.g. UCX_LOG_LEVEL=debug) and check that UCX selects
an InfiniBand transport such as rc_mlx5 (e.g. “created interface using
rc_mlx5/mlx5_*”), which indicates an RDMA-capable network path.

• Look for GPU-related capabilities on the selected IB device, e.g. “cuda GPUDirect
RDMA is enabled” and “dmabuf is supported”, which show that UCX/IB can
handle CUDA device memory for RDMA.

• For additional confidence, check for memory-registration messages on
mlx5/DevX (e.g. “memory registration status Success”), which indicates that
buffers are being registered for high-performance RDMA transfers.

SOLEDGE3X - Multi-GPU profiling

■ SCITAS

▪ Solver hotspot

▪ KSP and preconditioners

▪ Parameter exploration

▪ https://github.com/peyberne/petsc-python-miniapp/tree/main

Mini-app: PETSc Linear Solver

https://github.com/peyberne/petsc-python-miniapp/tree/main

■ SCITAS

▪ Standalone benchmarking tool based on petsc4py

▪ Designed to evaluate PETSc KSP solvers and
preconditioners

▪ Supports CPU and GPU executions

▪ Enables systematic exploration of solver parameters

▪ Provides reproducible performance measurements

PETSc Python Mini-app: Overview

■ SCITAS

▪ Matrices and RHS vectors are dumped from SOLEDGE3X

▪ Realistic reproduction of production workloads

▪ Uses original problem structure and conditioning

▪ Allows offline tuning of solver and preconditioner options

▪ Optimal configurations can be reintegrated into
SOLEDGE3X

Mimicking Soledge3x Linear Solvers

■ SCITAS

Running Benchmark with Miniapp

Benchmark completed!

Plot saved: results/benchmark_results.png

=== TOP 3 fastest configurations ===
1. bcgs+gamg: 0.2836s (363 iterations)
2. dgmres+gamg: 0.3787s (933 iterations)
3. bcgs+pbjacobi: 0.3962s (2284 iterations)
==
Benchmark completed
Date: mer 04 fév 2026 22:35:27 CET
==

Run benchmark
srun -n $SLURM_NTASKS python3
benchmark_petsc.py \

--mat $MATRIX_FILE \
--rhs $RHS_FILE \
--guess $GUESS_FILE \
--ref $REF_FILE \
--config $CONFIG_FILE \
--gpu

$ cat data/options.json
{
 "ksp_rtol": [1e-13],
 "pc_type": ["gamg", "pbjacobi"],
 "ksp_type": ["gmres", "bcgs", "dgmres",
"pgmres"],
 "use_initial_guess": [true]
}

■ SCITAS

TCV- Timing solver 3D

● TCV test-case: timing for the 3d linear solver (With preconditioning computation) using the matrix dumped from the
TCV case (use of the miniapp)

■ SCITAS

TCV-Timing solver 3D
● TCV test-case: timing for the 3d linear solver (reusing preconditioning) using the matrix dumped from the TCV

case (use of the miniapp)

■ SCITAS

▪ Fields are discretized on a 3D grid

▪ Compact tricubic spline representation

▪ 8 corners × 8 coefficients

▪ 64 memory loads per evaluation

▪ C² continuity (smooth second derivatives)

▪ Formula:

Tricubic Splines in Ascot5

■ SCITAS

▪ 64 loads per interpolation

▪ Random memory access

▪ Limited cache reuse

▪ Memory bandwidth bound

▪ Cost dominated by data
movement

▪ If we skip only 2nd derivatives
not very useful according to
time spent in flops in

▪ → Interpolation becomes a
bottleneck

Performance Issues

■ SCITAS

▪ Main hotspot

▪ Tricubic interpolation

▪ Standalone kernel extraction

Mini-app: 3D Spline Interpolation

■ SCITAS

▪ Memory loads

▪ Instruction mix

▪ Cache reuse

▪ Bandwidth usage

Spline Profiling Analysis

■ SCITAS

Spline - CPU profiling
▪ Intel VTune

• Single thread
• No vectorization

■ SCITAS

Spline - CPU profiling
▪ Miniapp #pragma omp simd

 for(int i = 0; i < n_rnd; i++)
 {
 /* Draw random point */
 x_rnd = x_min + (real)rand()/(real)RAND_MAX*(x_max - x_min);
 y_rnd = y_min + (real)rand()/(real)RAND_MAX*(y_max - y_min);
 z_rnd = z_min + (real)rand()/(real)RAND_MAX*(z_max - z_min);
 /* Calculate the analytical value and derivatives */
 if(anl_func == TRIG)
 {

 df_anl[0] = sin(x_rnd)*sin(y_rnd)*sin(z_rnd);
 df_anl[1] = cos(x_rnd)*sin(y_rnd)*sin(z_rnd);

……….
 df_anl[9] = sin(x_rnd)*cos(y_rnd)*cos(z_rnd);

 }
 else if(anl_func == EXP)
 {

 df_anl[0] = exp(-pow(x_rnd-CONST_PI, 2)
 -pow(y_rnd-CONST_PI, 2)
 -pow(z_rnd-CONST_PI, 2));

........

 df_anl[9] = 4*exp(-pow(x_rnd-CONST_PI, 2)
 -pow(y_rnd-CONST_PI, 2)
 -pow(z_rnd-CONST_PI, 2))

 (y_rnd-CONST_PI)(z_rnd-CONST_PI);
 }
 /* Evaluate spline interpolant, and time it cumulatively */
 if(rep == EXPL)
 {

 start = clock();
 interp3Dexpl_eval_f(&f_spl, &str, x_rnd, y_rnd, z_rnd);
 interp3Dexpl_eval_df(df_spl, &str, x_rnd, y_rnd, z_rnd);
 end = clock();

 }
 else if(rep == COMP)
 {

 start = clock();
 interp3Dcomp_eval_f_vec(&f_spl, &str, x_rnd, y_rnd, z_rnd);
 interp3Dcomp_eval_df(df_spl, &str, x_rnd, y_rnd, z_rnd);
 end = clock();

 }
 cpu_time[1] = cpu_time[1] + ((double) (end-start))/CLOCKS_PER_SEC;
 /* Cumulate error */
 for(int j = 0; j < 10; j++)
 {

 err_df[j] += fabs(df_anl[j] - df_spl[j]);
 }
 }

#pragma omp declare simd
__attribute__((always_inline)) inline
a5err interp3Dcomp_eval_df(real* f_df, interp3D_data* str,
 real x, real y, real z) {

…
 real c0000 = str->c[n+0];
 real c0001 = str->c[n+1];
 real c0002 = str->c[n+2];
…
 /* Evaluate spline values */

 /* f */
 f_df[0] = (
 dzi*(
 dxi*(dyi*c0000+dy*c0100)
 +dx*(dyi*c0010+dy*c0110))
 +dz*(

…
 /* d2f/dydz */

f_df[9] = ygi*zgi*(
 (
 dxi*(c0000 -c0100)
 +dx*(c0010-c0110))

■ SCITAS

▪ Intel VTune
• Multiple threads

Spline - CPU profiling

■ SCITAS

▪ Intel VTune
• Multiple threads
• Vectorization:

kernel splitting

Spline - CPU profiling

__itt_resume(); // <-- START profiling
#pragma omp parallel for simd
for(int i = 0; i < n_rnd; i++)
{
 int tid = omp_get_thread_num();
 real f_spl;
 real df_spl[10];
 real x_rnd = x_r[i];
 real y_rnd = y_r[i];
 real z_rnd = z_r[i];
 if(rep == EXPL)
 {
 interp3Dexpl_eval_f(&f_spl, &str, x_rnd, y_rnd, z_rnd);
 interp3Dexpl_eval_df(df_spl, &str, x_rnd, y_rnd, z_rnd);
 }
 else if(rep == COMP)
 {

/* interp3Dcomp_eval_df_vec_optimized(df_spl, &str, x_rnd,
y_rnd, z_rnd); */

interp3Dcomp_eval_df(df_spl, &str, x_rnd, y_rnd, z_rnd);
f_spl = df_spl[0];

 }
 /* Cumulate error */
 for(int j = 0; j < 4; j++)
 {
 err_df_loc[tid*10+j] += fabs(df_anl[i][j] - df_spl[j]);
 }
}
__itt_pause(); // <-- STOP profiling

■ SCITAS

▪ Uses 3×3×3 = 27 grid points

▪ Quadratic Lagrange polynomials

▪ Only first derivatives required

▪ C¹ continuity

▪ Reduced memory traffic

▪ Trade-off: lower accuracy

▪ Formula:

Triquadratic Alternative (27 points)

■ SCITAS

▪ Performance: Quadratic interpolation is about 1.8–2× faster than tricubic in our benchmarks.

▪ Accuracy: Quadratic interpolation shows errors that are typically 2–3 orders of magnitude larger than tricubic.

▪ Precision trade-off: This corresponds to a loss of accuracy of roughly 100–1000× when switching from tricubic to
quadratic.

▪ Grid refinement behavior: Typically, quadratic interpolation reduces the error as ~O(Δx³), while tricubic achieves
~O(Δx⁴), leading to much faster convergence for tricubic on refined meshes.

Spline Performance Comparison -
CPU

err3D_df = ...
[2.156403e-07 1.278646e-08 7.808901e-10 4.826328e-11 3.000212e-12
 1.415311e-06 1.650560e-07 2.002238e-08 2.468597e-09 3.066787e-10
 1.293181e-06 1.575842e-07 1.955249e-08 2.439873e-09 3.048827e-10
 1.415197e-06 1.650120e-07 2.002559e-08 2.468399e-09 3.066920e-10
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00];

cpu_time = ...
init: 3.268003e-09 comp: 1.076283e+01
init: 2.780294e-08 comp: 1.106228e+01
init: 2.774050e-07 comp: 1.586455e+01
init: 2.671721e-06 comp: 1.688363e+01
init: 2.377185e-05 comp: 1.756516e+01
Total time = 72.138474

Tricubic

err3D_df = ...
[7.602645e-05 1.504860e-05 3.396656e-06 8.221558e-07 2.049879e-07
 5.840462e-04 2.390699e-04 1.069041e-04 5.106332e-05 2.519882e-05
 2.101840e-04 5.195958e-05 1.291684e-05 3.222167e-06 8.063628e-07
 5.819221e-04 2.372244e-04 1.063061e-04 5.026960e-05 2.496501e-05
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00];

cpu_time = ...
init: 3.294945e-09 comp: 4.729121e+00
init: 2.806807e-08 comp: 5.518665e+00
init: 2.768760e-07 comp: 5.987247e+00
init: 2.658788e-06 comp: 1.064214e+01
init: 2.397984e-05 comp: 1.157540e+01
Total time = 38.452602

Quadratic

■ SCITAS

▪ Performance: Quadratic interpolation version is about 4 × faster than tricubic one in
our benchmarks.

Spline Performance Comparison -
ASCOT5 GPU

Simulation complete.

Simulation finished in 228.595737 s
Endstate written.

Combining and writing diagnostics.

Writing diagnostics output.

Diagnostics output written.
Diagnostics written.

Summary of results:
 858084 markers had end condition Sim time limit
 141902 markers had end condition Wall collision
 14 markers had end condition Sim time limit and Wall
collision

 No markers were aborted.

Done.

Tricubic

Simulation complete.

Simulation finished in 55.581174 s
Endstate written.

Combining and writing diagnostics.

Writing diagnostics output.

Diagnostics output written.
Diagnostics written.

Summary of results:
 858081 markers had end condition Sim time limit
 141905 markers had end condition Wall collision
 14 markers had end condition Sim time limit and Wall
collision

 No markers were aborted.

Quadratic

■ SCITAS

■ Wall shape defined through mask function 𝜒
■ 2 types of boundary conditions:

● Edges of wall mask => imposed through fluxes for most of them

● Edges of simulation domain, typically one coes as wall should surround the plasma

SOLEDGE3X: Boundary Conditions

■ SCITAS

▪ Wall regions are handled using a mask function (chi)

• MPI domain decomposition balances the total number of cells per subdomain, without distinguishing
masked and unmasked cells

• Each MPI process may contain a different number of masked cells

• This leads to uneven computational workload

▪ Implicit Scheme:

• Matrix and RHS are built using an if-condition on the mask

• Only unmasked cells are solved

• Processes with many masked cells do less work

▪ Explicit Scheme:

• No conditional exclusion of masked cells

• Computation performed on all cells

• Mask applied via (1 - chi)

• More uniform workload across MPI ranks

Mask Function and Load Imbalance

■ SCITAS

Profiling with Scorep
● Main loop: Scorep analysis for 144 MPI processes

● Communication efficiency (maximum across all processes of the ratio between useful
computation time and total run-time):

CommE = maximum across processes (ComputationTime / TotalRuntime) = 0.95

● Load balance efficiency (ratio between average useful computation time - across all processes -
and maximum useful computation time - also across all processes - :

LB=avg(ComputationTime) / max(ComputationTime) = 0.66

■ SCITAS

Profiling with Scorep
● evolveImplicitPHI routine: MPI

barrier take most of the time

■ SCITAS

Profiling with Scorep
● evolveImplicitPHI routine: MPI

barrier take most of the time

■ SCITAS

Profiling with Scorep
● evolveImplicitPHI routine: MPI barrier take most of the time

→ load imbalance between MPI processes (presence of penalization mask to take into account wall and workload
imbalance between magnetic flux surfaces)

■ SCITAS

Profiling with Scorep
● evolveImplicitPHI routine: MPI barrier take most of the time

→ load imbalance between MPI processes (presence of penalization mask to take into account wall and
workload imbalance between magnetic flux surfaces)

■ SCITAS

Profiling with Scorep
● New version giving a weight to “Penalized” cells in MPI domain decompostion:

○ Penalized (wall) cells are assigned a weight < 1
○ MPI decomposition accounts for their reduced computational cost
○ Better workload balance across processes

Implicit module
New version - Weight=0.1)

Implicit module
 (Initial Version)

■ SCITAS

intra-node profiling
● Intel-Vtune

■ SCITAS

intra-node profiling
● Intel-Vtune

■ SCITAS

intra-node profiling
● Intel-Advisor

■ SCITAS

intra-node profiling
● Vectorization:

○ example of non vectorized loop (using -qopt-report=5 compilation option) in computeZhdanov (15% of
computeEpxl routine):
LOOP BEGIN at ./computeZhdanov.f90(107,12)
 remark #15388: vectorization support: reference NI(ispec) has aligned access [./computeZhdanov.f90(108,15)]
 remark #15388: vectorization support: reference UI(ispec) has aligned access [./computeZhdanov.f90(109,15)]
 remark #15388: vectorization support: reference TI(ispec) has aligned access [./computeZhdanov.f90(111,15)]
 remark #15335: loop was not vectorized: vectorization possible but seems inefficient. Use vector always directive or -vec-threshold0 to override
 remark #15328: vectorization support: non-unit strided load was emulated for the variable <fieldsloc(ichunk,ispec)>, stride is unknown to compiler [\
 ./computeZhdanov.f90(108,25)]

the data access in the loop on ispec using the array fieldsLoc(ichunk)%spec(ispec)%n(iphi,itheta,ipsi) is not stride1:

do ipsi = ipsimin, ipsimax
 do itheta = ithetamin, ithetamax
 do iphi = iphimin, iphimax
 do ispec=0,Nspecies
 ni(ispec)=fieldsLoc(ichunk)%spec(ispec)%n(iphi,itheta,ipsi)
 ui(ispec)=fieldsLoc(ichunk)%spec(ispec)%G(iphi,itheta,ipsi)&
 /fieldsLoc(ichunk)%spec(ispec)%n(iphi,itheta,ipsi)
 Ti(ispec)=fieldsLoc(ichunk)%spec(ispec)%T(iphi,itheta,ipsi)
 end do

■ SCITAS

▪ Importance of mini-apps

▪ Instrumentation value

▪ Memory vs compute limits

Lessons Learned

■ SCITAS

▪ Start global

▪ Use roofline

▪ Instrument hotspots

▪ Validate optimizations

Best Practicies

■ SCITAS

▪ - Kokkos Tools interface
▪ - Performance hooks
▪ - Portable instrumentation

Kokkos Instrumentation

■ SCITAS

Profiling a Kokkos application

Kokkos provides a large number of tools that can be used for profiling
- KernelFilter
- KernelSampler
- MemoryHighWater
- MemoryUsage
- MemoryEvents
- SimpleKernelTimer
- KernelLogger
- VTuneConnector
- VTuneFocusedConnector
- NVTXConnector
- Timemory

■ SCITAS

▪ Thank you for your attention

▪ Acknowledgements
• Eurofusion

• EPFL SPC/SCITAS

• CEA/IRFM, VTT

• SCITAS HPC group

• NVIDIA/INTEL

Questions

