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Preliminary warnings

* The methods presented here have several (even better) alternatives

* The focus is on what has been used within the BSC-ACH for work related to CARIDDI

* Some details and issues to be faced to port among different hardware will be discussed
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Context




JOREK couplings with STARWALL and CARIDDI

The free-boundary and resistive wall extension considers the interactions between the conducting structures and the plasma
Calculations are done via coupling of JOREK to STARWALL (J-S) or CARIDDI (J-C) by means of response matrices
Those couplings consist of memory-intensive works to be performed, directly related to the accuracy adopted in 3D modeling

Representing “big” geometries (like ITER) with high accuracy imposes restrictive memory requirements
Matrix compression have revealed to be only partially effective (see Cipolletta et al, 2024)

STARWALL/CARIDDI

ﬁ/RESPONSE MATRICES/L>

Geometry used in STARWALL adopting
a 3D thin wall modeling of the response

JOREK

—Y OUTPUT/
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Geometry used in CARIDDI adopting a
3D volumetric modeling

of the response



https://iopscience.iop.org/article/10.1088/1361-6587/ad728a

The generalized eigenvalue problem

* Both STARWALL and CARIDDI rely on the solution of a generalized eigenvalue problem (gEP)

* The 3D passive structures (STARWALL/CARIDDI) are interfaced with the plasma (JOREK)

* JOREK adopts a 2D Bezier discretization on the poloidal cut and a Fourier expansion on the toroidal direction
* STARWALL/CARIDDI instead models the walls in full 3D

Lv: S)\:ARWS)\)

L., - Inductance (dense) matrix for the conductive structures
S _ Basis of eigenvectors

R,, _, Resistance (dense) matrix
A _ Eigenvalue

* The solution of the problem makes the system of equations diagonal
* Both the inductance and resistance matrices have a size of the walls’ DoF squared
* No cut can be done, because a complete basis of eigenvectors is needed

See Isernia et al, 2023 for further details
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https://pubs.aip.org/aip/pop/article/30/11/113901/2919514/Self-consistent-coupling-of-JOREK-and-CARIDDI-On

Problems and ideas

* The gEP is challenging when considering ITER-size geometry, due to time of computation and memory

* The request was to evaluate alternative solvers for the gEP:

- Test new solvers and try to reach the maximum treatable number of DoF

- Test also the capabilities to exploit GPUs for the calculation

- Evaluate the performance in terms of Time and Memory Overhead

* CARIDDI is a big and complex code - it is worth performing the assessment outside, e.g. via a toy code
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Possibilities
1.Scal APACK
* This is currently used in STARWALL/CARIDDI

* The implementation starts to be a bit old (mid 90s) but it is robust
* ltis still considered the state-of-the-art reference for parallel linear algebra on CPUs

2. MAGMA
* Itis developed by (an extension of) the same group of LAPACK/ScaLAPACK
* It offers CPUs and GPUs capabilities
* The gEP solver is not available on GPUs - NOT AN OPTION

3.SLATE
* Developed by (another extension of) the same group of LAPACK/ScaLAPACK
* It offers CPUs and GPUs capabilities
* The gEP solver can run on multi-GPUs but within a single MPI - NOT AN OPTION

4.NVIDIA cuSOLVER

* Dense SVD, factorizations, and standard eigenvalue solver
* Multi node and multi GPU via CUDA - Possible Portability Issues
* No direct implementation of gEP - More involved Implementation —

5.ELPA
* Developed at MPG
* It offers CPUs (ELPA2 solver) and GPUs (ELPAZ1 solver) capabilities
* The results shown ahead are obtained with this library

“XCOVEARS



https://www.netlib.org/scalapack/
https://icl.utk.edu/magma/
https://icl.utk.edu/slate/
https://developer.nvidia.com/cusolver
https://elpa.mpcdf.mpg.de/index.html

Solutions Adopted




The eigenprobsolver code

1. Love for ugly composite hames

2. Toy Fortran code to solve the gEP calling ELPA or ScaLAPACK

3. The matrices can be defined

Randomically (prescribed dimension) _ _
Test implementation

Analytically (prescribed complexity)

Read from STARWALL
Results

Read from CARIDDI
4. Hosted at the BSC internal GitLab website (different branches for different solvers)

5. Porting between different machines was necessary
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Tests Performed

« STARWALL allows scaling the problem size easily with 2 parameters, nvu and nwv

nvu X nwv 300 x 300 390 x 390 640 X 640
Matrix Size | (90000)2=8.1B (152100)2 = 23.1 B (409600)2 = 168 B

* With CARIDDI it is more difficult and requires explicit meshing of a geometry
NOTE: CARIDDI requires square process grids — the resources’ selection respects this requirement

‘CIRCULAR™ test case ‘ITER” test case
* Simple toroidal mesh * ITER geometry
* 2 holes e Scaled adding components
« 2 walls resolutions tried e 79220 DoF
e 71533 DoF .

* 161089 DoF

...WORK IN PROGRESS...
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Hardware 1 - MareNostrumb5

* MareNostrumb for the initial steps and STARWALL tests (sudden loss of MARCONI)
* 2 partitions available:
1. ACC
80 cores per node
512 GiB of RAM per node
4 NVIDIA H100 (64GB) GPUs per node

20 cores per GPU (prescription)

2. GPP

112 cores per node

256 GiB of RAM per node (standard)
1024 GiB of RAM per node (highmem)
Only CPUs (no GPUSs)
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Hardware 2 - PITAGORA

* To avoid moving too big matrices, the tests with CARIDDI ones were done on PITAGORA
* 2 partitions available:
1. DCGP
- 256 cores per node
- 768 GIB of RAM per node
- Nodes based on AMD architecture
2. Booster
- 64 cores per node
- 512 GIiB of RAM per node
- 4 NVIDIA H100 (80GB) GPUs per node
- 16 cores per GPU (to fill the node)
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Computing the Execution Time

STARWALL — MNS

=il ELPA2 - CPU - 90000
| =4 ' ELPAL - GPU - 90000
=@  ScalAPACK - 90000
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104 - =§= ELPAL - GPU - 152100
1 = e ScalAPACK - 152100
1 —=— ELPA2 - CPU - 409600
1 --e- ScalLAPACK - 409600
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Measure the time to
solve the gEP with
calls to WTIME

The portability issues
reside only in the
compilation of the
code because the
subroutine is
available in all the

MPI major versions

| '1(')3
CPU cores

“XCOVEARS

CARIDDI — Pitagora
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Computing the Speedup wrt cpus

STARWALL — MNS — GPP

25 A
mmmm |deal - MN5 GPP
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If n indicates the
resource number

Speedup: ratio
between the time with
smallest resources
and the time

Normalization can
help the comparison:
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divide by the ratio
between the n value
of the first red point
over the first n value
of the curve

Speedup
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Computing the Speedup wrt Gpus

STARWALL — MNS — ACC

CPU cores
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The Speedup can be
computed and
expressed vs GPU
resources (ELPAL
runs)

Comparing against
CPU runs would not
be fair...(1 stage
solver running on
completely different
hardware)

CARIDDI — Pitagora — Booster

CPU cores
200 400 600 800 1000

16 4 ™ Ideal - Pitagora Booster
=§ ' ELPAl-GPU - 71553
=4— ELPAL - GPU - 161089

Speedup
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Evaluating the Parallelization Efficiency notes

Regarding DLB and TALP

* The DLB library is easy to install and well documented - this minimizes portability issues

* It offers analysis of work done via CPUs and GPUs

* To obtain hybrid CPU-GPU metrics, it must be computed with GPU plugins (not done here)

* If your installation is in ${DLB_HOME} (e.g. set in a module) then the analysis can be performed
- Bulkly on the whole program execution — export settings in the batch script and use the command

srun env LD_PRELOAD="${DLB_HOME}/lib/libdlb_mpi.so" ${PROGRAM} S${INPUT_FILE}

- In custom defined regions of the code (not done here — see the documentation)

Typical output (reported at the end of the execution)
Settings - Qutput (stderr)

coc DLB[as®3r4bo2 BHEHEHEEEEEHEEE Monitoring Regilon POP Metrics ####ddgdydgdasy
#i## Set : DLB[as03r4bez: 69]: ### Name: Global
dlb_args=() DLB[as@3r4bo2: 69]: ### Elapsed Time: 377.10 s
dlb_args+=("--talp") DLB[as0©3r4bo2: 69]: ### Parallel efficiency: 8.15
dlb_args+=("--talp-summary=pop-metrics") DLB[as03r4b02:1823769]: ### - MPI Parallel efficiency: 6.15

DLB[as©3r4b02:1823769]: ### - Communication efficiency: 0.16
DLB[as®3r4b02:1823769]: ### - Load Balance: 0.95
export DLB_ARGS5="5{dlb_args[@]}" DLB[as03r4bo2: 69]: ### o ) 0.96
Do DLB[as03r4b02:1823769]: ### - Qut: 6.99
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https://dlb-docs.readthedocs.io/en/stable/how_to_run_talp.html#inspecting-monitoring-regions-within-the-source-code

Evaluating the Parallelization Efficiency

STARWALL - MN5
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Measure Effpar With
TALP metrics from
the DLB library (Pure
MPI)

EffPar= EffCommXMPIIb

From the data, the
degradation of
performance of GPU
runs on the left is due
to low Effcomm While
MPI,,_is kept
reasonable
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https://dlb-docs.readthedocs.io/en/stable/talp_metrics.html#how-the-metrics-are-computed
https://dlb-docs.readthedocs.io/en/stable/index.html

Evaluating the Parallelization Efficiency comments

Regarding the performance issue observed for some GPU runs

* ELPA1 and ELPAZ2 algorithms are different (1-stage VS 2-stage)

* Host-Device communications are performed internally in the ELPA library

* Strong scaling is meant to test how well the code scales when (MPI) communications increase

* In hybrid CPU-GPU codes, the communication between host and device is a known possible

bottleneck

Portability

* DLB can be installed easily - portability issues are minimized
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Small

Useful variables

Subroutine
Read nodes’ names

Get time stamp

Get mem usage

dump to output

End Subroutine

Call the subroutine in
background

“XCOVEARS

Estimating the Memory Usage (CPU)

* Measure memory consumption per node with free, at a prescribed time interval
* Add a (background) subroutine to the batch script to log in to the compute nodes and laun ee

on different machines...
MN5

# After setting OUTDIR and LOGNAME

interval=5

log file=${OUTDIR}/01 log ${LOGNAME}
free_file=${0OUTDIR}/02_free_ S{LOGNAME}
nodelist_file=S{OUTDIR}/®3_nodelist_S{LOGNAME}

# Get the list of nodes where the job is running

scontrol show hostnames "S$SLURM_JOB_NODELIST" | awk '{for(i=1;i<=NF;i++) print $i}' > Snodelist_file

# Header for the log
echo >> $free_file
echo ostname i p ] otal 1 >> $free_file

>> $free_file

# Function to get memory usage per node
get_memory_usage_free() {

while ISF= read -r host
do {
printf 5 Shost
# Get the current timestamp
timestamp=%$(date "+%Y-%r H:%M:%S")
# Get total memory usage uskwg “free® command
# free -h for human-readable output, or "-m” for megabytes, '-g' for gigabytes
node_memory=S(free -m | grep Mem | awk '{print §3 52 1)
# Using " characters for the commands to pass through ssh, makes
# each command to be evaluated within each ssh session
# NOTE: Using " lets evaluating the variable at each ssh session, with the
# variable defined
ssh "$host" "
echo "Shost Stimestamp Snode_memor >> S$free_file

} 0<&3
done 3<&0 < Snodelist_file

1

# Run the memory monitoring in the background
while true; do

get_memory_usage_free

sleep $interval
done &

N5/free_subroutine_ MN5

Pitagora

# After setting OUTDIR and LOGNAME

interval=5

log file=${OUTDIR}/01 log ${LOGNAME}
free_file=${0OUTDIR}/02_free_ S{LOGNAME}
nodelist_file=S{OUTDIR}/®3_nodelist_ S{LOGNAME}

# Get the list of nodes where the job is running
srun hostname | sort | unig > Snodelist_file

# Header for the log
echo >> $free_file
echo "Ho me i amp ] otal >> $free_file

>> S$free_file

# Function to get memory usage per node
get_memory_usage_free() {

while ISF= read -r host
do {
printf 5 Shost
# Get the current timestamp
timestamp=%$(date "+%Y- H:%M:%S")
# Get total memory usage uskwg “free® command
# free -h for human-readable output, or "-m" for megabytes, '-g' for gigabytes
node_memory=S(free -m | grep Mem | awk '{print §3 52 1)
# Using " characters for the commands to pass through ssh, makes
# each command to be evaluated within each ssh session
t NOTE: Usi1g " lets evaluating the variable at each ssh session, with the
variable defined above

ssh -0 BatchMode= yes UserKnounHostsFile—fdev[null -0 StrictHostKeyChecking=no $host "

echo Shost Stimes Snode _memor >> S$free_file

} 0<&3
done 3<&0 < Snodelist_file

1

# Run the memory monitoring in the background
while true; do

get_memory_usage_free

sleep $interval
done &

Pitagora/free subroutine Pitagora




Estimating the Memory Usage (CPU)

STARWALL — MNS — GPP
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The Peak memory is
simply the maximum
of the numbers in the
output file of the
previous slide

On the x the CPU
cores are considered

Peak Memory per node [GB]
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Computing the Memory Usage (GPU)
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Same approach as
for CPU, but calling a
query via the
nvidia-smi
command to get the
memory used by
GPUs
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Estimating/Computing the Memory Overhead

* Using nvidia-smi is very precise for the GPUs
* Using free and taking the maximum can be less precise - it gives more than the memory for the job
* Luckily, using SLURM, gives you access to sstat

* Even more luckily, in SLURM you also have sacct for already ended jobs

# Retrieving all the jobs from 01/01/1970 with a given Job Name

sacct -u SUSER -S 1970-01-01 --

format=JobID, JobName, State, ExitCode, End, Elapsed, MaxRSS, RegMem, NTasks, A11ocTRES$100 \
—-—units=G —--name={NAME }

# From a file with the job id list

sacct -j S$S(paste -sd, ./{file_jobid_list}) —--format=JobID,JobName,Elapsed,End,MaxRSS -units=G

RSS = Resident Set Size - it provides the information of the physical memory used

Portability: if the MaxRSS is returning the single process data (and not per node), you may prefer AveRSS
The memory overhead is given by the difference between the memory used and the useful memory

It is better to normalize by the memory used

Alternative tools are the Intel profiler or Score-P (not covered here)
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Memory Overhead
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The worst memory
overhead is obtained
for small matrices
(this depends on the
algorithms)
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Conclusions




Summary

The gEP problem in STARWALL and CARIDDI

ELPA has been assessed as an alternative solver to ScaLAPACK, on the basis of
- Computational time — WTIME

- (Pure MPI) Parallel Efficiency (only on CPUs) -~ DLB/TALP

- (Peak) Memory usage - free and nvidia-smi

- Memory Overhead - post process info from nvidia-smi and sacct

Results have been obtained using MN5 and Pitagora

Ideas on portability issues have been provided
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Takeaway and perspectives

ELPA offers a very promising solvers for the gEP, in terms of time-to-solution (kind of 3X)

- CARIDDI team is interested in implementing the library in the code

- It also offers GPU capabilities — almost automatic introduction within CARIDDI

The memory utilization of ELPA is slightly worse (in some cases 2X) than ScaLAPACK

- It might not be the best choice to grow with treatable matrix dimensions

* Some more studies and trials might be needed for exploiting GPUs

Even if the strong scaling of ELPA1 on GPUs is not comparable with the others, its values of time

to solution are very attractive
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Thank you
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