
ThisworkhasbeencarriedoutwithintheframeworkoftheEUROfusionConsortium,fundedbytheEuropeanUnionviathe
EuratomResearchandTrainingProgramme(Grant Agreement No101052200- EUROfusion).Viewsandopinionsexpressedare
however thoseoftheauthor(s) onlyanddonot necessarilyre!ectthoseof theEuropeanUnionortheEuropeanCommission.

Neither the EuropeanUnionnortheEuropeanCommissioncanbeheld responsibleforthem.

Simple and portable methods to
extract performance metrics from
software running on HPC clusters

F. Cipolletta
BSC-ACH

12/02/2026 EUROfusion E-TASC General Meeting #2

Preliminary warnings

• The methods presented here have several (even better) alternatives

• The focus is on what has been used within the BSC-ACH for work related to CARIDDI

• Some details and issues to be faced to port among different hardware will be discussed

Outline
● Context

− JOREK couplings with STARWALL and CARIDDI
− The generalized eigenvalue problem
− Problems, ideas, and possibilities

● Solutions adopted
− Time of computation
− Parallelization efficiency
− Memory usage and overhead
− Notes on portability (in each aspects)

● Conclusions
− Summary, takeaways and perspectives

Context

JOREK couplings with STARWALL and CARIDDI
 The free-boundary and resistive wall extension considers the interactions between the conducting structures and the plasma
 Calculations are done via coupling of JOREK to STARWALL (J-S) or CARIDDI (J-C) by means of response matrices
 Those couplings consist of memory-intensive works to be performed, directly related to the accuracy adopted in 3D modeling
 Representing “big” geometries (like ITER) with high accuracy imposes restrictive memory requirements
 Matrix compression have revealed to be only partially effective (see Cipolletta et al, 2024)

Geometry used in CARIDDI adopting a
3D volumetric modeling of the response

Geometry used in STARWALL adopting
a 3D thin wall modeling of the response

STARWALL/CARIDDI JOREKRESPONSE MATRICES OUTPUT

https://iopscience.iop.org/article/10.1088/1361-6587/ad728a

The generalized eigenvalue problem
 Both STARWALL and CARIDDI rely on the solution of a generalized eigenvalue problem (gEP)
 The 3D passive structures (STARWALL/CARIDDI) are interfaced with the plasma (JOREK)
 JOREK adopts a 2D Bezier discretization on the poloidal cut and a Fourier expansion on the toroidal direction
 STARWALL/CARIDDI instead models the walls in full 3D

Lw
∗ Sλ=λ Rw S λ ,

Lw
∗

S
Rw
λ

→ Inductance (dense) matrix for the conductive structures
→ Basis of eigenvectors
→ Resistance (dense) matrix
→ Eigenvalue

 The solution of the problem makes the system of equations diagonal
 Both the inductance and resistance matrices have a size of the walls’ DoF squared
 No cut can be done, because a complete basis of eigenvectors is needed

See Isernia et al, 2023 for further details

https://pubs.aip.org/aip/pop/article/30/11/113901/2919514/Self-consistent-coupling-of-JOREK-and-CARIDDI-On

● The gEP is challenging when considering ITER-size geometry, due to time of computation and memory

● The request was to evaluate alternative solvers for the gEP:

− Test new solvers and try to reach the maximum treatable number of DoF

− Test also the capabilities to exploit GPUs for the calculation

− Evaluate the performance in terms of Time and Memory Overhead

● CARIDDI is a big and complex code → it is worth performing the assessment outside, e.g. via a toy code

Problems and ideas

1.ScaLAPACK
 This is currently used in STARWALL/CARIDDI
 The implementation starts to be a bit old (mid 90s) but it is robust
 It is still considered the state-of-the-art reference for parallel linear algebra on CPUs

2.MAGMA
 It is developed by (an extension of) the same group of LAPACK/ScaLAPACK
 It offers CPUs and GPUs capabilities
 The gEP solver is not available on GPUs → NOT AN OPTION

3.SLATE
 Developed by (another extension of) the same group of LAPACK/ScaLAPACK
 It offers CPUs and GPUs capabilities
 The gEP solver can run on multi-GPUs but within a single MPI → NOT AN OPTION

4.NVIDIA cuSOLVER
 Dense SVD, factorizations, and standard eigenvalue solver
 Multi node and multi GPU via CUDA → Possible Portability Issues
 No direct implementation of gEP → More involved Implementation → BETTER TO AVOID

5.ELPA
 Developed at MPG
 It offers CPUs (ELPA2 solver) and GPUs (ELPA1 solver) capabilities
 The results shown ahead are obtained with this library

Possibilities

https://www.netlib.org/scalapack/
https://icl.utk.edu/magma/
https://icl.utk.edu/slate/
https://developer.nvidia.com/cusolver
https://elpa.mpcdf.mpg.de/index.html

Solutions Adopted

The eigenprobsolver code
1. Love for ugly composite names

2. Toy Fortran code to solve the gEP calling ELPA or ScaLAPACK

3. The matrices can be defined

− Randomically (prescribed dimension)

− Analytically (prescribed complexity)

− Read from STARWALL

− Read from CARIDDI

4. Hosted at the BSC internal GitLab website (different branches for different solvers)

5. Porting between different machines was necessary

Test implementation

Results

“CIRCULAR” test case
● Simple toroidal mesh
● 2 holes
● 2 walls resolutions tried

● 71533 DoF
● 161089 DoF

Tests Performed
● STARWALL allows scaling the problem size easily with 2 parameters, nvu and nwv

● With CARIDDI it is more difficult and requires explicit meshing of a geometry
NOTE: CARIDDI requires square process grids → the resources’ selection respects this requirement

nvu x nwv 300 x 300 390 x 390 640 x 640

Matrix Size (90000)2 = 8.1 B (152100)2 ≈ 23.1 B (409600)2 ≈ 168 B

“ITER” test case
● ITER geometry
● Scaled adding components

● 79220 DoF
● …

...WORK IN PROGRESS...

Hardware 1 - MareNostrum5
● MareNostrum5 for the initial steps and STARWALL tests (sudden loss of MARCONI)
● 2 partitions available:

1. ACC
− 80 cores per node
− 512 GiB of RAM per node
− 4 NVIDIA H100 (64GB) GPUs per node
− 20 cores per GPU (prescription)

2. GPP
− 112 cores per node
− 256 GiB of RAM per node (standard)
− 1024 GiB of RAM per node (highmem)
− Only CPUs (no GPUs)

Hardware 2 - PITAGORA
● To avoid moving too big matrices, the tests with CARIDDI ones were done on PITAGORA
● 2 partitions available:

1. DCGP
− 256 cores per node
− 768 GiB of RAM per node
− Nodes based on AMD architecture

2. Booster
− 64 cores per node
− 512 GiB of RAM per node
− 4 NVIDIA H100 (80GB) GPUs per node
− 16 cores per GPU (to fill the node)

CARIDDI – PitagoraSTARWALL – MN5

Computing the Execution Time
Measure the time to
solve the gEP with
calls to WTIME

The portability issues
reside only in the
compilation of the
code because the
subroutine is
available in all the
MPI major versions

102 103

CPU cores

102

103

104

t[
s]

ELPA2 - CPU - 71533
ELPA1 - GPU - 71553
ScaLAPACK - 71553
ELPA2 - CPU - 161089
ELPA1 - GPU - 161089
ScaLAPACK - 161089

103

CPU cores

102

103

104

t[
s]

ELPA2 - CPU - 90000
ELPA1 - GPU - 90000
ScaLAPACK - 90000
ELPA2 - CPU - 152100
ELPA1 - GPU - 152100
ScaLAPACK - 152100
ELPA2 - CPU - 409600
ScaLAPACK - 409600

CARIDDI – Pitagora – DCGPSTARWALL – MN5 – GPP

Computing the Speedup wrt CPUs

If n indicates the
resource number

Speedup: ratio
between the time with
smallest resources
and the time

Normalization can
help the comparison:
divide by the ratio
between the n value
of the first red point
over the first n value
of the curve0 1000 2000 3000 4000 5000 6000

CPU cores

0

5

10

15

20

25

Sp
ee

du
p

Ideal - MN5 GPP
ELPA2 - CPU - 90000
ScaLAPACK - 90000
ELPA2 - CPU - 152100
ScaLAPACK - 152100
ELPA2 - CPU - 409600
ScaLAPACK - 409600

0 500 1000 1500 2000 2500 3000 3500 4000
CPU cores

0

20

40

60

80

100

120

140

160

Sp
ee

du
p

Ideal - Pitagora DCGP
ELPA2 - CPU - 71553
ScaLAPACK - 71553
ELPA2 - CPU - 161089
ScaLAPACK - 161089

CARIDDI – Pitagora – BoosterSTARWALL – MN5 – ACC

Computing the Speedup wrt GPUs

The Speedup can be
computed and
expressed vs GPU
resources (ELPA1
runs)

Comparing against
CPU runs would not
be fair...(1 stage
solver running on
completely different
hardware)

250 500 750 1000 1250 1500 1750 2000
CPU cores

20 40 60 80 100
GPUs

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Ideal - MN5 ACC
ELPA1 - GPU - 90000
ELPA1 - GPU - 152100

200 400 600 800 1000
CPU cores

10 20 30 40 50 60
GPUs

2

4

6

8

10

12

14

16

Sp
ee

du
p

Ideal - Pitagora Booster
ELPA1 - GPU - 71553
ELPA1 - GPU - 161089

Evaluating the Parallelization Efficiency notes
Regarding DLB and TALP
● The DLB library is easy to install and well documented → this minimizes portability issues
● It offers analysis of work done via CPUs and GPUs
● To obtain hybrid CPU-GPU metrics, it must be computed with GPU plugins (not done here)
● If your installation is in ${DLB_HOME} (e.g. set in a module) then the analysis can be performed

− Bulkly on the whole program execution → export settings in the batch script and use the command
srun env LD_PRELOAD="${DLB_HOME}/lib/libdlb_mpi.so" ${PROGRAM} ${INPUT_FILE}

− In custom defined regions of the code (not done here – see the documentation)
Typical output (reported at the end of the execution)
 Settings → Output (stderr)

https://dlb-docs.readthedocs.io/en/stable/how_to_run_talp.html#inspecting-monitoring-regions-within-the-source-code

CARIDDI - PitagoraSTARWALL - MN5

Evaluating the Parallelization Efficiency
Measure EffPar with
TALP metrics from
the DLB library (Pure
MPI)

From the data, the
degradation of
performance of GPU
runs on the left is due
to low EffComm while
MPIlb is kept
reasonable

Eff Par=Eff Comm×MPI lb

0 500 1000 1500 2000 2500 3000 3500 4000
CPU cores

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ef
f P

ar

ELPA2 - CPU - 71553
ELPA1 - GPU - 71553
ScaLAPACK - 71553
ELPA2 - CPU - 161089
ELPA1 - GPU - 161089
ScaLAPACK - 161089

0 1000 2000 3000 4000 5000 6000
CPU cores

0.0

0.2

0.4

0.6

0.8

1.0

Ef
f P

ar

ELPA2 - CPU - 90000
ELPA1 - GPU - 90000
ScaLAPACK - 90000
ELPA2 - CPU - 152100
ELPA1 - GPU - 152100
ScaLAPACK - 152100
ELPA2 - CPU - 409600
ScaLAPACK - 409600

https://dlb-docs.readthedocs.io/en/stable/talp_metrics.html#how-the-metrics-are-computed
https://dlb-docs.readthedocs.io/en/stable/index.html

Evaluating the Parallelization Efficiency comments

Regarding the performance issue observed for some GPU runs
● ELPA1 and ELPA2 algorithms are different (1-stage VS 2-stage)
● Host-Device communications are performed internally in the ELPA library
● Strong scaling is meant to test how well the code scales when (MPI) communications increase
● In hybrid CPU-GPU codes, the communication between host and device is a known possible

bottleneck

Portability
● DLB can be installed easily → portability issues are minimized

Useful variables

Estimating the Memory Usage (CPU)
● Measure memory consumption per node with free, at a prescribed time interval
● Add a (background) subroutine to the batch script to log in to the compute nodes and launch free
● Small differences on different machines…

MN5 Pitagora

Nodes’ list

Header of output

Subroutine
Read nodes’ names

Get time stamp

Get mem usage

ssh to the node
dump to output

End Subroutine

Call the subroutine in
background

Estimating the Memory Usage (CPU)
CARIDDI – Pitagora – DCGPSTARWALL – MN5 – GPP The Peak memory is

simply the maximum
of the numbers in the
output file of the
previous slide

On the x the CPU
cores are considered

0 1000 2000 3000 4000 5000 6000
CPU cores

100

200

300

400

500

Pe
ak

 M
em

or
y

pe
r n

od
e

[G
B]

ELPA2 - CPU - 90000
ELPA1 - GPU - 90000
ScaLAPACK - 90000
ELPA2 - CPU - 152100
ELPA1 - GPU - 152100
ScaLAPACK - 152100
ELPA2 - CPU - 409600
ScaLAPACK - 409600

0 500 1000 1500 2000 2500 3000 3500 4000
CPU Cores

100

200

300

400

Pe
ak

 M
em

or
y

pe
r n

od
e

[G
B]

ELPA2 - CPU - 71553
ELPA1 - GPU - 71553
ScaLAPACK - 71553
ELPA2 - CPU - 161089
ELPA1 - GPU - 161089
ScaLAPACK - 161089

Computing the Memory Usage (GPU)
STARWALL – MN5 – ACC CARIDDI – Pitagora – Booster

20 40 60 80 100
GPUs

5

10

15

20

25

30

35

40

45

Pe
ak

 M
em

or
y

pe
r G

PU
 [G

B]

ELPA1 - GPU - 90000
ELPA1 - GPU - 152100

10 20 30 40 50 60
GPUs

10

20

30

40

50

60

70

Pe
ak

 M
em

or
y

pe
r G

PU
 [G

B]

ELPA1 - GPU - 71553
ELPA1 - GPU - 161089

Same approach as
for CPU, but calling a
query via the
nvidia-smi
command to get the
memory used by
GPUs

Estimating/Computing the Memory Overhead
● Using nvidia-smi is very precise for the GPUs
● Using free and taking the maximum can be less precise → it gives more than the memory for the job
● Luckily, using SLURM, gives you access to sstat
● Even more luckily, in SLURM you also have sacct for already ended jobs
Retrieving all the jobs from 01/01/1970 with a given Job Name

sacct -u $USER -S 1970-01-01 --

format=JobID,JobName,State,ExitCode,End,Elapsed,MaxRSS,ReqMem,NTasks,AllocTRES%100 \

--units=G --name={NAME}

From a file with the job id list

sacct -j $(paste -sd, ./{file_jobid_list}) -–format=JobID,JobName,Elapsed,End,MaxRSS –units=G

● RSS = Resident Set Size → it provides the information of the physical memory used
● Portability: if the MaxRSS is returning the single process data (and not per node), you may prefer AveRSS
● The memory overhead is given by the difference between the memory used and the useful memory
● It is better to normalize by the memory used
● Alternative tools are the Intel profiler or Score-P (not covered here)

Memory Overhead
STARWALL – MN5 CARIDDI – Pitagora

0 1000 2000 3000 4000 5000 6000
CPU cores

40

50

60

70

80

90

M
em

 O
ve

rh
ea

d
[%

]

ELPA2 - CPU - 90000
ELPA1 - GPU - 90000
ScaLAPACK - 90000
ELPA2 - CPU - 152100
ELPA1 - GPU - 152100
ScaLAPACK - 152100
ELPA2 - CPU - 409600
ScaLAPACK - 409600

0 500 1000 1500 2000 2500 3000 3500 4000
CPU cores

40

50

60

70

80

90

M
em

 O
ve

rh
ea

d
[%

]

ELPA2 - CPU - 71533
ELPA1 - GPU - 71553
ScaLAPACK - 71553
ELPA2 - CPU - 161089
ELPA1 - GPU - 161089
ScaLAPACK - 161089

The worst memory
overhead is obtained
for small matrices
(this depends on the
algorithms)

Conclusions

Summary

● The gEP problem in STARWALL and CARIDDI
● ELPA has been assessed as an alternative solver to ScaLAPACK, on the basis of

− Computational time → WTIME
− (Pure MPI) Parallel Efficiency (only on CPUs) → DLB/TALP
− (Peak) Memory usage → free and nvidia-smi
− Memory Overhead → post process info from nvidia-smi and sacct

● Results have been obtained using MN5 and Pitagora
● Ideas on portability issues have been provided

Takeaway and perspectives

● ELPA offers a very promising solvers for the gEP, in terms of time-to-solution (kind of 3X)
− CARIDDI team is interested in implementing the library in the code
− It also offers GPU capabilities → almost automatic introduction within CARIDDI

● The memory utilization of ELPA is slightly worse (in some cases 2X) than ScaLAPACK
− It might not be the best choice to grow with treatable matrix dimensions

● Some more studies and trials might be needed for exploiting GPUs
● Even if the strong scaling of ELPA1 on GPUs is not comparable with the others, its values of time

to solution are very attractive

Thank you

ThisworkhasbeencarriedoutwithintheframeworkoftheEUROfusionConsortium,fundedbytheEuropeanUnionviathe
EuratomResearchandTrainingProgramme(Grant Agreement No101052200- EUROfusion).Viewsandopinionsexpressedare
however thoseoftheauthor(s) onlyanddonot necessarilyre!ectthoseof theEuropeanUnionortheEuropeanCommission.

Neither the EuropeanUnionnortheEuropeanCommissioncanbeheld responsibleforthem.

EUROfusion E-TASC General Meeting #2

	Solving the generalized eigenvalue problem in the JOREK free bo
	Slide 2
	Slide 3
	Old Work
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	New Work
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Conclusions
	Slide 26
	Slide 27
	Thank you
	Slide 29

