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Preliminary warnings

• The methods presented here have several (even better) alternatives

• The focus is on what has been used within the BSC-ACH for work related to CARIDDI

• Some details and issues to be faced to port among different hardware will be discussed
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Context



JOREK couplings with STARWALL and CARIDDI
 The free-boundary and resistive wall extension considers the interactions between the conducting structures and the plasma
 Calculations are done via coupling of JOREK to STARWALL (J-S) or CARIDDI (J-C) by means of response matrices
 Those couplings consist of memory-intensive works to be performed, directly related to the accuracy adopted in 3D modeling
 Representing “big” geometries (like ITER) with high accuracy imposes restrictive memory requirements
 Matrix compression have revealed to be only partially effective (see Cipolletta et al, 2024)

Geometry used in CARIDDI adopting a 
3D volumetric modeling of the response

Geometry used in STARWALL adopting 
a 3D thin wall modeling of the response

STARWALL/CARIDDI JOREKRESPONSE MATRICES OUTPUT

https://iopscience.iop.org/article/10.1088/1361-6587/ad728a


The generalized eigenvalue problem
 Both STARWALL and CARIDDI rely on the solution of a generalized eigenvalue problem (gEP)
 The 3D passive structures (STARWALL/CARIDDI) are interfaced with the plasma (JOREK)
 JOREK adopts a 2D Bezier discretization on the poloidal cut and a Fourier expansion on the toroidal direction
 STARWALL/CARIDDI instead models the walls in full 3D
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→ Inductance (dense) matrix for the conductive structures
→ Basis of eigenvectors
→ Resistance (dense) matrix
→ Eigenvalue

 The solution of the problem makes the system of equations diagonal
 Both the inductance and resistance matrices have a size of the walls’ DoF squared
 No cut can be done, because a complete basis of eigenvectors is needed

See Isernia et al, 2023 for further details

https://pubs.aip.org/aip/pop/article/30/11/113901/2919514/Self-consistent-coupling-of-JOREK-and-CARIDDI-On


● The gEP is challenging when considering ITER-size geometry, due to time of computation and memory

● The request was to evaluate alternative solvers for the gEP: 

− Test new solvers and try to reach the maximum treatable number of DoF

− Test also the capabilities to exploit GPUs for the calculation

− Evaluate the performance in terms of Time and Memory Overhead

● CARIDDI is a big and complex code → it is worth performing the assessment outside, e.g. via a toy code

Problems and ideas



1.ScaLAPACK
 This is currently used in STARWALL/CARIDDI
 The implementation starts to be a bit old (mid 90s) but it is robust
 It is still considered the state-of-the-art reference for parallel linear algebra on CPUs

2.MAGMA
 It is developed by (an extension of) the same group of LAPACK/ScaLAPACK
 It offers CPUs and GPUs capabilities
 The gEP solver is not available on GPUs → NOT AN OPTION

3.SLATE
 Developed by (another extension of) the same group of LAPACK/ScaLAPACK
 It offers CPUs and GPUs capabilities
 The gEP solver can run on multi-GPUs but within a single MPI → NOT AN OPTION

4.NVIDIA cuSOLVER
 Dense SVD, factorizations, and standard eigenvalue solver
 Multi node and multi GPU via CUDA → Possible Portability Issues
 No direct implementation of gEP → More involved Implementation → BETTER TO AVOID

5.ELPA
 Developed at MPG
 It offers CPUs (ELPA2 solver) and GPUs (ELPA1 solver) capabilities
 The results shown ahead are obtained with this library

Possibilities

https://www.netlib.org/scalapack/
https://icl.utk.edu/magma/
https://icl.utk.edu/slate/
https://developer.nvidia.com/cusolver
https://elpa.mpcdf.mpg.de/index.html


Solutions Adopted



The eigenprobsolver code
1. Love for ugly composite names

2. Toy Fortran code to solve the gEP calling ELPA or ScaLAPACK

3. The matrices can be defined

− Randomically (prescribed dimension)

− Analytically (prescribed complexity)

− Read from STARWALL

− Read from CARIDDI

4. Hosted at the BSC internal GitLab website (different branches for different solvers)

5. Porting between different machines was necessary

Test implementation

Results



“CIRCULAR” test case
● Simple toroidal mesh
● 2 holes
● 2 walls resolutions tried

● 71533 DoF
● 161089 DoF

Tests Performed
● STARWALL allows scaling the problem size easily with 2 parameters, nvu and nwv

● With CARIDDI it is more difficult and requires explicit meshing of a geometry
NOTE: CARIDDI requires square process grids → the resources’ selection respects this requirement

nvu x nwv 300 x 300 390 x 390 640 x 640

Matrix Size (90000)2 = 8.1 B (152100)2 ≈ 23.1 B (409600)2 ≈ 168 B

“ITER” test case
● ITER geometry
● Scaled adding components

● 79220 DoF
● …

...WORK IN PROGRESS...



Hardware 1 - MareNostrum5
● MareNostrum5 for the initial steps and STARWALL tests (sudden loss of MARCONI)
● 2 partitions available:

1. ACC
− 80 cores per node
− 512 GiB of RAM per node
− 4 NVIDIA H100 (64GB) GPUs per node
− 20 cores per GPU (prescription)

2. GPP
− 112 cores per node
− 256 GiB of RAM per node (standard)
− 1024 GiB of RAM per node (highmem)
− Only CPUs (no GPUs)



Hardware 2 - PITAGORA
● To avoid moving too big matrices, the tests with CARIDDI ones were done on PITAGORA
● 2 partitions available:

1. DCGP
− 256 cores per node
− 768 GiB of RAM per node
− Nodes based on AMD architecture

2. Booster
− 64 cores per node
− 512 GiB of RAM per node
− 4 NVIDIA H100 (80GB) GPUs per node
− 16 cores per GPU (to fill the node)



CARIDDI – PitagoraSTARWALL – MN5

Computing the Execution Time
Measure the time to 
solve the gEP with 
calls to WTIME

The portability issues 
reside only in the 
compilation of the 
code because the 
subroutine is 
available in all the 
MPI major versions
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CARIDDI – Pitagora – DCGPSTARWALL – MN5 – GPP

Computing the Speedup wrt CPUs

If n indicates the 
resource number

Speedup: ratio 
between the time with 
smallest resources 
and the time

Normalization can 
help the comparison: 
divide by the ratio 
between the n value 
of the first red point 
over the first n value 
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CARIDDI – Pitagora – BoosterSTARWALL – MN5 – ACC

Computing the Speedup wrt GPUs

The Speedup can be 
computed and 
expressed vs GPU 
resources (ELPA1 
runs)

Comparing against 
CPU runs would not 
be fair...(1 stage 
solver running on 
completely different 
hardware)
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Evaluating the Parallelization Efficiency notes
Regarding DLB and TALP
● The DLB library is easy to install and well documented → this minimizes portability issues 
● It offers analysis of work done via CPUs and GPUs
● To obtain hybrid CPU-GPU metrics, it must be computed with GPU plugins (not done here)
● If your installation is in ${DLB_HOME} (e.g. set in a module) then the analysis can be performed

− Bulkly on the whole program execution → export settings in the batch script and use the command
srun env LD_PRELOAD="${DLB_HOME}/lib/libdlb_mpi.so" ${PROGRAM} ${INPUT_FILE}

− In custom defined regions of the code (not done here – see the documentation)
Typical output (reported at the end of the execution)
                  Settings                            →                                                     Output (stderr)

https://dlb-docs.readthedocs.io/en/stable/how_to_run_talp.html#inspecting-monitoring-regions-within-the-source-code


CARIDDI - PitagoraSTARWALL - MN5

Evaluating the Parallelization Efficiency
Measure EffPar with 
TALP metrics from 
the DLB library (Pure 
MPI)

From the data, the 
degradation of 
performance of GPU 
runs on the left is due 
to low EffComm while 
MPIlb is kept 
reasonable

Eff Par=Eff Comm×MPI lb
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https://dlb-docs.readthedocs.io/en/stable/talp_metrics.html#how-the-metrics-are-computed
https://dlb-docs.readthedocs.io/en/stable/index.html


Evaluating the Parallelization Efficiency comments

Regarding the performance issue observed for some GPU runs
● ELPA1 and ELPA2 algorithms are different (1-stage VS 2-stage)
● Host-Device communications are performed internally in the ELPA library
● Strong scaling is meant to test how well the code scales when (MPI) communications increase
● In hybrid CPU-GPU codes, the communication between host and device is a known possible 

bottleneck

Portability
● DLB can be installed easily → portability issues are minimized 



Useful variables

Estimating the Memory Usage (CPU)
● Measure memory consumption per node with free, at a prescribed time interval
● Add a (background) subroutine to the batch script to log in to the compute nodes and launch free
● Small differences on different machines…

MN5 Pitagora

Nodes’ list

Header of output

Subroutine
Read nodes’ names

Get time stamp

Get mem usage

ssh to the node
dump to output

End Subroutine

Call the subroutine in 
background



Estimating the Memory Usage (CPU)
CARIDDI – Pitagora – DCGPSTARWALL – MN5 – GPP The Peak memory is 

simply the maximum 
of the numbers in the 
output file of the 
previous slide

On the x the CPU 
cores are considered
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Computing the Memory Usage (GPU)
STARWALL – MN5 – ACC CARIDDI – Pitagora – Booster
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Estimating/Computing the Memory Overhead
● Using nvidia-smi is very precise for the GPUs
● Using free and taking the maximum can be less precise → it gives more than the memory for the job
● Luckily, using SLURM, gives you access to sstat
● Even more luckily, in SLURM you also have sacct for already ended jobs
# Retrieving all the jobs from 01/01/1970 with a given Job Name

sacct -u $USER -S 1970-01-01 --

format=JobID,JobName,State,ExitCode,End,Elapsed,MaxRSS,ReqMem,NTasks,AllocTRES%100 \

--units=G --name={NAME}

# From a file with the job id list

sacct -j $(paste -sd, ./{file_jobid_list}) -–format=JobID,JobName,Elapsed,End,MaxRSS –units=G

● RSS = Resident Set Size → it provides the information of the physical memory used
● Portability: if the MaxRSS is returning the single process data (and not per node), you may prefer AveRSS
● The memory overhead is given by the difference between the memory used and the useful memory
● It is better to normalize by the memory used
● Alternative tools are the Intel profiler or Score-P (not covered here)



Memory Overhead
STARWALL – MN5 CARIDDI – Pitagora
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Conclusions



Summary

● The gEP problem in STARWALL and CARIDDI
● ELPA has been assessed as an alternative solver to ScaLAPACK, on the basis of

− Computational time → WTIME
− (Pure MPI) Parallel Efficiency (only on CPUs) → DLB/TALP 
− (Peak) Memory usage → free and nvidia-smi
− Memory Overhead → post process info from nvidia-smi and sacct

● Results have been obtained using MN5 and Pitagora
● Ideas on portability issues have been provided



Takeaway and perspectives

● ELPA offers a very promising solvers for the gEP, in terms of time-to-solution (kind of 3X)
− CARIDDI team is interested in implementing the library in the code
− It also offers GPU capabilities → almost automatic introduction within CARIDDI

● The memory utilization of ELPA is slightly worse (in some cases 2X) than ScaLAPACK
− It might not be the best choice to grow with treatable matrix dimensions

● Some more studies and trials might be needed for exploiting GPUs
● Even if the strong scaling of ELPA1 on GPUs is not comparable with the others, its values of time 

to solution are very attractive



Thank you
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