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ASSess a new operating regime for power plants

Positive Triangularity (PT) Negative Triangularity (NT)
in H-mode in L-mode

1) H-mode performance 1) H-mode-like performance
2) ELMs 2) No ELMs
3) Standard H-mode SOL 3) L-mode-like SOL

4) Everything else is fairly similar 4) Everything else is fairly similar
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[C. Paz-Soldan Nucl. Fusion (2024)]
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« GK simulations generally display a transport reduction when flipping PT—=NT
(holding background profiles constant)i1-4l

- Effect larger at high | 0|, large aspect ratio, high §, and high «
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« GK simulations generally display a transport reduction when flipping PT—=NT
(holding background profiles constant)!i-4!

- Effect larger at high | 0|, large aspect ratio, high §, and high &

- Usually need kinetic treatment of electrons to observe thisis]

- Nonlinear saturation physics can be considerably differentl!

- Triangularity primarily affects the critical gradient, but not the stiffnessl!4.6]

« Explored exotic shapes beyond NTI7l and developed analytic frameworks to
understand effect of shaping on ITG2l and TEMI8! turbulence
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« Aspect ratio scan shows traditional theoretical argument for stabilization by

NT[-4 (based on trapped particle stability) is incompleteld]
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« A separate in-depth study has been performed for TEMI6]
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 Turbulence in tokamaks arises from a ‘V I ‘VB
destabilization of drift waves
lon accum. OF3;
- Drift waves travel with a velocity ' v
I Cooler Di
Vi X BXxXVT - v
- Destabilized by ion magnetic drift lon depl. l\‘}*
velocity

v, T.B X VB

- These velocities must be similar
Vp; & Vs to enable instabilityl.2

* PT enables this resonance, but not NTI3!

- Can explain dependence of NT
confinement on §, k, and aspect ratiol3!
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- Validated prediction that NT harms confinement when k < 1 on TCVI®!
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« GK simulations agree, both qualitatively and quantitatively, with TCVI1-3],
DIII-Dil, AUGE], and JETB! experiments
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- Global ORBS5 simulations indicate confinement improvement from NT is
independent of machine sizell
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- Novel GENE flux tube simulations with profile shearing show the samel?
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« Local GK simulations indicate KBM turbulence is similar in NT and PT for
conventional tokamaks!'.2l, but worse for spherical tokamaks!s]
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« Local GK simulations indicate KBM turbulence is similar in NT and PT for
conventional tokamaks!'.2l, but worse for spherical tokamaks!s]

« MTM are often worse in NT

regardless of aspect ratiol! 4l —8— NT A=5
—4€—NT A=25 | ¢
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« Local GK simulations indicate KBM turbulence is similar in NT and PT for
conventional tokamaks!'.2l, but worse for spherical tokamaks!3]

O

« MTM are often worse in NT | \ l : .

regardless of aspect ratiol’-4] 05| Al RET)
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 Could be a problem for NT f
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faster magnetic drifts in NTI4! p (%)
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Integrated modeling of NT 2] . Mo Nucl. Fusion (2058

[3] A. Balestri PPCF (2024).

« ASTRA-TGLF (SAT2) modeling verified against local GENE in the outer corelll
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Integrated modeling of NT 2] . Mo Nucl. Fusion (2058

[3] A. Balestri PPCF (2024).

« ASTRA-TGLF (SAT2) modeling verified against local GENE in the outer corelll

« For AUG NT experiments, finds good agreement in profiles (but improvement
IS modest relative to equivalent PT shape)
16 ' ' " :

. | == NT L-mode |
« For TCV NT experiments, under-predicts |

2 ™ PT L-mode |
the 7 profile (which exhibits a strong ~ 10 |~ PT H-mode /]
improvement relative to PT) ~ |

@ 6

* Modeling is challenging as the ’
quantitative improvement often arises P
from IOIOV > 09[1 ,2,3] Jn 0.2 ( 0.8 |

)4 0.6
Pror

« There are indications that TGLF may differ from GENE in this region
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- Sufficiently negative 0 closes access to the 2nd stability region for infinite-n
ballooning modes, which is associated with the transition to H-modell-4]
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[6] T. Happel Nucl. Fusion (2023

- Sufficiently negative 0 closes access to the 2nd stability region for infinite-n
ballooning modes, which is associated with the transition to H-modell-4]

- Developed proxy for blocking the H-mode transition — when the maximum in
the edge local magnetic shear crosses into the bad curvature regionl®]

Local §
» Can be used to explain & -
ASDEX Upgrade resultslel -
0.2
0.1 3
- Argument appears .
independent of machine . 0
size 0
0.2 -5
. NT JET used 30MW of - 20
0.4 O

heating

0.2 0 0.2 17
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No need to exceed L-H power threshold

[1] A. Balestri Nucl. Fusion (2025).

Confinement strongly degrades with external heating power (7 Pe_x?'m)

 Tradeoffs were analyzed using simple 0-D POPCON analysisl!']

SPARC PT P, = 11 MW (Hy; = 1) SPARC NT Ohmic (Hyg = 1)
| I & dW/dt [MW]
@&AQ

 Reveals low power, 70/ 70| 4\ \ \%\ \
high O NT scenarios |k P, MW
that are inaccessible 1 \_ﬁE;ie:;”;f

\
| & d\W/dt [MW]
S @&a
S F)fus [MW]

/

V][4

- nGreenwald

—— B=3%

to PT 50 f
O;E 40 B
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- Particularly attractive = 2
c30r
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for a burning plasma
experiment 20 |
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Increasing line-averaged density
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- Predictive GBS and interpretive SOLEDGE-EIRENE simulations of 6 = & 0.3

. NT steepens profile gradients at the separatrix, reducing /Iq by ~30%!1.2.3]

Electron pressurel2!

« Agrees with GBS, TOKAM3X, and TCV work!45! 5 | ;
- ' PT L-mode

4 E-<-NT L-mode
* For double null plasmas, GBS finds more I

power is transferred to inner targetsl3]

. Appears that /Iq In NT will be intermediate
between PT L-mode and PT H-model®!

- Intuitive based on confinement just inside the
separatrix

X = xsep (,0 SO)
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Divertor detachment e eevior PROE (2024

[3] F. Mombelli arXiv:2506.03966.

- Detachment of NT plasmas achieved in TCV with N2 seeding!]

- Lowers 7 by ~20% <1021 Outer target LP measurements
4
: K%
* Increased divertor closure '3
using baffles lowers the =
density threshold §2

—

« More difficult to detach

than in PT L-model2] g 19
= s
« SOLPS-ITER indicates =
caused by cross-field 0 | | |
transport, rather than the 0 0.5 1 1.5 2 2.5 3

shape directlyl! N2 quantity [molecules] « 1022
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- Interpretative model of TCV experiments indicates that NT reduces the
amplitude of TAEs and their transport of fast ionsl]

« Theory indicates triangularity has little

impact on TAE stability in the fluid limit, but

kinetic effects reveals that NT results in

somewhat higher growth rates than PTI2!

- Relative to PT, fast ions in NT experience

increased transport by sawteethl3l and
similar transport in MHD-quiescent

plasmasl“l
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- Interpretative model of TCV experiments indicates that NT reduces the
amplitude of TAEs and their transport of fast ionsl]

« Theory indicates triangularity has little
impact on TAE stability in the fluid limit, but
Kinetic effects reveals that NT results in
somewhat higher growth rates than PTI2!

- Relative to PT, fast ions in NT experience
increased transport by sawteethl3l and
similar transport in MHD-quiescent
plasmasl“l

 Vertical stability worse in NT, but may be
addressed by stabilizing plates!>.6]
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Takeaways

[1] S. Doyle FED (2021).

« GK finds better confinement in NT and now we better understand why

- Confinement improvement should scale to a reactor (if MTMs are avoided)
- May not be true in spherical tokamaks (testable on SMARTI)

- ASTRA-TGLF agrees with GENE, but puzzles remain in profile predictions

- Lack of H-mode transition appears robust and enables attractive scenarios

« SOL width in NT should be intermediate between PT L-mode and PT H-mode
(as should detachment physics)

« NT and PT similar for fast ion physics, Alfven eigenmodes, and tearing
modes, while stronger vertical instability should be kept in mind

25


https://www.sciencedirect.com/science/article/pii/S0920379621004828

Thank you!

This presentation (including hyperlinks to all citations)
can be downloaded at this event’s Indico site:
https://indico.euro-fusion.org/event/3700/
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