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Assess a new operating regime for power plants

Positive Triangularity (PT)

• H-mode performance


• ELMs


• Standard H-mode SOL


• Everything else is fairly similar

• H-mode-like performance


• No ELMs


• L-mode-like SOL


• Everything else is fairly similar

in H-mode
Negative Triangularity (NT)

in L-mode

1) H-mode-like performance


2) No ELMs


3) L-mode-like SOL


4) Everything else is fairly similar

1) H-mode performance


2) ELMs


3) Standard H-mode SOL


4) Everything else is fairly similar
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1) Core confinement
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[A. Balestri PPCF (2024)]

DIII-D

[C. Paz-Soldan Nucl. Fusion (2024)]

https://iopscience.iop.org/article/10.1088/1361-6587/ad4674
https://iopscience.iop.org/article/10.1088/1741-4326/ad69a4
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• GK simulations generally display a transport reduction when flipping PT→NT 
(holding background profiles constant)[1-4]


• Effect larger at high , large aspect ratio, high , and high |δ | ̂s κ
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Basic gyrokinetic (GK) studies
[1] G. Merlo Phys. Plasmas (2019). 

[2] A. Balestri PPCF (2024). 
[3] J. Ball PPCF (2022). 

[4] A. Mariani Nucl. Fusion (2024). 
[5] J. Duff Phys. Plasmas (2021)., M.J. Pueschel Nucl. Fusion (2024). 

[6] J. Ball PMI-5.2.1-T050 (2020). G. Merlo PPCF (2015). 
[7] H. Sun Nucl. Fusion (2025). [8] X. Garbet Nucl. Fusion (2024). L. De Gianni PPCF (submitted).

https://pubs.aip.org/aip/pop/article/26/10/102302/264087/Turbulent-transport-in-TCV-plasmas-with-positive
https://iopscience.iop.org/article/10.1088/1361-6587/ad4d1d
https://iopscience.iop.org/article/10.1088/1361-6587/aca715
https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://pubs.aip.org/aip/pop/article/29/1/012303/2847593/Effect-of-triangularity-on-ion-temperature
https://iopscience.iop.org/article/10.1088/1741-4326/ad3563
https://idm.euro-fusion.org/default.aspx?uid=2MZ7EQ&version=v1.0
https://iopscience.iop.org/article/10.1088/0741-3335/57/5/054010
https://iopscience.iop.org/article/10.1088/1741-4326/ade1ed
https://iopscience.iop.org/article/10.1088/1741-4326/ad6e9f
https://pinboard.euro-fusion.org/repository/pinboard/EFDA-JET/journal/122649_paper_linear_analysis_submit_v2.pdf
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• GK simulations generally display a transport reduction when flipping PT→NT 
(holding background profiles constant)[1-4]


• Effect larger at high , large aspect ratio, high , and high 


• Usually need kinetic treatment of electrons to observe this[3]


• Nonlinear saturation physics can be considerably different[5]


• Triangularity primarily affects the critical gradient, but not the stiffness[4,6]


• Explored exotic shapes beyond NT[7] and developed analytic frameworks to 
understand effect of shaping on ITG[2] and TEM[8] turbulence

|δ | ̂s κ

Basic gyrokinetic (GK) studies
[1] G. Merlo Phys. Plasmas (2019). 

[2] A. Balestri PPCF (2024). 
[3] J. Ball PPCF (2022). 

[4] A. Mariani Nucl. Fusion (2024). 
[5] J. Duff Phys. Plasmas (2021)., M.J. Pueschel Nucl. Fusion (2024). 

[6] J. Ball PMI-5.2.1-T050 (2020). G. Merlo PPCF (2015). 
[7] H. Sun Nucl. Fusion (2025). [8] X. Garbet Nucl. Fusion (2024). L. De Gianni PPCF (submitted).

https://pubs.aip.org/aip/pop/article/26/10/102302/264087/Turbulent-transport-in-TCV-plasmas-with-positive
https://iopscience.iop.org/article/10.1088/1361-6587/ad4d1d
https://iopscience.iop.org/article/10.1088/1361-6587/aca715
https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://pubs.aip.org/aip/pop/article/29/1/012303/2847593/Effect-of-triangularity-on-ion-temperature
https://iopscience.iop.org/article/10.1088/1741-4326/ad3563
https://idm.euro-fusion.org/default.aspx?uid=2MZ7EQ&version=v1.0
https://iopscience.iop.org/article/10.1088/0741-3335/57/5/054010
https://iopscience.iop.org/article/10.1088/1741-4326/ade1ed
https://iopscience.iop.org/article/10.1088/1741-4326/ad6e9f
https://pinboard.euro-fusion.org/repository/pinboard/EFDA-JET/journal/122649_paper_linear_analysis_submit_v2.pdf


• Aspect ratio scan shows traditional theoretical argument for stabilization by 
NT[1-4] (based on trapped particle stability) is incomplete[5]


• A separate in-depth study has been performed for TEM[6]
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Physical picture for ITG
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[1] G. Rewoldt Phys. Fluids (1982). 
[2] T. Ohkawa GA-A19184 (1988). 

[3] A. Marinoni PPCF (2009). 
[4] G. Merlo Phys. Plasmas (2019). 

[5] A. Balestri PPCF (2024). 
[6] X. Garbet Nucl. Fusion (2024). L. De Gianni PPCF (submitted).

Study
this
limit

https://pubs.aip.org/aip/pfl/article/25/3/480/830593/Electromagnetic-kinetic-toroidal-eigenmodes-for
https://www.jstage.jst.go.jp/article/jspf1958/59/4/59_4_301/_article
https://iopscience.iop.org/article/10.1088/0741-3335/51/5/055016
https://pubs.aip.org/aip/pop/article/26/10/102302/264087/Turbulent-transport-in-TCV-plasmas-with-positive
https://iopscience.iop.org/article/10.1088/1361-6587/ad4d1d
https://iopscience.iop.org/article/10.1088/1741-4326/ad6e9f
https://pinboard.euro-fusion.org/repository/pinboard/EFDA-JET/journal/122649_paper_linear_analysis_submit_v2.pdf
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[1] M. Beer PhD Thesis (1995). 
[2] H. Biglari Phys. Fluids B (1989). 

[3] A. Balestri PPCF (2024).
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• Turbulence in tokamaks arises from a 
destabilization of drift waves


• Drift waves travel with a velocity





• Destabilized by ion magnetic drift 
velocity





• These velocities must be similar 
 to enable instability[1,2] 

• PT enables this resonance, but not NT[3]


• Can explain dependence of NT 
confinement on , , and aspect ratio[3]

⃗v* ∝ ⃗B × ∇T

⃗vDi ∝ Ti
⃗B × ∇B

⃗vDi ≈ ⃗v*

̂s κ

Physical picture for ITG

https://w3.pppl.gov/~hammett/collaborators/mbeer/afs/thesis/thesis.pdf
https://pubs.aip.org/aip/pfb/article/1/1/109/940510/Toroidal-ion-pressure-gradient-driven-drift
https://iopscience.iop.org/article/10.1088/1361-6587/ad4d1d


Validation with experiment
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• Validated prediction that NT harms confinement when  on TCV[5]


• GK simulations agree, both qualitatively and quantitatively, with TCV[1-5], 
DIII-D[5], AUG[5], and JET[5] experiments

κ < 1

[1] A. Marinoni PPCF (2009). 
[2] G. Merlo JPP (2023). 

[3] A. Balestri PPCF (2024). 
[4] M.J. Pueschel Nucl. Fusion (2024). 

[5] A. Balestri (in prep.).
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https://iopscience.iop.org/article/10.1088/0741-3335/51/5/055016
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/interplay-between-magnetic-shear-and-triangularity-in-ion-temperature-gradient-and-trapped-electron-mode-dominated-plasmas/964B76A808D49FE61BB385ED8D74461F
https://iopscience.iop.org/article/10.1088/1361-6587/ad4674
https://iopscience.iop.org/article/10.1088/1741-4326/ad3563


Extrapolating to a power plant: size
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• Global ORB5 simulations indicate confinement improvement from NT is 
independent of machine size[1]


• Novel GENE flux tube simulations with profile shearing show the same[2]

[1] G. Di Giannatale PPCF (2024). 
[2] J. Ball PPCF (2022).
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https://iopscience.iop.org/article/10.1088/1361-6587/ad5df9
https://iopscience.iop.org/article/10.1088/1361-6587/aca715


Extrapolating to a power plant: β
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• Local GK simulations indicate KBM turbulence is similar in NT and PT for 
conventional tokamaks[1,2], but worse for spherical tokamaks[3]

[1] M.J. Pueschel PoP (2025). 
[2] A. Mariani Nucl. Fusion (2024). 

[3] R. Davies PPCF (2022). 
[4] A. Balestri PPCF (2025).
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https://pubs.aip.org/aip/pop/article/32/5/052302/3346887/Electromagnetic-instability-and-turbulence-in
https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://iopscience.iop.org/article/10.1088/1361-6587/ac8615
https://iopscience.iop.org/article/10.1088/1361-6587/ae1327


Extrapolating to a power plant: β
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• Local GK simulations indicate KBM turbulence is similar in NT and PT for 
conventional tokamaks[1,2], but worse for spherical tokamaks[3]

• MTM are often worse in NT 
regardless of aspect ratio[1,4]

[1] M.J. Pueschel PoP (2025). 
[2] A. Mariani Nucl. Fusion (2024). 

[3] R. Davies PPCF (2022). 
[4] A. Balestri PPCF (2025).

Turbulence binormal wavenumber

https://pubs.aip.org/aip/pop/article/32/5/052302/3346887/Electromagnetic-instability-and-turbulence-in
https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://iopscience.iop.org/article/10.1088/1361-6587/ac8615
https://iopscience.iop.org/article/10.1088/1361-6587/ae1327


Extrapolating to a power plant: β
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• Local GK simulations indicate KBM turbulence is similar in NT and PT for 
conventional tokamaks[1,2], but worse for spherical tokamaks[3]

• MTM are often worse in NT 
regardless of aspect ratio[1,4] 


• Not expected to be present 
for conventional aspect ratio 
parameters[4]


• Could be a problem for NT 
spherical tokamaks[4]


• Can be entirely explained by 
faster magnetic drifts in NT[4]

[1] M.J. Pueschel PoP (2025). 
[2] A. Mariani Nucl. Fusion (2024). 

[3] R. Davies PPCF (2022). 
[4] A. Balestri PPCF (2025).

https://pubs.aip.org/aip/pop/article/32/5/052302/3346887/Electromagnetic-instability-and-turbulence-in
https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://iopscience.iop.org/article/10.1088/1361-6587/ac8615
https://iopscience.iop.org/article/10.1088/1361-6587/ae1327


• ASTRA-TGLF (SAT2) modeling verified against local GENE in the outer core[1]

Integrated modeling of NT
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[1] A. Mariani Nucl. Fusion (2024). 
[2] A. Mariani Nucl. Fusion (2024). 

[3] A. Balestri PPCF (2024).

https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://iopscience.iop.org/article/10.1088/1741-4326/ad6ea0
https://iopscience.iop.org/article/10.1088/1361-6587/ad4674


• ASTRA-TGLF (SAT2) modeling verified against local GENE in the outer core[1]


• For AUG NT experiments, finds good agreement in profiles (but improvement 
is modest relative to equivalent PT shape)

Integrated modeling of NT
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• There are indications that TGLF may differ from GENE in this region

[1] A. Mariani Nucl. Fusion (2024). 
[2] A. Mariani Nucl. Fusion (2024). 

[3] A. Balestri PPCF (2024).

• For TCV NT experiments, under-predicts 
the  profile (which exhibits a strong 
improvement relative to PT)


• Modeling is challenging as the 
quantitative improvement often arises 
from [1,2,3]

Ti

ρtor > 0.9

https://iopscience.iop.org/article/10.1088/1741-4326/ad2abc
https://iopscience.iop.org/article/10.1088/1741-4326/ad6ea0
https://iopscience.iop.org/article/10.1088/1361-6587/ad4674


L-mode
H-mode

2) No L-H transition

[S. Saarelma PPCF (2021)]

https://iopscience.iop.org/article/10.1088/1361-6587/ac1ea4


Transition to H-mode

• Sufficiently negative  closes access to the 2nd stability region for infinite-n 
ballooning modes, which is associated with the transition to H-mode[1-4]

δ
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[1] A. Merle. PPCF (2017). 
[2] A. Marinoni. Rev. Mod. Phys. (2021). 

[3] S. Saarelma. PPCF (2021). 
[4] O. Nelson. Nucl. Fusion (2022). 

[5] O. Sauter IAEA (2023). 
[6] T. Happel Nucl. Fusion (2023).

https://link.springer.com/article/10.1007/s41614-021-00054-0
https://pinboard.euro-fusion.org/repository/pinboard/EFDA-JET/conference/archived/108806_iaea2023_sauter-v3.pdf
https://iopscience.iop.org/article/10.1088/1741-4326/ac8563


Transition to H-mode

• Sufficiently negative  closes access to the 2nd stability region for infinite-n 
ballooning modes, which is associated with the transition to H-mode[1-4]


• Developed proxy for blocking the H-mode transition — when the maximum in 
the edge local magnetic shear crosses into the bad curvature region[5]

δ

Local ̂s
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• Can be used to explain 
ASDEX Upgrade results[6]


• Argument appears 
independent of machine 
size


• NT JET used 30MW of 
heating

[1] A. Merle. PPCF (2017). 
[2] A. Marinoni. Rev. Mod. Phys. (2021). 

[3] S. Saarelma. PPCF (2021). 
[4] O. Nelson. Nucl. Fusion (2022). 

[5] O. Sauter IAEA (2023). 
[6] T. Happel Nucl. Fusion (2023).

https://link.springer.com/article/10.1007/s41614-021-00054-0
https://pinboard.euro-fusion.org/repository/pinboard/EFDA-JET/conference/archived/108806_iaea2023_sauter-v3.pdf
https://iopscience.iop.org/article/10.1088/1741-4326/ac8563


SPARC PT Pext=11MW - H98=1.0, HNA=1.0
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No need to exceed L-H power threshold

• Confinement strongly degrades with external heating power ( )


• Tradeoffs were analyzed using simple 0-D POPCON analysis[1]

τE ∝ P−0.67
ext

• Reveals low power, 
high  NT scenarios 
that are inaccessible 
to PT 


• Particularly attractive 
for a burning plasma 
experiment

Q
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[1] A. Balestri Nucl. Fusion (2025).

https://iopscience.iop.org/article/10.1088/1741-4326/ae01bd


3) SOL dynamics
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[O. Fevrier PPCF (2023)]

https://iopscience.iop.org/article/10.1088/1361-6587/ad3c1c


x − xsep (ρs0)

PT L-mode
NT L-mode

Electron pressure[2]

• Predictive GBS and interpretive SOLEDGE-EIRENE simulations of 


• NT steepens profile gradients at the separatrix, reducing  by ~30%[1,2,3]

δ = ± 0.3

λq

• Agrees with GBS, TOKAM3X, and TCV work[4,5]


• For double null plasmas, GBS finds more 
power is transferred to inner targets[3]


• Appears that  in NT will be intermediate 
between PT L-mode and PT H-mode[6]


• Intuitive based on confinement just inside the 
separatrix

λq

SOL width in TCV discharges
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[1] P. Muscente J. Nucl. Mater. (2023). 
[2] K. Lim PPCF (2023). 

[3] K. Lim arXiv:2412.20780. 
[4] E. Laribi Nucl. Mater. Energy (2021). 

[5] F. Riva PPCF (2017). M. Faitsch PPCF (2018). 
[6] D. Silvagni PPCF (2020). R. Morgan Nucl. Fusion (2025).

https://www.sciencedirect.com/science/article/pii/S235217912300025X
https://iopscience.iop.org/article/10.1088/1361-6587/acdc52
https://arxiv.org/abs/2412.20780
https://www.sciencedirect.com/science/article/pii/S2352179121000880?via=ihub
https://iopscience.iop.org/article/10.1088/1361-6587/aa5322
https://iopscience.iop.org/article/10.1088/1361-6587/aaaef7
https://iopscience.iop.org/article/10.1088/1361-6587/ab74e8
https://iopscience.iop.org/article/10.1088/1741-4326/ae034e/meta


• Lowers  by ~20%


• Increased divertor closure 
using baffles lowers the 
density threshold


• More difficult to detach 
than in PT L-mode[2]


• SOLPS-ITER indicates 
caused by cross-field 
transport, rather than the 
shape directly[3]

τE

Divertor detachment 

21

[1] G. Durr-Legoupil-Nicoud EPS (2024). 
[2] O. Fevrier PPCF (2024). 

[3] F. Mombelli arXiv:2506.03966.

• Detachment of NT plasmas achieved in TCV with N2 seeding[1]

https://lac913.epfl.ch/epsppd3/2025/html/PDF/P1_050.pdf
https://iopscience.iop.org/article/10.1088/1361-6587/ad3c1c
https://arxiv.org/abs/2506.03966


4) Other considerations

Fast Ion Loss Detector Signal

NT
δ = 0

[A. Karpushov EPS (2023)]

TAE Amplitude

https://lac913.epfl.ch/epsppd3/2023/html/Fr/Fr_MCF93_Karpushov.pdf


Fast ions and MHD stability
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[1] P. Oyola IAEA (2023). A. Karpushov EPS (2023). 
[2] G. Wei Nucl. Fusion (2025). 

[3] M. Vallar Nucl. Fusion (2022).  
[4] J. Poley Nucl. Fusion (submitted). 

[5] S. Marchioni EPFL PhD Thesis (2025). 
[6] S. Guizzo PPCF (2024).

• Interpretative model of TCV experiments indicates that NT reduces the 
amplitude of TAEs and their transport of fast ions[1]

• Theory indicates triangularity has little 
impact on TAE stability in the fluid limit, but 
kinetic effects reveals that NT results in 
somewhat higher growth rates than PT[2]


• Relative to PT, fast ions in NT experience 
increased transport by sawteeth[3] and 
similar transport in MHD-quiescent 
plasmas[4]

https://pinboard.euro-fusion.org/repository/pinboard/EFDA-JET/conference/archived/108699_iaea_fec_23_oyola_v10.pdf
https://lac913.epfl.ch/epsppd3/2023/html/Fr/Fr_MCF93_Karpushov.pdf
https://iopscience.iop.org/article/10.1088/1741-4326/ae0803
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• Interpretative model of TCV experiments indicates that NT reduces the 
amplitude of TAEs and their transport of fast ions[1]

• Theory indicates triangularity has little 
impact on TAE stability in the fluid limit, but 
kinetic effects reveals that NT results in 
somewhat higher growth rates than PT[2]


• Relative to PT, fast ions in NT experience 
increased transport by sawteeth[3] and 
similar transport in MHD-quiescent 
plasmas[4]


• Vertical stability worse in NT, but may be 
addressed by stabilizing plates[5,6]
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• GK finds better confinement in NT and now we better understand why


• Confinement improvement should scale to a reactor (if MTMs are avoided)


• May not be true in spherical tokamaks (testable on SMART[1])


• ASTRA-TGLF agrees with GENE, but puzzles remain in profile predictions


• Lack of H-mode transition appears robust and enables attractive scenarios


• SOL width in NT should be intermediate between PT L-mode and PT H-mode 
(as should detachment physics)


• NT and PT similar for fast ion physics, Alfven eigenmodes, and tearing 
modes, while stronger vertical instability should be kept in mind

[1] S. Doyle FED (2021).

https://www.sciencedirect.com/science/article/pii/S0920379621004828
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