

# Scattering of EC beams by turbulent density fluctuations and its impact for DEMO

<u>A. Snicker</u><sup>1</sup>, and E. Poli<sup>2</sup> <sup>1</sup>Department of Applied Physics, Aalto University, Finland <sup>2</sup>Max-Planck Institut für Plasmaphysik, Garching

KDII#8 Final meeting



## Outline





DEMO studies 2019



EC scattering, KDI#8 Final meeting 2020

## **Task description**

## Task description for 2020

Actual task description

- Carry out poloidal scan for launch position
- Use more physics-oriented way to illustrate results

To finish the project

• Assess the necessary power to mitigate NTMs

Working at the moment Finished

## Background and 2019





EC beam w/o fluctuations in ITER

Cross-section of beams w/ and w/o fluctuations



EC scattering, KDI#8 Final meeting 2020



EC beam w/o fluctuations in ITER

Cross-section of beams w/ and w/o fluctuations



EC beam w/o fluctuations in ITER

Cross-section of beams w/ and w/o fluctuations

## EC waves in DEMO

#### EC system planned at equatorial port

- $\rightarrow\,$  Beam traveling through outer midplane, short propagation in turbulent layer
- Beam enters plasma at the peak of fluctuations (explained below)
- Long propagation after fluctuations
- $\rightarrow~$  Numerical assessment necessary
  - In this presentation, design of DEMO1 2018 considered
  - Differences to 2019 design insignificant for EC broadening

## DEMO studies 2019

## EC beam modeling

#### WKBeam model based on TORBEAM inputs

- Inputs from earlier TORBEAM analysis
- Fluctuation model identical to ITER



EC beam in DEMO (no fluctuations)

### Dependency on fluctuation amplitude and correlation length

- Run 30k rays for the scans
- $\bullet~{\rm Scanned}~F~{\rm and}~L_{\perp}$
- Broadening defined as the relative increase in FWHM of deposition profile
- Single 1MW beam considered, no overlapping of the beam lines!



## Explanation for the large broadening

- Distance in the transport layer comparable to ITER (pprox 20cm)
- Distance from the transport layer  $(\delta s)$  to resonance surface plays a key role
  - In ITER,  $\delta s < 1 \text{ m}$
  - In DEMO, δs>2 m
  - Beam has loads of time to diffusive
  - Possible solutions: upper port, resonance layer towards low field side...



EC beam w/o fluctuations in ITER

EC beam w/o fluctuations in DEMO

0.1104

0.0852

- 0.0726 - 0.0600

0.0348

## Explanation for the large broadening

- Distance in the transport layer comparable to ITER ( $\approx$  20cm)
- Distance from the transport layer  $(\delta s)$  to resonance surface plays a key role
  - In ITER,  $\delta s < 1 \text{ m}$
  - In DEMO,  $\delta s > 2$  m
  - Beam has loads of time to diffusive
  - Possible solutions: upper port, resonance layer towards low field side...



EC beam with fluctuations (20%, 2cm) in DEMO

first harm

0.0436 0.0394

0.0332

0.0310 0.0268

0.0184 0.0142

EC beam w/o fluctuations in ITER

## DEMO studies 2020

### From beam broadening to lost current

- NTMs are mitigated by current driven inside the island
- Beam broadening might not be optimal way to illustrate this
- Instead, integrate the current inside a radial domain (idea by O. Sauter)
- Three scales: w1:detectable size (3cm), w2: marginal size/fastest growing (5-6cm), and w3: locked mode (25cm)



## Poloidal scan of the launcher

- Earlier study (using TORBEAM) used ITER-like launcher position
- Notification of old WKBeam inputs, almost zero toroidal angle!
- Decided to study four different launcher configurations
  - Position 1: Old 2019 position, EP (almost) perpendicular propagation
  - Position 2: Upper port, with current drive
  - Position 3: EP, with current drive
  - Position 4: EP, aiming at low field side (using 146 GHz instead of 170 GHz)
- Study beam broadening for these



Geometry for position 2.



Geometry for positions 1, 3 and 4.

EC scattering, KDI#8 Final meeting 2020

## Poloidal scan of the launcher

- For clarity, plot only w2 results here (w1 and w3 are similar)
- Original position by far the worst!
- Difference between position 1 and 3 surprisingly large
- Reasoning (momentum conserved, restrictions from dispersion relation): larger  $N_{||}$  smaller but more frequent reflections
- Upper port further improves the situation
- EP with low field side absorption leads to (numerically) zero broadening



## Concluding remarks for the poloidal scan

- UP gives a good option physics-wise
- EP with LF side absorption would be the safest option
- Geometry again: deposition profile defined by the length of absorption
- Problems with lower frequency, which is another issue



# Moving from beam broadening/lost current to NTM mitigation

- Reminder: this part outside task description
- Use Rutherford equation solver to assess the power requirement for full mitigation
- Involves number of input parameters, work still partly ongoing
- Ideally, carry out a scan over marginal island size, so far only single cases



## Power requirements for NTM control - very preliminary!!!

- Reminder: this part outside task description
- Use Rutherford equation solver to assess the power requirement for full mitigation
- Involves number of input parameters, work still partly ongoing
- Ideally, carry out a scan over marginal island size, so far only single cases
- Note, pos 4 is not optimized for NTM mitigation!

| Pos | Freq (GHz) | Cur peak ( $MA/m^2$ ) | broadening $(x w_0)$ | $P_{EC}(MW)$ |
|-----|------------|-----------------------|----------------------|--------------|
| 1   | 170        | 1.8e-3                | 6                    | >150         |
| 2   | 170        | 5.3e-3                | 3                    | 42           |
| 3   | 170        | 7.8e-3                | 3                    | 27           |
| 4   | 146        | 3.0e-3                | 1                    | 60           |

Thank you for your attention!

## Any questions?

EC scattering, KDI#8 Final meeting 2020