

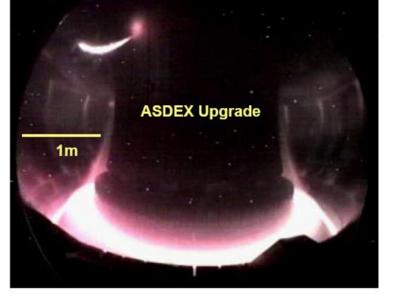
Max-Planck-Institut für Plasmaphysik

Optimizing the EU-DEMO pellet fuelling scheme: WP TFV and KDII8 collaboration

Preliminary summary

P. T. Lang, F. Cismondi, Ch. Day, E. Fable, A. Frattolillo,

C. Gliss, F. Janky, B. Pégourié, B. Ploeckl, M. Siccinio


This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

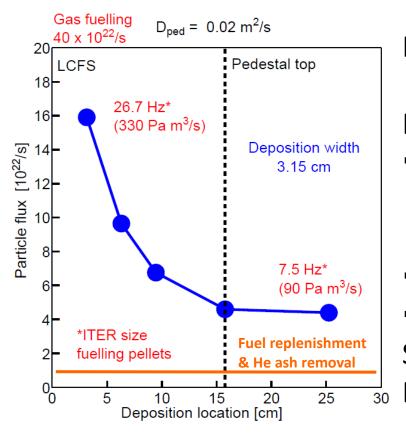
Outline

- Task: Optimise core fuelling
- Integration into plant & vessel
- Integration into breeding blanket
- Optimization of possible variants
- Status as at ISFNT (10/2019)

https://authors.elsevier.com/sd/ article/S0920379620301393

- Next steps: update pellet mass requirement and baseline design
- Recent / Ongoing work

BROCKHAUS Mensch•Natur•Technik "Technologien für das 21. Jahrhundert" Leipzig; Mannheim 2000

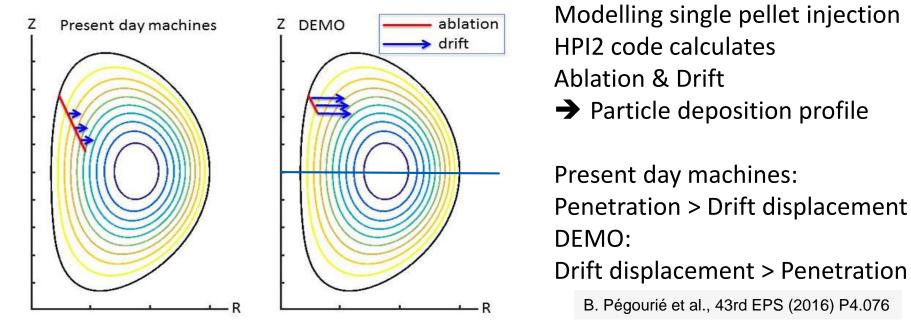


Task: Core particle fuelling

Task: Develop system for efficient core particle fuelling in EU-DEMO

SECOND IAEA DEMO PROGRAMME WORKSHOP, Vienna 2013

- Fuelling particle flux Γ:
 - Causes convective losses


 $P_{loss} \sim \Gamma x < T >$

- → Reduced confinement/performance
- Increases fuel/tritium inventory
 Burden on pumping system
 Burden on fuel cycle
 Safety (= Licensing) issue
 Economic issue

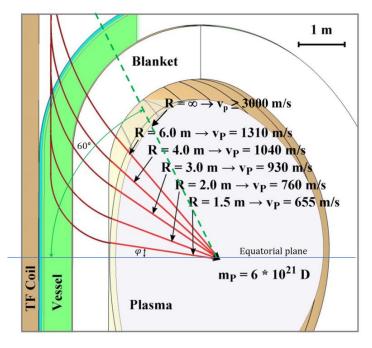
→ Reach requested core density with minimized particle flux $\Gamma = m_P x f_P$ With the pellet size/mass given: minimize the required f_P

Inboard injection – Basic approach

Initial design approach assuming $N_p = 6 \times 10^{21}$ atoms (ITER's pellet size) suggests: High speed pellet injection from inboard (outboard confirmed inadequate) Close to horizontal mid plane

Criteria imposed to derive best injection geometry:

Pellet enters plasma (= designated trajectory crosses separatrix)


Not more than 1.5 m above mid plane ($z_P \le 1.5$ m)

• With maximum speed perpendicular to separatrix ($v_{P_{\perp}}$ criterion)

Inboard injection approaches

"Conventional approach":

Pellet transfer via guiding tubes (causing mass transfer losses and speed restrictions) Vessel access via available ports and gaps – Integrated already in existing CAD model Relying on proven technical capabilities only (Simultaneous speed and rate)

Vertical access through narrow gap between TF and PF coils:

► Injection trajectory close to mid plane with steep inclination require a tight final bend

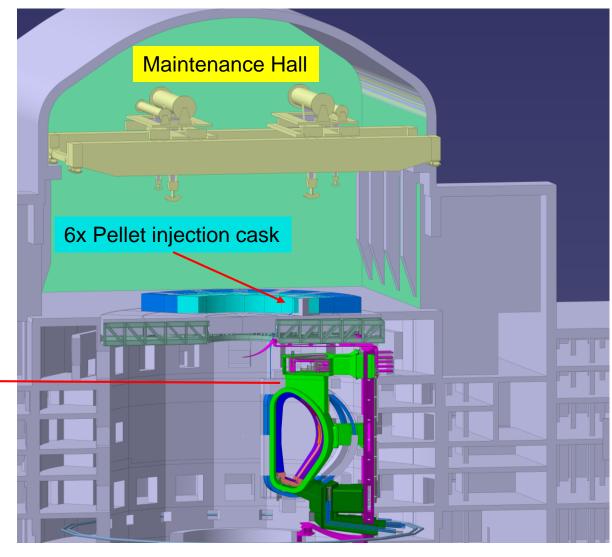
- \rightarrow Low transfer speed
- ► High speed injection with large R
- \rightarrow Larger z_P and/or less steep inclination

Optimization: Maximize $v_{P_{\perp}}$ with boundary condition $z_{P} \le 1.5$ m

"Direct Line of Sight" (DLS):

Free flight or straight tube access

Integration still to be achieved – necessitates technology progress


Integration into building configuration

C. Gliss et al.: Tokamak Building configuration

6 full conventional pellet launching systems included! Short tube avoiding tight bends outside vessel

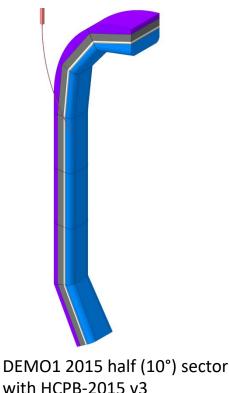
Guide tube

Initial / Reference configuration

Assumes guiding tube can penetrate through entire breeding blanket (BB) Thermal analysis unveiled unbearable heating at tube exit

➔ Not a valid configuration


Integration into BB (HCPB variant taken as reference): Guiding tube ends before or in BB


- ➔ Straight final part of pellet trajectory
- → Loss of pellet performance

Pellet scatter at exit requires conic BB cut-out

→ Loss of BB performance

No penetration

Deeper penetration of guiding tube into BB: Handling more difficult (e.g. for BB exchange, thermal load on tube)

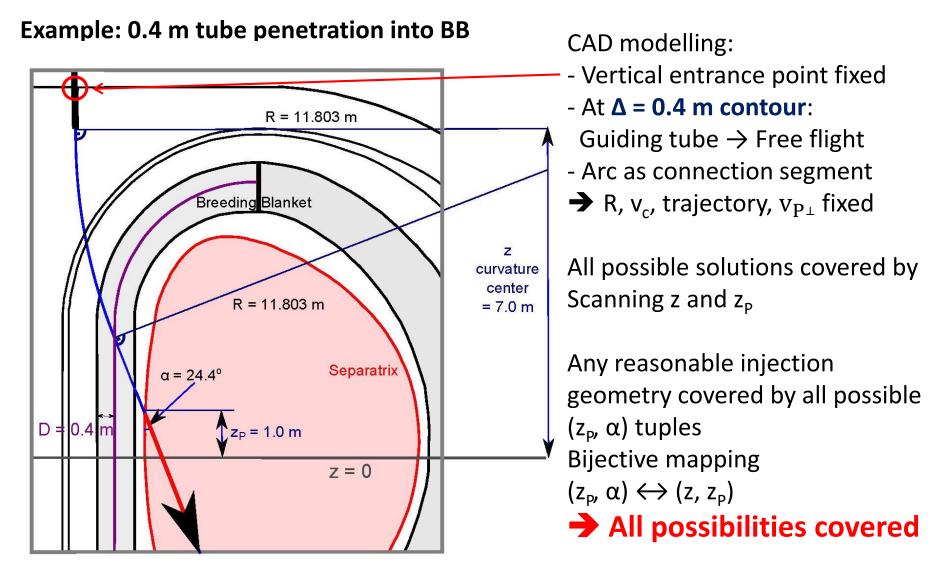
But other issues become less troublesome (less BB cut-out)

Integration into BB: Variants considered

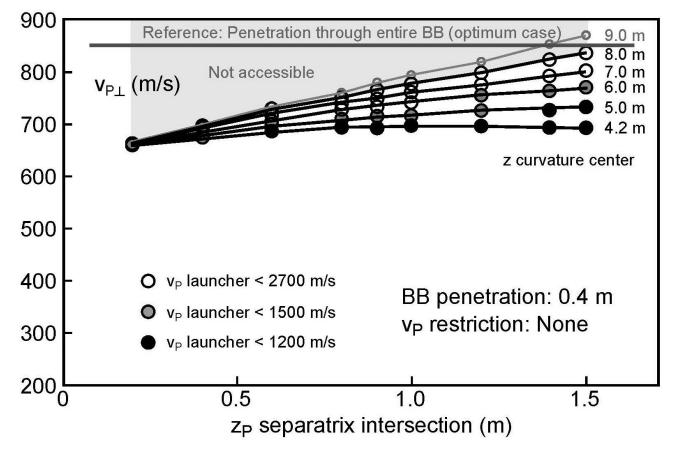
- Reduction of tritium breeding rate
- Nuclear heating of vacuum vessel
- Neutron streaming causing damage in vacuum vessel steel

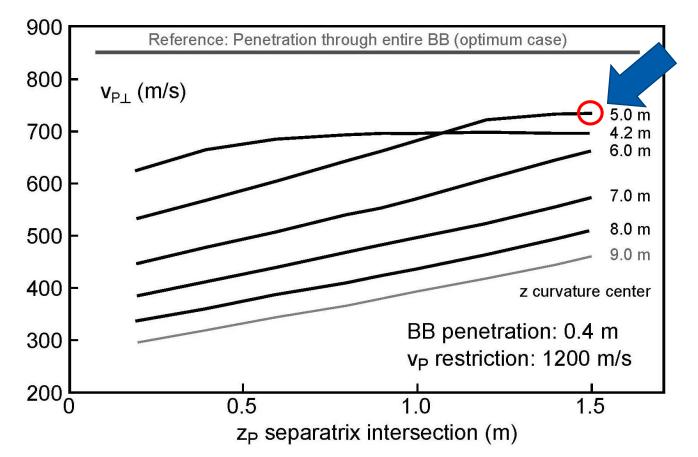
No penetration solution still possible, but already close to acceptable limits

Dedicated layout (tube connected to vacuum vessel) and thermal analysis by LTCalcoli Worked out three possible variants: No guiding tube penetration into BB 0.4 m guiding tube penetration – passive cooling 0.6 m guiding tube penetration – active cooling


Deeper penetration = Better performance = More technical effort

F. Cismondi et al., SOFT 2016, P3.128


Integration into BB: Possible geometries



Example: 0.4 m tube penetration into BB

Performance qualifier: $v_{P\perp}$ - scan z_p for fixed z, vary z \rightarrow Array of curves Best solution would require very high pellet speed (\approx 2300 m/s)

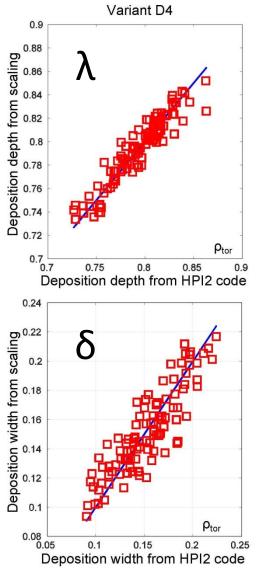
Example: 0.4 m tube penetration into BB

Conventional approach: Stay within proven technology limits ($v_p \le 1200 \text{ m/s}$) Select the best option - for any of the 3 variants

ASDEX Upgrade

Performance analysis: Fuelling modelling

Best options for the 3 "Conventional approach" variants + 1 representing the "Direct Line of Sight" ($z_p = 1.5 \text{ m}$, $v_p = 3000 \text{ m/s}$)


Scenario	Absolute pellet speed (m/s)	Perpendicular pellet speed (m/s)	Injection angle
D0	1200	593	64.7
D4	1120	734	53.4
D6	1150	797	50.3
DLS	3000	353	77.6

Provides all information on the pellet actuator (m_P , v_P , injection geometry) Taken as input modelling the core density control Apply pellet injection, adapt pellet rate f_P until require target is achieved

$f_P \ge 6 \times 10^{21} = \Gamma_P$ becomes validation parameter for any variant

Fuelling modelling - Strategy

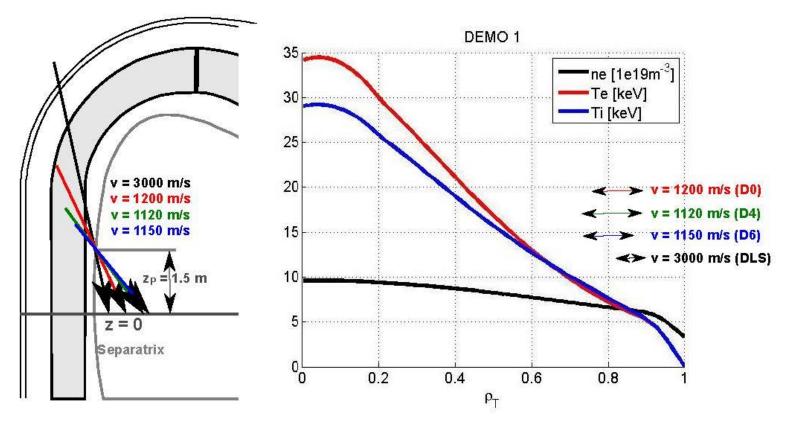
Transport code ASTRA models analyzing evolution of pellet particle deposition

HPI2 **Pellet ablation and deposition code** calculates deposition for target plasma

Vary pellet repetition time dt = $1/f_{P}$ until required plasma conditions are reached

Faster by parameterization of HPI2 results

 $\lambda = 1 - C_a \, (I_P)^{a1} (T_e^{Sep})^{a2} \, (T_e^{Ped})^{a3} \, (T_e^0)^{a4} (\frac{n_e^{Sep}}{n_{Gw}})^{a5} \, (\frac{n_e^{Ped}}{n_{Gw}})^{a6} \, (\frac{n_e^0}{n_e^{Ped}})^{a7} (m_P)^{a8}$


$$\delta = C_b \, (I_P)^{b1} (T_e^{Sep})^{b2} \, (T_e^{Ped})^{b3} \, (T_e^0)^{b4} (\frac{n_e^{Sep}}{n_{Gw}})^{b5} \, (\frac{n_e^{Ped}}{n_{Gw}})^{b6} \, (\frac{n_e^0}{n_{e}^{Ped}})^{b7} (m_P)^{b8}$$

Separate parameter set for any variant

Fuelling modelling - Results

Performance: 3 conventional very similar, DLS more shallow

Modelling of burn control: pellet perturbation too drastic \rightarrow Reduce size to about 1/3 (= 2 × 10²¹ e)

Conclusions -> Next step

- Closed loop modelling core fuelling prediction: Need to reach target central density $\Gamma_P \approx 0.7 \times 10^{22} \text{ s}^{-1}$ This is less than expected from previous open loop modelling!
- Simple estimation replenishment:
- For 2 GW fusion power burn $\Gamma_{DT} \approx 0.14 \times 10^{22} \text{ s}^{-1}$
- Keep He ash concentration below about 5%
- → Aim at burn about 10% of fuel
- → Needs fuel throughput of \approx **1.4 x 10²² s**⁻¹
- Detailed scenario modelling including recycling and pumping efficiencies needed to provide consistent values!

To note: Total particle flux to be processed by vacuum pumps contains additional matter flow, e.g. buffering gas through scrape-off layer

Conclusions -> Next step

Modelling confirms this approach is suitable!

We have established an efficient work flow

However, some issues have to be improved/rectified:

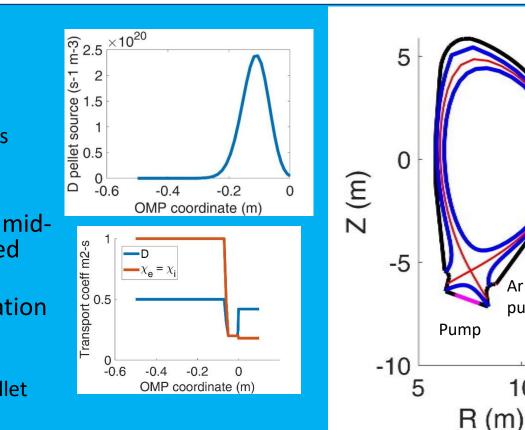
- ► Adaptation of pellet mass, re-modelling range $6 \times 10^{21} \rightarrow 0.4 \times 10^{21}$
- Extension of z range beyond 1.5 m

Take to opportunity to update to considered baseline design

→ Considerable increase of cases to be investigated

"Step description": Coordinated WP TFV – KDII8 task list

Optimise m_P with respect to fuelling efficiency & burn control Identified tuples of possible geometrical solution


- 3 D variants, n z scans, m z_P sets: 3 x n x m CAD analyses
- \rightarrow Derive geometry parameters
- \rightarrow Derive pellet parameters
- \rightarrow Perform HPI2/ASTRA modelling

Recent work: Contribution to total flux

Fabio Subba: SOLPS modelling D+He+Ar Plasma

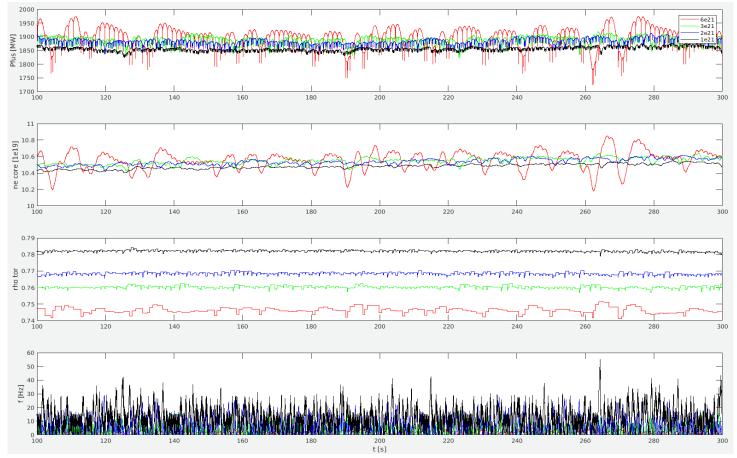
- Input power: 150 MW •
- Input particles:
 - D puff: 10²³ D/s
 - D pellet: 7×10²¹ D/s •
 - Impurities: 1.5×10¹⁹ Ar/s
- **Transport coefficients** • optimized for $\lambda_E \sim 3 \text{ mm}$
- SOLPS version compiled mid-• 2019 (likely to be updated now)
- Effective source acceleration • scheme on
 - For all species
 - But does not include pellet •

Γ Gaspuff \approx 10 x Γ Pellet

Pellet flux impact on fuel inventory moderate!

D

puff

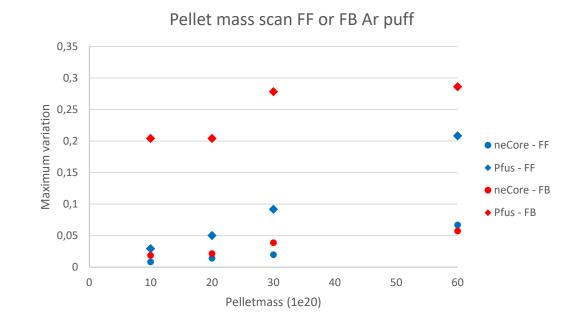

10

puff

Recent work: Pellet mass scan

Filip Janky: ASTRA modelling of density control – pellet mass scan

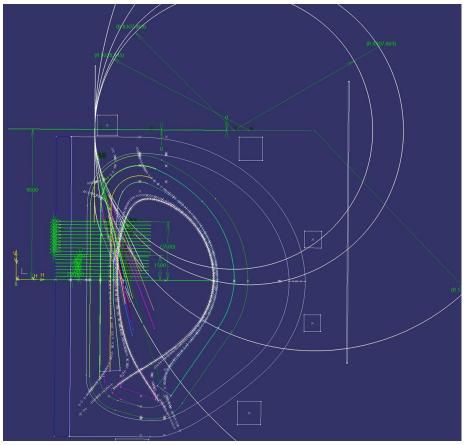
Here with FF Ar gas puff; T_{div} < 3 eV resp. fully detached Controller gain optimized individually for m_P


1.07.2020

P.T. Lang | FINAL Meeting - KDII#8/PMI Physics 2020 | VideoConference ("Corona")

Recent work: Pellet mass scan

Filip Janky: ASTRA modelling of density control – pellet mass scan



Smooth control requires simultaneous optimization of many actuators If done well, significant improvement when lowering m_P Revised choice: $2 \times 10^{21} \rightarrow (3.2 \text{ mm})^3 \approx \text{JET}$ fueling size pellet Further reduction of $m_P \rightarrow \text{Better technical performance}$ (e.g. higher v_P)

Ongoing work: CAD of possible tube routes

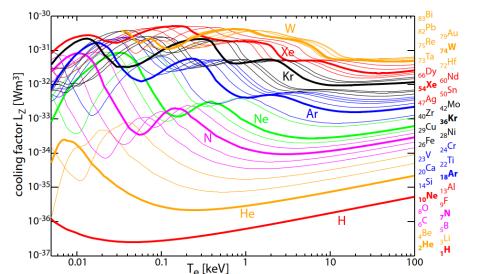
Curt Gliss: CAD analysis of possible configurations
 Change to DEMO Baseline 2017 and removed limit on z_P
 ➔ Much wider z/z_P range, much more configurations (3x9x21 = 567)

For every set provide:

- Injection path
- Pellet speed

Prepares grid for modelling
 Qualifier/figure of merit:
 Γ_P to reach requested core density

Ongoing work: Xe doped pellets


IPP experiment 2020_TF4_ACTR_5 Development of a reactor relevant pellet actuator

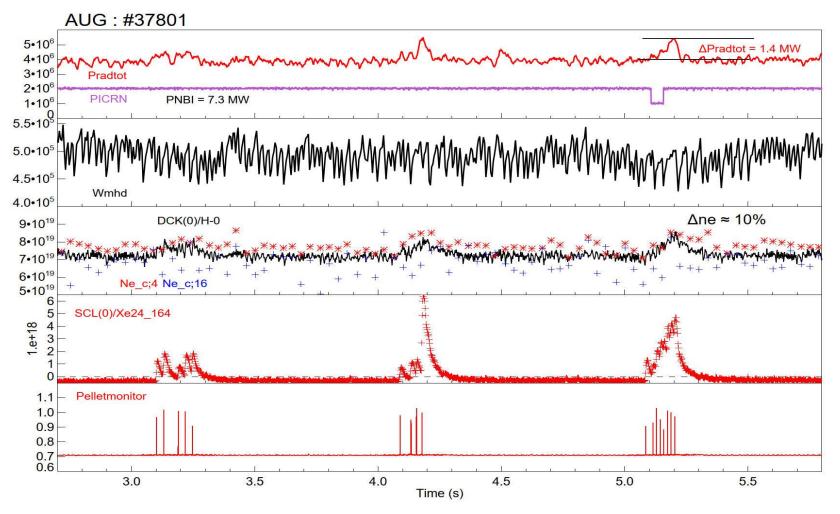
AUG Shot Request 4148 Xe doped pellets P.T. Lang, B. Ploeckl, M. Siccino, M. Bernert, R. Dux

DEMO request / Investigation aim: Investigate admixture of core radiator species (e.g. Xe) to pellets

Why:
Xe puffing in DEMO is likely not very efficient
→ High Xe flux burdens the fuel cycle
→ High effort (= costly) to remove
Pellets – if suitable to carry the Xe – are considered more efficient
Successful pellet doping has ready been shown for Ne and N₂

Ongoing work: Xe doped pellets

Estimation: $P_{rad} \approx 2 \times 10^{-31} \text{ Wm}^3 \times N_{Xe} \times N_e$ $c_{Xe} = 10^{-4}, n_e = 10^{20} \text{ m}^{-3}, 13 \text{ m}^3$ $\rightarrow P_{rad} \approx 2.6 \text{ MW}$


ASDEX Upgrade

 $N_{\text{Pellet}} \approx 0.1 \times N_{\text{plasma}} \Rightarrow c_{\text{Xe}} = 10^{-3}$ Xe/D = 0.1 % \Rightarrow Xe/D₂ = 0.2 %

Premixed gas sample with 0.2 % vol. ${}_{54}Xe^{124-136}$ in D₂ Ice/pellet production straight forward, but 1 h recovery time (warming up)

37794:Small pellets, flux scan $1.5 - 10 \times 10^{18}$ Xe/s (assumed perfect freeze) Moderate amount detected, no significant impact on plasma **37797**:Large pellets, intended Xe flux scan 9 – 52 x 10¹⁸ Xe/s 2nd pellet followed by strong raise of P_{rad} and radiative collapse **37801**:Small pellets, 3 short bursts $1.8 - 2.7 \times 10^{18}$ Xe Cleary visible response, significant transient raise of P_{rad}

Ongoing work: Xe doped pellets

Xe pulses clearly visible, resulting radiation close to predictions

P.T. Lang | FINAL Meeting - KDII#8/PMI Physics 2020 | VideoConference ("Corona")

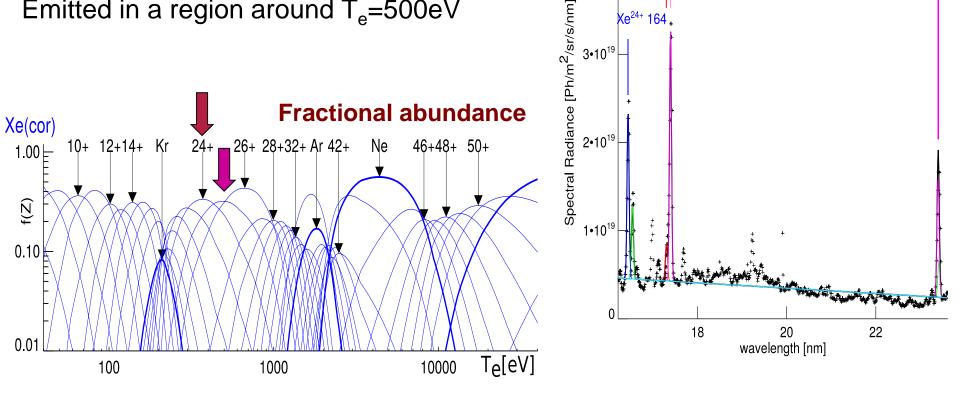
ASDEX Upgrade

SPRED #37801 t=5-5.5s

4•10¹⁹

O⁵⁺173

Xe²⁴⁺ 164


Ni²⁴⁺ 176

Xe²⁵⁺ 204

Good signals from transitions

- Xe²⁴⁺ (Zn-like): 3d¹⁰4s² ¹S 3d¹⁰4s4p ¹P
- Xe²⁵⁺ (Cu-like): 3d¹⁰4s ²S 3d¹⁰4p ²P

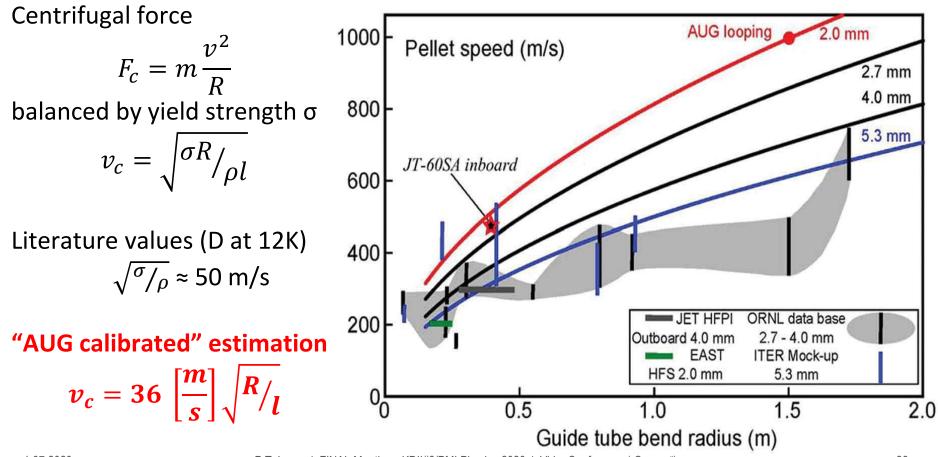
Emitted in a region around $T_e = 500 \text{eV}$

Summary

Elaborated efficient core fuelling approach for EU-DEMO: Conventional pellet technology – Inboard launched

Integration into power plant design "Conventional" and "Direct Line of Sight" approach considered

Integration into functional elements – breeding blanket Optimization likely more dependent on BB requirements


Integration into actuator tool kit Optimization taking into account controlling requirements Investigate potential improvements as e.g. pellet doping

Next iteration step under way utilizing well developed procedure

Back up: Critical transfer speed

Guiding tube bend → Stress destroys pellet beyond critical transfer speed Lacking dedicated investigations, collected data from literature Seem to fit well to simple model when "calibrated" to typical performance

P.T. Lang | FINAL Meeting - KDII#8/PMI Physics 2020 | VideoConference ("Corona")