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Motivation
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• Negative  potentially has the following benefits:


• Improves confinement


• Increases the L-H power threshold, thereby keeping the plasma in 
L-mode and avoiding ELMs

δ



Objectives

3

• Compare the positive and negative  DEMO equilibria using local 
nonlinear GENE gyrokinetic simulations with kinetic electrons


• Distinguish the effect of plasma profiles and magnetic geometry


• Investigate profile stiffness


• Do so at several minor radii (i.e. 0.62, 0.72, 0.82) 

δ

ρtor =



Error in chease calculation of input equilibria :(
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• Past simulations used the magnetic 
equilibria at , but the 
plasma profiles at 


• Errors are:


‣Should be , not 


• Should be , not 


• Should be , not 

ρtor = 0.72
ρψ = 0.72

R0/Ln ≈ 0.7 3.5

R0/LTs ≈ 13 11

Ti /Te ≈ 1.0 1.1

0.2 0.4 0.6 0.8 10

2

4

6

8

ρtor

R
0/L

n

ρψ

0.2 0.4 0.6 0.8 10
5
10
15
20
25

ρtor

R
0/L

Ti

ρψ



• Past simulations used the magnetic 
equilibria at , but the 
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• Errors are:
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All sorts of results
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Type Nominal High R0/Ln

0.62 0.72 0.82 0.72

18MA 18MA 20MA 18MA 18MA 20MA

pos neg pos neg pos neg pos neg pos neg pos neg

ρtor

Ip

δ

R0/Ln
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• Prior results showed a strong oscillation arising from the zonal flows

High , : examining past resultsR0/Ln ρtor = .72

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  20  40  60  80  100

To
ta

l 
h
e
a
t 

fl
u
x
 (

Q
g

B
)

Time (R0/cS)

neg18
neg20
pos18
pos20



8

• Prior results showed a strong oscillation arising from the zonal flows


• Appears to be the GAM

High , : examining past resultsR0/Ln ρtor = .72

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  20  40  60  80  100

To
ta

l 
h
e
a
t 

fl
u
x
 (

Q
g

B
)

Time (R0/cS)

neg18
neg20
pos18
pos20



High , : resolution studyR0/Ln ρtor = .72
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• Found two under-resolved parameters:  and, surprisingly, 


• Increasing  reduces the amplitude of the GAM
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Main results



High , : final resultsR0/Ln ρtor = .72
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• Similar results as last year
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• Somewhat higher values than the high  cases


• Total heat fluxes are similar between all cases

R0/Ln

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60  70  80  90

To
ta

l 
h
e
a
t 

fl
u
x
 (

Q
g

B
)

Time (R0/cS)

neg18
neg20
pos18
pos20

Nominal, : final resultsρtor = .72



13

• The ion heat flux is dominant in these simulations, but the electron heat 
flux is reduced by negative triangularity

Nominal, : final resultsρtor = .72

 0

 500

 1000

 1500

 0  20  40  60  80  100

Io
n
 h

e
a
t 

fl
u
x 

(Q
g
B
)

Time (R0/cS)

neg18
neg20
pos18
pos20

 0

 200

 400

 0  20  40  60  80  100

E
le

c.
 h

e
a
t 

fl
u
x 

(Q
g
B
)

Time (R0/cS)

neg18
neg20
pos18
pos20

 0

 200

 400

 0  20  40  60  80  100

E
le

c.
 h

e
a
t 

fl
u
x 

(Q
g
B
)

Time (R0/cS)

neg18
neg20
pos18
pos20

 0

 500

 1000

 1500

 0  20  40  60  80  100

Io
n
 h

e
a
t 

fl
u
x 

(Q
g
B
)

Time (R0/cS)

neg18
neg20
pos18
pos20



14

• Heat flux increases with radius in gyroBohm units

Nominal, : final resultsρtor = .62, .72, .82
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• Heat flux increases with radius in gyroBohm units, but not in MW
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• Heat flux increases with radius in gyroBohm units, but not in MW
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Swapping plasma 
profiles



Nominal, : swapping plasma profilesρtor = .62
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• Negative  magnetic geometry is stabilizing (holding profiles constant)


• Changes the heat flux by roughly 20%

δ



Nominal, : swapping plasma profilesρtor = .72
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• Negative  magnetic geometry is stabilizing (holding profiles constant)


• Changes the heat flux by roughly 40%
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High , : swapping plasma profilesR0/Ln ρtor = .72
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• Changes the heat flux by roughly 30%

δ



Nominal, : swapping plasma profilesρtor = .82
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• Negative  magnetic geometry is stabilizing (holding profiles constant)


• Changes the heat flux by roughly 65%

δ



Investigating profile 
stiffness



Nominal, : profile stiffnessρtor = .62

23

• Triangularity has little effect on stiffness


• Similar critical gradients
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Nominal, : profile stiffnessρtor = .72
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• Triangularity has little effect on stiffness


• Similar critical gradients
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High , : profile stiffnessR0/Ln ρtor = .72
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• Negative  is slightly more stiff than positive 


• Different critical gradient, but remember these profiles are inconsistent

δ δ
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Nominal, : profile stiffnessρtor = .82

26

• Indicates that positive  is somewhat more stiff


• Similar critical gradients

δ
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Takeaways
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• These simulations indicate that (in order of robustness):


1. negative  lowers the fraction of heat transported by electrons


2. negative  reduces heat transport at constant plasma profiles


3. both the plasma profiles and the magnetic geometry have a 
significant impact on the heat flux, which seems to increase with 
minor radial location


4. positive vs. negative  has minimal effect on profile stiffness

δ

δ

δ
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• Test if new type of simulation domain can make high  simulations cheaper


• Swap individual geometric coefficients to determine which are important

̂s
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Thank you!
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Sugama and Watanbe, J. Plasma Phys. 72 (2006).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60
 0.1

 0.15

 0.2

 0.25
 0  20  40

To
ta

l 
h
e
a
t 

fl
u
x
 (

Q
g

B
)

Z
o
n
a
l 
v

E
x
B
 (

a
rb

. 
u
n
it

s)

Time (R0/cS)

pos20
Rosenbluth-Hinton test

High , : examining past resultsR0/Ln ρtor = .72

• Appears to be the GAM, as the frequency matches a Rosenbluth-Hinton 
test and is close to simple theoretical predictions



Non-twisting flux tube to move outwards
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• Domain follows a central field line, but allows magnetic shear to move field 
lines through the periodic domain


• Should enable more efficient numerical treatment of large magnetic shear

Conventional Non-twisting



Non-twisting flux tube benchmark
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• Benchmarked using full nonlinear DEMO geometry and kinetic electrons


• Next perform radial resolution study to determine computational savings
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Nominal: Linear spectrum with kinetic electrons
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• Like the high  case: comparing  with , 

suggests that multi-scale interactions are marginal
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Ion diamagnetic

Electron diamagnetic



• Simulations near the edge are difficult due to:


• Large values of magnetic shear
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• Simulations near the edge are difficult due to:


• Large values of magnetic shear


• Large logarithmic gradients
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• Simulations near the edge are difficult due to:


• Large values of magnetic shear


• Large logarithmic gradients


• Simulations in the core are problematic 
because:


• Sawtooth inversion radius at ρ ≈ 0.6
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• Simulations near the edge are difficult due to:


• Large values of magnetic shear


• Large logarithmic gradients


• Simulations in the core are problematic 
because:


• Sawtooth inversion radius at 


• Impact of triangularity is weaker

ρ ≈ 0.6
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•  A surprising divergence with small scale turbulence

Last year: Linear results with kinetic electrons

A common rule of thumb, comparing  with 

, suggests that multi-scale interactions are fairly weak

γ/ky
ITG

≈ 2.2

γ/ky
ETG

≈ 1.0
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Staebler et al. Nucl. Fusion 57 (2017).
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Last year: resolution study with kinetic electrons

• Resolution study of the neg20 case for the most concerning 
parameters seems satisfactory
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Electron pressure profile from TGLF
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Total heat flux from TGLF in MW
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Ion heat flux from TGLF in MW
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Electron heat flux from TGLF in MW
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Zonal oscillations from nonlinear kinetic simulations
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Input parameters for nonlinear kinetic simulations
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omt/omn = 2.75 omt/omn = 2.71 omt/omn = 3.16 omt/omn = 3.38



Input parameters for nonlinear adiabatic sims.
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omt/omn = 2.71omt/omn = 2.71 omt/omn = 2.62 omt/omn = 3.28 omt/omn = 3.57



 as a function of poloidal angle⃗∇ ρ
2
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Flux surface shape in the poloidal plane
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Linear results with adiabatic electrons

• Found a fairly broad spectrum of unstable modes


• Critical gradient for negative  is maybe a bit largerδ
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Nonlinear results with adiabatic electrons

• Results are mixed, but indicates that negative  increases energy 
transport


• Main purpose is to find most strongly driven case for resolution study

δ
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Nonlinear resolution study with adiabatic electrons

51

• Resolution study of the neg20 case indicates that  should be 
doubled and  can be halved

Ly
Nx

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300  350  400

Io
n 

he
at

 fl
ux

 (
Q

gB
)

Time (R0/cS)

Nx/2
2*Nx
2*Lx
2*Ny
2*Ly
4*Ly
2*Nz
4*Nz
2*Nv
2*Lv

2*Nw
2*Lw

nominal

 170

 180

 190

 200

 210

 220

 230

 240

 250

 0  50  100  150  200  250  300  350  400

Io
n 

he
at

 fl
ux

 (
Q

gB
)

Time (R0/cS)

nominal
Nx/2
2*Nx
2*Lx
2*Ny
2*Ly
4*Ly
2*Nz
4*Nz
2*Nv
2*Lv

2*Nw
2*Lw



52

• Resolution study of the neg20 case indicates that  should be 
doubled and  can be halved

Ly
Nx

Nonlinear resolution study with adiabatic electrons
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Linear results with kinetic electrons

• See surprising divergence with small scale turbulence (concerning!)


• Again, critical gradient for negative  is maybe a bit largerδ
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Nonlinear results with kinetic electrons

• Negative  cases have lower total heat flux


• Positive  cases exhibit an unusual oscillation from the zonal flows

δ

δ
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Nonlinear results with kinetic electrons

• Same trends hold true for required heating power (i.e. adjusting for 
differences in surface area, temperature, and density)
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Nonlinear results with kinetic electrons

• Electron heat flux is more strongly affected by reversing δ
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Nonlinear stiffness study with kinetic electrons

• Negative  has a higher critical 
gradient

δ
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Nonlinear stiffness study with kinetic electrons

• Negative  has a higher critical 
gradient

δ
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