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• Defined as achievable target density (downstream) as a function of separatrix density (upstream) 

𝒏𝒅(𝒏𝒖)
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Motivation: Density build up

• ITER requires divertor neutral pressure 𝒑𝒏 ≈ 𝟏𝟎 Pa

• AUG routinely measures 𝒑𝒏 ≈ 𝟏 Pa

• So far only limited neutral pressures have been measured in W7-X

• 𝒑𝒏,𝒎𝒂𝒙 ≈ 𝟎. 𝟏𝟖 Pa

• Higher recycling conditions are necessary to ensure the reactor-

relevance of the island divertor in terms of pumping efficiency.
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• Extending the stellarator two-point model (STPM)

• Sensitivity of the scalings around a reference set of parameters

• Comparison against EMC3-Eirene 

• Predicting the diffusion-limited regime

• Target-Shadow-Region-induced pressure step

Outline
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Introducing perpendicular transport in the energy equation:

• Θ
d

𝑑𝑥
−𝜅𝑒,𝑖𝑇𝑒,𝑖

5/2
Θ
𝑑𝑇𝑒,𝑖

𝑑𝑥
+

𝑑

𝑑𝑥
−𝜒𝑒,𝑖𝑛

𝑑𝑇𝑒,𝑖

𝑑𝑥
= 0

• Θ
𝑑

𝑑𝑥
𝑛𝑣𝑖∥

2 +
𝑝

𝑚𝑖
= 𝑆𝑚𝑜𝑚

• 𝑞∥ = 𝛾𝑛𝑑𝑐𝑠𝑑𝑇𝑑
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Introduction: Stellarator Two-Point Model (STPM)

parallel heat conduction perpendicular heat diffusion

total pressure

total 

power 

cross-field momentum

power to the target



Integration gives STPM :

• 𝑇𝑢
7/2

= 𝑇𝑑
7/2

+
7𝑞∥𝐿𝐶

2𝜅𝑒
−

7𝜒(𝑛𝑢+𝑛𝑑)

4𝜅𝑒Θ2 𝑇𝑢 − 𝑇𝑑

• 𝑝𝑢 = 2𝑝𝑑(1 + 𝑓𝑚) with 𝑓𝑚 =
𝛼

𝑇𝑑

• 𝑞∥ = 𝛾𝑛𝑑𝑐𝑠𝑑𝑇𝑑
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Introduction: Stellarator Two-Point Model (STPM)

tokamak two-point model stellarator-specific term

momentum losses stems from counter-streaming flows

unchanged

[Y. Feng et al 2006 Nucl. Fusion 46 807]



Introducing new parameters related to volumetric

sources/sinks:

• Convected power fraction 𝑓𝑐𝑜𝑛𝑣

 competes with parallel conduction and 

perpendicular diffusion

• Momentum loss factor 𝑓𝑚𝑜𝑚

 more general parametrization

• Target-localized power dissipation fraction 𝑓𝑐𝑜𝑜𝑙

 e.g., radiation, ionization, charge exchange

• Not included in this work: flux expansion
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Extending the Stellarator Two-Point Model (STPM)

Extended STPM:

𝑇𝑢
7/2

= 𝑇𝑑
7/2

+
7 1 − 𝑓𝑐𝑜𝑛𝑣 𝑞∥𝐿𝐶

2𝜅𝑒
−
7𝜒 𝑛𝑢 + 𝑛𝑑

4𝜅𝑒Θ
2

𝑇𝑢 − 𝑇𝑑

𝑝𝑢 =
2𝑝𝑑

1 − 𝑓𝑚𝑜𝑚

𝑞∥ =
𝛾𝑛𝑑𝑐𝑠𝑑𝑇𝑑
1 − 𝑓𝑐𝑜𝑜𝑙



Two recycling regimes observed in tokamaks:

• Sheath-limited regime

 𝑇𝑢~𝑇𝑑  𝑛𝑑 ∝
𝑛𝑢

2

• Conduction-limited (high recycling) regime

 𝑇𝑑 drops  𝑛𝑑 ∝ 𝑛𝑢
3

A regime specific to stellarators:

• Diffusion-limited regime

 𝑇𝑢 drops & weaker 𝑛𝑑 increase and 𝑇𝑑 decrease

 Transition happens at target temperatrue 𝑇𝑑,𝑑𝑖𝑓𝑓

 Limits target cooling, density build-up and upstream pressure

 (sputtering limit requires 𝑇𝑑 < 5 eV)
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Recycling regimes
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Reference parameters: 𝑞∥ = 100 MW ⋅ m−2, 𝐿𝐶 = 180 m, 𝜒 = 1.5 m2 ⋅ s−1, and Θ = 10−3

1 − 𝑓𝑚𝑜𝑚 = 1 +
𝛼

𝑇𝑑

−1
with 𝛼 = 2 , and 𝑓𝑐𝑜𝑛𝑣 = 𝑓𝑐𝑜𝑜𝑙 = 0
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STPM parameter sensitivity around a reference case

Field line pitch 𝚯 Momentum losses strengh 𝜶Parallel heat flux 𝒒∥
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STPM parameter sensitivity around a reference case

Parallel heat flux 𝒒∥ Momentum losses strengh 𝜶Field line pitch 𝚯



• Recycling weakens with increasing 𝛼
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STPM parameter sensitivity: 𝜶



• Recycling weakens with increasing 𝛼

• Downstream temperature triggering diffusion-limited 

regime similar, here 𝑇𝑑,𝑑𝑖𝑓𝑓 ≈ 4 eV
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• Recycling weakens with increasing 𝛼

• Downstream temperature triggering diffusion-limited 

regime similar, here 𝑇𝑑,𝑑𝑖𝑓𝑓 ≈ 4 eV

• Associated with similar downstream density

𝑛𝑑,𝑑𝑖𝑓𝑓 ≈ 1021 𝑚−3
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STPM parameter sensitivity: 𝜶



• Recycling weakens with increasing 𝛼

• Downstream temperature triggering diffusion-limited 

regime similar, here 𝑇𝑑,𝑑𝑖𝑓𝑓 ≈ 4 eV

• Associated with similar downstream density

𝑛𝑑,𝑑𝑖𝑓𝑓 ≈ 1021 𝑚−3

 Limits recycling in the conduction-limited regime
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STPM parameter sensitivity: 𝜶
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Extended STPM parameter sensitivity

Convected power fraction 𝒇𝒄𝒐𝒏𝒗 Power dissipation fraction 𝒇𝒄𝒐𝒐𝒍 Momentum loss parametrization 𝒇𝒎𝒐𝒎



Reference parameters: 𝑞∥ = 100 MW ⋅ m−2, 𝐿𝐶 = 180 m, 𝜒 = 1.5 m2 ⋅ s−1, and Θ = 10−3

I N V E S T I G AT I N G  T H E  I S L A N D  D I V E RTO R  W I T H  A N  E X T E N D E D  S T P MM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  N A S S I M  M A A Z I Z  |  0 2 . 0 2 . 2 0 2 6 2 1

Extended STPM parameter sensitivity

Convected power fraction 𝒇𝒄𝒐𝒏𝒗 Power dissipation fraction 𝒇𝒄𝒐𝒐𝒍 Momentum loss parametrization 𝒇𝒎𝒐𝒎

Earlier:

1-𝑓𝑚𝑜𝑚,𝐹𝑒𝑛𝑔 = 1 +
𝛼

𝑇𝑑

−1
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STPM parameter sensitivity: 𝒇𝒄𝒐𝒏𝒗

• Recycling decreases with increasing 𝑓𝑐𝑜𝑛𝑣



I N V E S T I G AT I N G  T H E  I S L A N D  D I V E RTO R  W I T H  A N  E X T E N D E D  S T P MM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  N A S S I M  M A A Z I Z  |  0 2 . 0 2 . 2 0 2 6 2 4

STPM parameter sensitivity: 𝒇𝒄𝒐𝒏𝒗

• Recycling decreases with increasing 𝑓𝑐𝑜𝑛𝑣

• Gradient drastically reduced
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STPM parameter sensitivity: 𝒇𝒄𝒐𝒏𝒗

• Recycling decreases with increasing 𝑓𝑐𝑜𝑛𝑣

• Gradient drastically reduced

 Higher 𝑇𝑑
 Lower 𝑇𝑢
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STPM parameter sensitivity: 𝒇𝒄𝒐𝒏𝒗

• Recycling decreases with increasing 𝑓𝑐𝑜𝑛𝑣

• Gradient drastically reduced

 Higher 𝑇𝑑
 Lower 𝑇𝑢

• Increase of 𝑇𝑑,𝑑𝑖𝑓𝑓
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STPM parameter sensitivity: 𝒇𝒄𝒐𝒏𝒗

• Recycling decreases with increasing 𝑓𝑐𝑜𝑛𝑣

• Gradient drastically reduced

 Higher 𝑇𝑑
 Lower 𝑇𝑢

• Increase of 𝑇𝑑,𝑑𝑖𝑓𝑓

 Limits target cooling, density build-up and upstream pressure

 Prior to the diffusion-limited regime

 Transitions to diffusion-limited earlier



Significant momentum losses (𝑓𝑚𝑜𝑚) and convected power fraction (𝑓𝑐𝑜𝑛𝑣) prevent

high recycling conditions prior to the diffusion-limited regime
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Summary: STPM parameter sensitivity



I N V E S T I G AT I N G  T H E  I S L A N D  D I V E RTO R  W I T H  A N  E X T E N D E D  S T P MM A X - P L A N C K - I N S T I T U T  F Ü R  P L A S M A P H Y S I K  |  N A S S I M  M A A Z I Z  |  0 2 . 0 2 . 2 0 2 6 2 9

• Extending the stellarator two-point model (STPM)

• Sensitivity of the scalings around a reference set of parameters

• Comparison against EMC3-Eirene 

• Predicting the diffusion-limited regime

• Target-Shadow-Region-induced pressure step

Outline



• EMC3-Eirene: 3D fluid code with kinetic neutrals

• Simplified island geometry limited to a Power carrying layer (PCL)

 Suppressed island radial perpendicular transport (no flux)

 Retains 3D features: target shadow region

• Density scan without impurities

• Parametrization extracted from the simulations for:

 𝑓𝑚𝑜𝑚, 𝑓𝑐𝑜𝑛𝑣, and 𝑓𝑐𝑜𝑜𝑙
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Comparison against EMC3-Eirene



Gradual inclusion of the terms:

• Poor agreement without correction terms
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Gradual inclusion of the terms:

• Poor agreement without correction terms

• Transition to conduction-limited captured with 𝑓𝑚𝑜𝑚
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Gradual inclusion of the terms:

• Poor agreement without correction terms

• Transition to conduction-limited captured with 𝑓𝑚𝑜𝑚

• Temperature gradient match with 𝑓𝑐𝑜𝑛𝑣 & large impact 𝑛𝑑
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• Poor agreement without correction terms

• Transition to conduction-limited captured with 𝑓𝑚𝑜𝑚

• Temperature gradient match with 𝑓𝑐𝑜𝑛𝑣 & large impact 𝑛𝑑

• Negligble impact of 𝑓𝑐𝑜𝑜𝑙 here (no impurities)
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Gradual inclusion of the terms:

• Poor agreement without correction terms

• Transition to conduction-limited captured with 𝑓𝑚𝑜𝑚

• Temperature gradient match with 𝑓𝑐𝑜𝑛𝑣 & large impact 𝑛𝑑

• Negligble impact of 𝑓𝑐𝑜𝑜𝑙 here (no impurities)

• „Two-point model formatting“:

 sheds light on relative importance of each correction factor
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• Extending the stellarator two-point model (STPM)

• Sensitivity of the scalings around a reference set of parameters

• Comparison against EMC3-Eirene 

• Predicting the diffusion-limited regime

• Target-Shadow-Region-induced pressure step

Outline



Temperature equation:
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Predicting the diffusion-limited regime



First sheath-limited  𝑇𝑢,𝑠𝑙 ≈ 𝑇𝑑
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Predicting the diffusion-limited regime



Then conduction-limited  𝑇𝑢,𝑐−𝑙
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Predicting the diffusion-limited regime



Eventually diffusion-limited 𝑇𝑢,𝑑−𝑙 drops because of the relative importance of the last term
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The ratio of the third to the second term is defined as:

ξ =
𝜒(𝑛𝑢 + 𝑛𝑑)(𝑇𝑢 − 𝑇𝑑)

2Θ2 1 − 𝑓𝑐𝑜𝑛𝑣 𝑞∥𝐿𝐶

which represents a reduction of 𝑇𝑢 from 𝑇𝑢,𝑐−𝑙, more precisely

𝑇𝑢 ≈ 𝑇𝑢,𝑐−𝑙 1 − 𝜉 2/7
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The ratio of the third to the second term is defined as:

ξ =
𝜒(𝑛𝑢 + 𝑛𝑑)(𝑇𝑢 − 𝑇𝑑)

2Θ2 1 − 𝑓𝑐𝑜𝑛𝑣 𝑞∥𝐿𝐶

Rearrangement gives for a threshold value 𝜉𝑑𝑖𝑓𝑓:

𝑇𝑑,𝑑𝑖𝑓𝑓 = 𝑇𝑢 − 𝜉𝑑𝑖𝑓𝑓
2Θ2 1 − 𝑓𝑐𝑜𝑛𝑣 𝑞∥𝐿𝐶
𝜒(𝑛𝑢,𝑑𝑖𝑓𝑓 + 𝑛𝑑)
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Rearrangement gives for a threshold value 𝜉𝑑𝑖𝑓𝑓 (here 0.15):
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Predicting the diffusion-limited regime
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• Observed for certain field lines, in the vicinity of the TSR in the last turn (≈ 35 m)

• Magnetic field line used in this work does not show this feature
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TSR-induced pressure step in EMC3-Eirene



• Stellarator two-point model includes perpendicular transport: leads to diffusion-limited regime

• Momentum losses and heat convection prevent high recycling prior to this detrimental regime

• Comparison against EMC3-Eirene simulations of a Power carrying layer geometry shows:

 good agreement with STPM predictions

 the relative importance of the different correction factors

• Stellarator two-point model predicts onset of the diffusion-limited regime

• Target shadow region leads to pressure step along the field line, to be investigated in future work
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Summary


