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Understanding edge turbulence crucial in stellarators

▪ Significant heat fluxes in the edge of stellarators

▪ Perpendicular transport influences peaks and spread 
of heat flux profile and SOL width

▪ The core plasma is constrained by boundary 
conditions established through edge turbulence

▪ Inclusion of turbulence positively affecting the divertor design

▪ Include edge turbulence metrics in the stellarator optimisation loop [M. J. Gerard et al, Nucl. Fusion 2023]
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Heat flux on target W7-X

[David Bold et al 2022 Nucl. Fusion]



Current edge physics based on transport models 2

▪ Recent and past investigations are mainly based on 
transport codes [Feng, Y., et al. Contributions to Plasma 

Physics (2004)]

▪ Turbulent transport is modelled with ad-hoc turbulent 
coefficients 

▪ Use turbulent codes to inform transport codes.

[David Bold et al 2024 Nucl. Fusion]What makes the edge region challenging?

Profile from EMC3 in W7-X
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W7-AS

[Hirsch et al, PPCF 2008]

▪ Edge complex magnetic structures: magnetic 
islands, stochastic regions, X-points

Simulating edge turbulence in stellarators is challenging 
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HSX

[W. Guttenfelder, 2008]
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W7-X

Simulating edge turbulence in stellarators is challenging 

▪ Edge complex magnetic structures: magnetic 
islands, stochastic regions, X-points

▪ Large fluctuations levels: no separation between
background and fluctuations 

▪ Fluctuation and equilibrium spatial scales can be 
comparable

▪ Complex diverting structures

[M. Jakubowski et al Nucl. Fusion 2021]



3

▪ Edge complex magnetic structures: magnetic 
islands, stochastic regions, X-points

▪ Large fluctuations levels: no separation between
background and fluctuations 

▪ Fluctuation and equilibrium spatial scales can be 
comparable

▪ Complex diverting structures

▪ Neutral dynamics

Simulating edge turbulence in stellarators is challenging 

HSX

[D. Boeyaert et al Nl. Materials and Energy  2025]



3

▪ Edge complex magnetic structures: magnetic 
islands, stochastic regions, X-points

▪ Large fluctuations levels: no separation between
background and fluctuations 

▪ Fluctuation and equilibrium spatial scales can be 
comparable

▪ Complex diverting structures

▪ Neutral dynamics

▪ Core-edge interface difficult to model self-
consistently 

Simulating edge turbulence in stellarators is challenging 



3

▪ Edge complex magnetic structures: magnetic 
islands, stochastic regions, X-points

▪ Large fluctuations levels: no separation between
background and fluctuations 

▪ Fluctuation and equilibrium spatial scales can be 
comparable

▪ Complex diverting structures

▪ Neutral dynamics

▪ Core-edge interface difficult to model self-
consistently 

Main challenges in the edge region

Simulating edge turbulence in stellarators is challenging 



Simulating edge turbulence in stellarators is challenging 3

• Flexible discretization scheme with non-flux-
aligned coordinates

• No separation of equilibrium and fluctuating 
quantities

• Flux-driven: sources generate gradients for 
turbulence driving

• Global: simulate the entire volume

• Magnetic pre-sheath boundary conditions

• Coupling plasma and neutrals

Simulation requirements

▪ Edge complex magnetic structures: magnetic 
islands, stochastic regions, X-points

▪ Large fluctuations levels: no separation between
background and fluctuations 

▪ Fluctuation and equilibrium spatial scales can be 
comparable

▪ Complex diverting structures

▪ Neutral dynamics

▪ Core-edge interface difficult to model self-
consistently 

Main challenges in the edge region



Drift-reduced Braginskii equations to simulate the 
boundary plasma turbulence

4

▪ Plasma edge is highly collisional ,                       use two-fluid Braginskii model                    
[S. I. Braginskii. Reviews of Plasma Physics, 1965]

▪ Turbulence time scale longer than           ,   drift-reduced approximation [A. Zeiler, (1999)]

▪ Quasi-neutrality:                                ,

▪ Electrostatic perpendicular electric field:                                    solved with Poisson

▪ Similar equations for                                        given by momentum and energy conservation

▪ Charge conservation,

convection diamagnetic convection

polarization convection

parallel flow source

+ Neutral dynamics (not considered in the 
present work) [D. Mancini et al Nucl. Fusion 2023]



GBS solves the drift-reduced Braginskii equations 5

[B. De Lucca et al EFTC 2025]TCV-like tokamak

▪ GBS is a two fluid, global, flux-driven code to simulate 
turbulence evolving such equations in time in a non-
flux-aligned grid

▪ Coupled with a kinetic model for neutral dynamics       
[D. Mancini et al Nucl. Fusion 2023]



GBS solves the drift-reduced Braginskii equations 6

▪ GBS used in the past decade to simulate tokamaks [Ricci et al. PPCF 

2012, Giacomin et al. JCP 2022]; now it can simulate turbulence in 3D 
magnetic fields [Coehlo et al, Nucl. Fusion 2024].

[Coehlo et al, Nucl. Fusion 2024]

▪ GBS is a two fluid, global, flux-driven code to simulate 
turbulence evolving such equations in time in a non-
flux-aligned grid

▪ Coupled with a kinetic model for neutral dynamics        
[D. Mancini et al Nucl. Fusion 2023]



First-principles edge transport pioneered by the 
GBS group

7

[Coehlo et al, Nucl. Fusion 2022].

▪ First global flux driven simulation 
of a toy model stellarator

▪ Successful global quantitative validation in TJK

[Coehlo et al, Nucl. Fusion 2023].



Stellarator edge turbulence gaining attention 8

▪ Other groups followed with different approaches
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[B Shanahan et. al., JPP 2024]

▪ Other groups followed with different approaches

• Isothermal fluid model in BOUT++
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Stellarator edge turbulence gaining attention 8

▪ Other groups followed with different approaches

• Isothermal fluid model in BOUT++
• Plasma relaxation fluid model GRILLIX
• Plasma relaxation kinetic model GENE-X

[M. Finkbeiner et al., SSRN 2026 ]



Stellarator edge turbulence gaining attention 8

[B Shanahan et. al., JPP 2024]
[A. Stegmeir et. al, JCP 2025] [M. Finkbeiner et al., SSRN 2026 ]

BOUT++ GENE-X

▪ Other groups followed with different 
approaches

GRILLIX

▪ Here we examine and validate fusion-relevant machines, to understand the impact of three-
dimensional geometries on edge turbulence



GBS simulations of stellarators with different edge features 9

Predecessor of W7-X sharing many features 
but smaller in size

Auxiliary coil currents allowed great flexibility 
in the edge topology

Largest heliotron stellarator in the world
Stochastic layer, X-point divertors

Only quasi-helically stellarator in the world

W7-ASLHDHSX

[Hirsch et al, PPCF 2008]

[S Masuzaki et al. Nuclear Materials and Energy 2019]
[HSX website]
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HSX, an ideal validation test bed 10

▪ Simulate full-size machine with comparison to 
experiments done by W. Guttenfelder 2009

▪ Langmuir probes and Thomson scattering 
diagnostic

▪ Turbulent properties compared at the reference 
surface

[Z. Tecchiolli, submitted to Nucl. Fusion]



Simulation set up mimicking experimental conditions 11

[Z. Tecchiolli, submitted to Nucl. Fusion]

▪ Simulation domain following the plasma shape

▪ Sources used to model ECRH power deposition [Weir, G. M., et al Nuclear 

Fusion (2015)] and ionization process [Canik et al, PoP (2007)]



Steady-state plasma shows broad-band turbulence 12

[Z. Tecchiolli, submitted to Nucl. Fusion]



Probe measurements show good agreement 13

▪ Scaling length in the SOL

[Z. Tecchiolli, submitted to Nucl. Fusion]

Probe sliding 



Average profiles show remarkable agreement 14

▪ Negative edge radial electric field

[Z. Tecchiolli, submitted to Nucl. Fusion]



Turbulent properties show reasonable agreement 15

▪ More energy around                            with cascade of

▪ Poloidal correlation and                    consistent with measurements of    and 

[Z. Tecchiolli, submitted to Nucl. Fusion]



3D first-principle effective diffusion coefficients 16

[Z. Tecchiolli, submitted to Nucl. Fusion]

▪ Regions of negative particle transport



GBS simulations of stellarators with different edge features 17

Predecessor of W7-X sharing many features 
but smaller in size

Auxiliary coil currents allowed great flexibility 
in the edge topology

Largest heliotron stellarator in the world
Stochastic layer, X-point divertors

Only quasi-helically stellarator in the world

W7-ASLHDHSX

[Hirsch et al, PPCF 2008]

[HSX website] [S Masuzaki et al. Nuclear Materials and Energy 2019]



Simulating LHD for studying plasma dynamics in 
the chaotic divertor 

18

[L. Da Silva, in preparation]

Simulation domain 3D 

Simulation domain 2D

left wall
right wall

▪ Simulation domain follows the divertor plates geometry

▪ Considering 1/3 of real size for gaining computational time

▪ Qualitative comparison with experimental results



Self-consistent drifts produce asymmetries in divertors 
profiles 

19

▪ creating L-R and T-B asymmetries 
in profiles at the divertor plates 

▪ Consequence of self-consistently account 
for drifts

▪ Effect observed experimentally [S Masuzaki et 

al. Nuclear Materials and Energy 2019]

[L. Da Silva, in preparation]



Asymmetries in the heat flux deposition on the 
divertor plates

20

▪ Heat flux deposition correlates with 
connection length 

▪ Heat profile spreading due to 
turbulent effects [M. Kobayashi et al. 
2022 PRL]

[L. Da Silva, in preparation]

right wall



Turbulence spreading broadens divertor heat load 21

▪ consistent with experimental results of                                      [M. Kobayashi et al. 2022 PRL]

[L. Da Silva, in preparation]



GBS simulations of stellarators with different edge features 22

Predecessor of W7-X sharing many features 
but smaller in size

Auxiliary coil currents allowed great flexibility 
in the edge topology

Largest heliotron stellarator in the world
Stochastic layer, X-point divertors

Only quasi-helically stellarator in the world

W7-ASLHDHSX

[Hirsch et al, PPCF 2008]

[HSX website]

[S Masuzaki et al. Nuclear Materials and Energy 2019]



Exploiting W7-AS flexibility for limited and diverted 
simulations 
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Limited
Diverted

▪ Limited configuration: quarter-size                           , half-size                             ,  and full-size                                with 

▪ Island-diverted configuration:                              and 



Velocity shear layer at the last-closed flux surface 24

[Z. Tecchiolli, in preparation]

▪ Negative radial electric field in the core following                                
and positive in the SOL following                      , forming 
layer shearing fluctuations [J Bleuel et al 2002 New J. Phys.]

▪ main radial transport mechanism [M. Schubert et al. 

2006]



Field-aligned curvature-driven turbulence in the edge 
of W7-AS

24

▪ Field-aligned,                , curvature driven,                                 turbulence 

▪ Dominant mode number following where breaks the field periodicity of 5

▪ Importance of full torus simulations

[Z. Tecchiolli, in preparation]

Density fluctuations

Density fluctuations



Similar poloidal size of fluctuating structure in size 25

▪ Poloidal size of fluctuating structure similar in        units among the different sizes

▪ Broader turbulent spectrum compared to previous simulations and consistent with experiments[J Bleuel, et al. New Journal of Physics 

(2002)] 

[Z. Tecchiolli, in preparation]

Fluctuation levels 



Global modes in the diverted configuration 26

▪ Global                             field-aligned instability consistent with                  and unstable Mercier condition for low-beta 
plasma in W7-AS

▪ Study of SOL region still undergoing

x-ray tomographyTotal density fluctuations

[A Weller et al 2003 Plasma Phys. Control. Fusion]
[Z. Tecchiolli, in preparation]



Conclusion: successful edge validation in W7-AS, LHD, and 
HSX provides a strong basis for further physical understanding

▪ Qualitative validation in W7-AS and LHD, combined with quantitative validation in HSX, indicates that the drift-reduced Braginskii

model represents a valid description for plasma physics in the edge of stellarators.

▪ Curvature-driven and field-aligned instabilities constitute the primary energy source in the simulations considered. However, 

plasma parameters and global electromagnetic effects may significantly influence the resulting dynamics.

▪ Substantial physics in the edge region remains to be explored. Key areas include neutral dynamics, detailed characterization of 

instabilities, saturation mechanisms, stochastic magnetic fields, and divertor geometries.

27


	Slide 1: Investigations of plasma turbulence in the edge of HSX, LHD and W7-AS
	Slide 2
	Slide 3: Current edge physics based on transport models
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Simulating edge turbulence in stellarators is challenging 
	Slide 12: Drift-reduced Braginskii equations to simulate the boundary plasma turbulence
	Slide 13: GBS solves the drift-reduced Braginskii equations
	Slide 14: GBS solves the drift-reduced Braginskii equations
	Slide 15: First-principles edge transport pioneered by the GBS group
	Slide 16: Stellarator edge turbulence gaining attention
	Slide 17: Stellarator edge turbulence gaining attention
	Slide 18: Stellarator edge turbulence gaining attention
	Slide 19: Stellarator edge turbulence gaining attention
	Slide 20: Stellarator edge turbulence gaining attention
	Slide 21: GBS simulations of stellarators with different edge features
	Slide 22: GBS simulations of stellarators with different edge features
	Slide 23: HSX, an ideal validation test bed
	Slide 24: Simulation set up mimicking experimental conditions
	Slide 25: Steady-state plasma shows broad-band turbulence
	Slide 26: Probe measurements show good agreement
	Slide 27: Average profiles show remarkable agreement
	Slide 28: Turbulent properties show reasonable agreement
	Slide 29: 3D first-principle effective diffusion coefficients 
	Slide 30: GBS simulations of stellarators with different edge features
	Slide 31: Simulating LHD for studying plasma dynamics in the chaotic divertor 
	Slide 32: Self-consistent drifts produce asymmetries in divertors profiles 
	Slide 33: Asymmetries in the heat flux deposition on the divertor plates
	Slide 34: Turbulence spreading broadens divertor heat load
	Slide 35: GBS simulations of stellarators with different edge features
	Slide 36: Exploiting W7-AS flexibility for limited and diverted simulations 
	Slide 37: Velocity shear layer at the last-closed flux surface
	Slide 38: Field-aligned curvature-driven turbulence in the edge of W7-AS
	Slide 39: Similar poloidal size of fluctuating structure in size
	Slide 40: Global modes in the diverted configuration 
	Slide 41

