ORB5 on GPU:

summary, status, plans, lessons learned

Thomas Hayward-Schneider!

with input from the ORB5 team!2-3

(pt.1 figures taken from Ohana et al. CPC 2020)

1 Max Planck Insitute for Plasma Physics, DE

2 SPC, EPFL Lausanne, CH | 3 University of Warwick, UK

QOutline

Background: ORB5

Background: ORB5 on GPU
Mixing CPUs and GPUs with ORB5
Issues

Background - ORB5

ORBb: Global, gyrokinetic, EM, PIC code

Phase-space markers (particles)

Fields on FE mesh (Fourier filtered)

Long lived Fortran+MPI code

Modernized, refactored, ported to OpenMP (multi-core) + OpenACC (GPU)
= Work done by SPC+CSCS [Ohana et al., CPC 2020]

Code described in [Lanti et al., CPC 2020]

ORBb Parallelism: 3 levels

1. Domain decomposition
2. Domain cloning
3. Multi-threading

Cost/Performance Assumptions:

Numerical cost

~O(Np) + O(N,) + O(1) + O(F(Ng, N,))
Particles: pushing particles (linear in [N,

Grid: Solving fields (linear; N log V)
Particles/Grid: Particles < Fields (~ linear in [Vp)
Leading order contributions: ~ IV,

Next contributions: ~N,

Assume leading term dominant

Parallelizing particle operations

1. Split toroidal planes by MPI (~128-512-way parallelism)
2. Duplicate torus (MPI) (arbitrary)
3. Each plane-clone runs on 1 MPI rank (process)
=1 corein pure MPI
= several cores in OpenMP hybrid
=1 core + 1 GPU on GPU machines
Multithreading originally applied only to particle operations

Spatial mesh parallelization

s
|
q/
| ///
clone #1 b PN
= A A /%
)2)2 =
0* 1 V1
v W
clone #0 b M o
//
sd. #0 sd. #1 sd. #2 sd. #3
9*

Within 1 MPI rank (here: 8 ranks: 2x clones; 4x decomposition):
OpenMP (CPUs) or OpenAcC (GPUs) on markers

Aside: A word on OpenACC

Directive-based paradigm for GPU offloading
Single source model
= Huge advantages in avoiding code divergence
= Nevertheless: Still some burden for developers
= Automated testing framework (essentially) mandatory for any CPU+GPU
code
Supported primarily by Nvidia hardware + compiler (formerly PGI)
Recent versions of OpenMP have approximately same features

Performance numbers (Multithreading)

4 subdomains

B Build Larmor [ll Deposit [[l] Field solve [l] Get field [ll Gyro-average [l Push [] Other

48 clones, 1 thread [P 17] 12] e

2 clones, 24 threads |5
1 clone, 48 threads [
24 clones, 1 thread [BH
1 clone, 24 threads [P¥
12 clones, 1 thread [P

1 clone, 12 threads [

S |28 %)
4.9 31 (64%)
12 :]]39 (80%)
4.4 | |25 (51%)

12 DN |34 (68%)

B | 25 (50%)

10 20 30 40 50
Wall clock time per step (s)

e MPI|+OpenMP hybrid beats pure MPI in total.

Performance numbers (GPU)

Skylake
(4 subdomains, 12 threads)

POWER9
(2 subdomains, 21 threads)

POWER9+V100
(2 subdomains, 3 clones)

Haswell +P100
(2 subdomains, 3 clones)

. Build Larmor . Deposit . Field solve . Get field . Gyro-average . Push D Other

10 15 20 25 30

Wall clock time per step (s)

Note: Memory capacity of GPUs (here: 16GB) sets minimum parallelization 1.

Slow field solver wouldn’t warrant such parallelism

1 See later for further complications

Part 1 Summary

OpenACC effectively accelerates (dominant) particle parts of ORB5 PIC code
on GPUs
Sufficiently successful that particle parts not necessarily still dominant
GPU memory capacity becomes issue - adds lower bound on parallelization

= Particles live on GPUs to minimize CPU s GPU transfer bottlenecks
Light-touch port: < 500 ! $acc directives

Beyond OpenMP or OpenACC

OpenMP and OpenACC in ORB5

e |n general, OpenMP and OpenACC directions are around particle loops in
ORB5
® |f compiling for CPU, OpenMP directives are used
® |[f compiling for GPU, OpenACC directives are used
e Not many other places in code accelerated with either OpenMP/OpenACC

Question arose in 2020: Can we accelerate (when running on GPUs) some
operation which is tricky to write on a GPU?

Aside: code sample

I Standard OpenMP Loop

!'$omp do

do ip=1,num_particles(species i)
end do

!$omp end do

Build ORB5 with OPENMP to enable

Aside: code sample

! Standard OpenACC Loop

!$acc parallel Loop

do ip=1,num_particles(species i)
end do

!$acc end parallel Loop

Build ORB5 with OPENACC to enable

Aside: code sample

I Typical ORB5 particle Loop
!$acc parallel Loop

!$omp parallel do

do ip=1,num_particles(species i)
end do

!$omp end parallel do

!$acc end parallel Loop

Build ORB5 with OPENACC OR OPENMP.
Twin directives on the same loops make the options incompatible.

Aside: code sample (mixing)

!$acc parallel Loop

!$omp parallel do

do ip=1,num_particles(species i)
end do

!$omp end parallel do

!$acc end parallel Loop

I$omp parallel do
do ix=1,100
! Some other Loop to accelerate
end do
I$omp end parallel do

How can we compile this to accelerate the first loop on the GPU and the
second loop on the CPU?

Aside: code sample (mixing)

!$acc parallel Loop
Ipomp parallel do I this 1s now just a comment
do ip=1,num_particles(species i)

end do
Ipomp end parallel do
!$acc end parallel Loop

I$omp parallel do
do ix=1,100

end do
I$omp end parallel do

Change !$omp to ! pomp if it coexists with ! $acc.
Now compiles, but need to fix OpenMP marker loop.

Aside: code sample (mixing)

#ifndef _OPENACC
#define pomp $omp
#endif

!$acc parallel Loop
Ipomp parallel do
do ip=1,num_particles(species 1)

end do
Ipomp end parallel do
!$acc end parallel Loop

I8omp parallel do
do ix=1,100

and dn

Use preprocessor to change ! pomp back to ! $omp
(all pre-existing omp declarations were converted).

Example:

e New nonlinear collision operator [P. Donnel et al., PPCF 2020]
e Ported to GPUs, wants to be used on combination with quadtree smoothing

algorithm.
e Quadtree smoothingis not ported to GPU, and it’s not obvious how to do so

efficiently/flexibly/quickly.

Version -1

Code crashes when calling quadtree if compiled for GPU

Version O

Check quadtree is disabled if compile for GPU

Nice that the code doesn’t crash, but no progress

Version 1

When calling QT:

do species _i=1,nspecies:
copy marker_data(:,species i)
call serial QT(species i)
copy marker_data(weights,species i)

Slow, serialized, but works.
Fine(?) if QT is called rarely

GPU->CPU

CPU->GPU

Version 2

When calling QT:

start copy of marker data(:,species i) GPU->CPU
do species_i=1,nspecies:

wait for data(species i)

call OpenMP_QT(species i)

start copy of marker data(weights,species i) CPU->GPU
wait for copies.

OpenMP + OpenACC (+ async data movement).
Acceptable even if QT called every step

Simple test #1

1 node (2xSkylake + 2xV100, 20 threads per socket)
Option Speed [steps]

no QT 131
vl 40
v2 98

QT speedup (Sno — Sv1)/(Sno — Sy2) ~3

More realistic test:

Daint (1xHaswell + 1xP100, 12 threads per socket)
Option Time [s]

no QT 687
vl 1760
V2 866

QT speedup = (Ty1 — Tho) /(Te — Tho) ~ 6

Issues

Memory limitations

16GB per GPU very limiting, given particle pushing speed of V100.

For good performance, should fill GPUs as much as possible with markers.
Overfilling => crash. Memory usage fluctuates in time. Difficult to
understand/debug (OpenACC? Buffers?)

Hard to fill more than ~2/3 GPU memory.

Memory fluctuations?

20000

Memary Usage [ME2]

a

15000 =

10000 o

5000 |

T T
ORAS memary usage —+—

HAHHHH

a

e GPU Memory usage reported by nvidia-smi tools difficult to explain
e Hard to reconcile even with memory debugging data
e Feedback on diagnosing GPU memory usage very welcome

Compilers

e PGI, now Nvidia HPC-SDK only compiler with sufficient OpenACC support
= compiler issues outstanding.
m HDF5-mpi library issues outstanding.

e Longterm: migrate OpenACC =>OpenMP 4.5+7
= for multi-vendor support

Strong vs Weak scaling

e Scaling in general affected by earlier assumption (Particles vs Grid)
» depends heavily on physics studied
o linear high-n Alfvén eigenmode studies among “worst” affected
e Strong scalability of code limited by field solver
= Mixing OpenACC+OpenMP opened as avenue to help here
e More fundamentally GPUs help with throughput (weak scaling) rather than
latency (strong scaling) [e.g. J. Brown Excalibur 2020]

Summary

e ORB5 ported to GPUs with OpenACC

= Particles live on GPUs, rest of code on CPU

m Detailsin Ohanaet al., CPC 2020
e Memory capacity limiting factor on m100

= Sets minimum parallelization / maximum problem
e Strong scalability now (often) limited by field solver

= Mixing OpenACC+OpenMP path forward

* Limited compiler support: as of now, not building with latest compilers

Backup

Summit parallel performance (hybrid strong/weak)

- - - Ideal scaling

—&— 20M markers per species, 32 x 256 x 128 cells

—&— 160M markers per species, 64 x 512 x 256 cells
1.3G markers per species, 128 x 1024 x 512 cells

—A— 10G markers per species, 256 X 2048 x 1024 cells

—— Without GPU (open symbols)

- == With GPU (filled symbols)

l [[W I] l I [X l [

H
ol
=
o |-

16 32 64 128256512102420484096
Number of nodes

