
ORB5 on GPU:
summary, status, plans, lessons learned
Thomas Hayward-Schneider
with input from the ORB5 team
(pt.1 �gures taken from Ohana et al. CPC 2020)

 Max Planck Insitute for Plasma Physics, DE

 SPC, EPFL Lausanne, CH | University of Warwick, UK

1

1,2,3

1

2 3

Outline

Background: ORB5
Background: ORB5 on GPU
Mixing CPUs and GPUs with ORB5
Issues

Background - ORB5

ORB5: Global, gyrokinetic, EM, PIC code

Phase-space markers (particles)
Fields on FE mesh (Fourier �ltered)
Long lived Fortran+MPI code
Modernized, refactored, ported to OpenMP (multi-core) + OpenACC (GPU)

Work done by SPC+CSCS [Ohana et al., CPC 2020]
Code described in [Lanti et al., CPC 2020]

ORB5 Parallelism: 3 levels

1. Domain decomposition
2. Domain cloning
3. Multi-threading

Cost/Performance Assumptions:

Numerical cost
~ O() + O() + O(1) + O()

Particles: pushing particles (linear in)

Grid: Solving �elds (linear;)
Particles/Grid: Particles ⇆ Fields (~ linear in)
Leading order contributions: ~

Next contributions: ~

Assume leading term dominant

Np Ng F(Ng, Np)
Np

N log N
Np

Np

Ng

Parallelizing particle operations

1. Split toroidal planes by MPI (~128-512-way parallelism)
2. Duplicate torus (MPI) (arbitrary)
3. Each plane-clone runs on 1 MPI rank (process)

= 1 core in pure MPI
= several cores in OpenMP hybrid
= 1 core + 1 GPU on GPU machines
Multithreading originally applied only to particle operations

Spatial mesh parallelization

Within 1 MPI rank (here: 8 ranks: 2x clones; 4x decomposition):
OpenMP (CPUs) or OpenACC (GPUs) on markers

Aside: A word on OpenACC

Directive-based paradigm for GPU of�oading
Single source model

Huge advantages in avoiding code divergence
Nevertheless: Still some burden for developers
Automated testing framework (essentially) mandatory for any CPU+GPU
code

Supported primarily by Nvidia hardware + compiler (formerly PGI)
Recent versions of OpenMP have approximately same features

Performance numbers (Multithreading)

MPI+OpenMP hybrid beats pure MPI in total.

Performance numbers (GPU)

Note: Memory capacity of GPUs (here: 16GB) sets minimum parallelization .
Slow �eld solver wouldn’t warrant such parallelism

 See later for further complications

1

1

Part 1 Summary

OpenACC effectively accelerates (dominant) particle parts of ORB5 PIC code
on GPUs
Suf�ciently successful that particle parts not necessarily still dominant
GPU memory capacity becomes issue – adds lower bound on parallelization

Particles live on GPUs to minimize CPU ⇆ GPU transfer bottlenecks
Light-touch port: !$acc directives< 500

Beyond OpenMP or OpenACC

OpenMP and OpenACC in ORB5

In general, OpenMP and OpenACC directions are around particle loops in
ORB5

If compiling for CPU, OpenMP directives are used

If compiling for GPU, OpenACC directives are used

Not many other places in code accelerated with either OpenMP/OpenACC
Question arose in 2020: Can we accelerate (when running on GPUs) some
operation which is tricky to write on a GPU?

Aside: code sample

Build ORB5 with OPENMP to enable

! Standard OpenMP loop
!$omp do
do ip=1,num_particles(species_i)
 ...
end do
!$omp end do

Aside: code sample

Build ORB5 with OPENACC to enable

! Standard OpenACC loop
!$acc parallel loop
do ip=1,num_particles(species_i)
 ...
end do
!$acc end parallel loop

Aside: code sample

Build ORB5 with OPENACC OR OPENMP.
Twin directives on the same loops make the options incompatible.

! Typical ORB5 particle loop
!$acc parallel loop
!$omp parallel do
do ip=1,num_particles(species_i)
 ...
end do
!$omp end parallel do
!$acc end parallel loop

Aside: code sample (mixing)

How can we compile this to accelerate the �rst loop on the GPU and the
second loop on the CPU?

!$acc parallel loop
!$omp parallel do
do ip=1,num_particles(species_i)
 ...
end do
!$omp end parallel do
!$acc end parallel loop

!$omp parallel do
do ix=1,100
 ... ! Some other loop to accelerate
end do
!$omp end parallel do

Aside: code sample (mixing)

Change !$omp to !pomp if it coexists with !$acc.
Now compiles, but need to �x OpenMP marker loop.

!$acc parallel loop
!pomp parallel do ! this is now just a comment
do ip=1,num_particles(species_i)
 ...
end do
!pomp end parallel do
!$acc end parallel loop

!$omp parallel do
do ix=1,100
 ...
end do
!$omp end parallel do

Aside: code sample (mixing)

Use preprocessor to change !pomp back to !$omp
(all pre-existing omp declarations were converted).

#ifndef _OPENACC
#define pomp $omp
#endif

!$acc parallel loop
!pomp parallel do
do ip=1,num_particles(species_i)
 ...
end do
!pomp end parallel do
!$acc end parallel loop

!$omp parallel do
do ix=1,100
 ...
end do

Example:
New nonlinear collision operator [P. Donnel et al., PPCF 2020]
Ported to GPUs, wants to be used on combination with quadtree smoothing
algorithm.
Quadtree smoothing is not ported to GPU, and it’s not obvious how to do so
ef�ciently/�exibly/quickly.

Version -1

Code crashes when calling quadtree if compiled for GPU

Version 0

Check quadtree is disabled if compile for GPU

Nice that the code doesn’t crash, but no progress

Version 1

When calling QT:

Slow, serialized, but works.
Fine(?) if QT is called rarely

 do species_i=1,nspecies:
 copy marker_data(:,species_i) GPU->CPU
 call serial_QT(species_i)
 copy marker_data(weights,species_i) CPU->GPU

Version 2

When calling QT:

OpenMP + OpenACC (+ async data movement).
Acceptable even if QT called every step

 start copy of marker_data(:,species_i) GPU->CPU
 do species_i=1,nspecies:
 wait for data(species_i)
 call OpenMP_QT(species_i)
 start copy of marker_data(weights,species_i) CPU->GPU
 wait for copies.

Simple test #1

1 node (2xSkylake + 2xV100, 20 threads per socket)

Option Speed [steps]
no QT 131

v1 40

v2 98

QT speedup ~ 3(Sno − Sv1)/(Sno − Sv2)

More realistic test:

Daint (1xHaswell + 1xP100, 12 threads per socket)

Option Time [s]
no QT 687

v1 1760

v2 866

QT speedup = ~ 6(Tv1 − Tno)/(Tv2 − Tno)

Issues

Memory limitations

16GB per GPU very limiting, given particle pushing speed of V100.
For good performance, should �ll GPUs as much as possible with markers.
Over�lling => crash. Memory usage �uctuates in time. Dif�cult to
understand/debug (OpenACC? Buffers?)
Hard to �ll more than ~2/3 GPU memory.

Memory �uctuations?

GPU Memory usage reported by nvidia-smi tools dif�cult to explain
Hard to reconcile even with memory debugging data
Feedback on diagnosing GPU memory usage very welcome

Compilers

PGI, now Nvidia HPC-SDK only compiler with suf�cient OpenACC support
compiler issues outstanding.
HDF5-mpi library issues outstanding.

Long term: migrate OpenACC => OpenMP 4.5+ ?
for multi-vendor support

Strong vs Weak scaling

Scaling in general affected by earlier assumption (Particles vs Grid)
depends heavily on physics studied

linear high- Alfvén eigenmode studies among “worst” affected
Strong scalability of code limited by �eld solver

Mixing OpenACC+OpenMP opened as avenue to help here
More fundamentally GPUs help with throughput (weak scaling) rather than
latency (strong scaling) [e.g. J. Brown Excalibur 2020]

n

Summary
ORB5 ported to GPUs with OpenACC

Particles live on GPUs, rest of code on CPU
Details in Ohana et al., CPC 2020

Memory capacity limiting factor on m100
Sets minimum parallelization / maximum problem

Strong scalability now (often) limited by �eld solver
Mixing OpenACC+OpenMP path forward

* Limited compiler support: as of now, not building with latest compilers

Backup

Summit parallel performance (hybrid strong/weak)

