

WPJET2: Material erosion, migration and dust

Marek Rubel, Per Petersson and JET2 Team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Many thanks to the Team for excellent contributions.

In three JET2 overview talks we shall try to present highlights.

- We have received many slides for the overview talks.
- All contributions will be addressed.
- Sorry if not all slides will be shown (time constraints).

The aim is to have a complete overview of material migration and material damage, not just a number *(even large)* of analysis points and isolated findings.

WPJET2: 7 years

We work with PFCs and tokamakium containing beryllium and tritium.

- Laboratories: 12 in EU and cooperation with IFERC within Broader Approach
- Great human capital: experience and expertise
- Special equipment and many dedicated developments.
- Over 40 different material characterisation techniques from nano to macro:
 - > Imaging
 - Composition from the first nm to depth (cross-sectioning)
 - > Mechanical properties
 - > Optical properties
 - > 9 techniques for deuterium and hydrogen studies.
 - > 9 (10) techniques/approaches in tritium assessment and analyses.

Original scope of WPJET2 (2014) has been vastly broadened by new projects originating from:

- *new findings, own ideas, needs for clarification;*
- ITER needs (requests).

- > Limiter tiles
- > Divertor tiles
- > Wall Probes
- Dust and metal splashes

Comparison of campaigns

- ILW-1: 19.3 h 150 GJ ILW-2: 19.1 h 201 GJ ILW -3: 23.6 h 245 GJ
- > Exposure during single campaigns.
- Exposure during two or all three campaigns.

Are material migration effects additive (retention, deposition)?

Beryllium Handling Facility (BeHF) at JET *Handling of beryllium and tritiated components*

Marek Rubel| AM JET2-PFC, Zoom | November 9-10, 2020 | Page 6

Sectioning of JET tiles: pre-requisite for definition of tasks and detailed studies

Be-coated Inconel

Bulk W lamella, Tile 5

- For microscopy
- Ion beam analyses
- Thermal desorption
- Tritium measurements
- Emissivity
- Metallography

C. Lungu, C. Porosnicu, IAP

Sampling/cutting & traceability/labeling

Before

... and after coring

Sampling for: SIMS, metallography, SEM, FIB/TEM, EDX, m-beam IBA, TDS, etc.

Jari Linonen, VTT, Finland

Erosion - Deposition pattern in three campaigns

Divertor

Divertor: deposition from ILW-1 to ILW-3

Messages:

- •Qualitatively similar distributions in all campaigns.
- Maximum deposition on Tiles 0, 1
- Higher deposition on Tiles 4, 6 in ILW-2 and ILW-3

л

5

Divertor: deposition from ILW-1 to ILW-3

Deposited mass (g)			Deposited mass rate (µg					
_	ILW-1	ILW-2	ILW-3	-	ILW-1	ILW-2	ILW-3	
D	0.9	0.7	0.9	D	13	10	11	
Ве	53	60	46	Ве	771	877	544	
C	13	7	6	С	189	102	71	
					Concer	ntration	(at.%)	
				D	6.0	4.6	7.4	
				С	14.6	7.7	8.3	

Messages:

- More or less constant deposition rate of D.
- Slowly varying deposition rate of Be.
- Decreasing deposition rate of C from ILW-1 to ILW-3.

Divertor: Tile 5, Bulk W lamellae

Plasma operation mainly on Stack C and D.Lamellae 1-3:in the shadow of the adjacent tileLamellae 12-14:central part of the assemblyLamellae 20-24:most exposed

Divertor, W bulk lamellae: Depth profiling with ERDA

(End of ILW-2 campaign in hydrogen.)

Other species, contents in 10¹⁶ cm⁻²:

	ILW 2	ILW 1+3
Be	24	14
С	14	13
Ν	6.5	3.4
0	13	17
Ni		4

L. Dittrich, P. Petersson, VR

Carbon on W lamellae: Deuterium NRA on top surfaces

T. Lagoyannis, P. Tsavalas, D. Mergia, NCSRD, Greece

Carbon on W lamellae: D micro-beam NRA on top surfaces

T. Lagoyannis, P. Tsavalas, D. Mergia, NCSRD, Greece

W lamellae ILW-2: Deposition in gaps, µ-NRA

Messages:

- Deposition increases with the gap width.
- Relatively high C content, C/Be > 1.
- Coherence with T deposition pattern in gaps betwéen stacks.

P. Petersson, SW Moon, D. Dittrich, VR-KTH

Y. Hatano, S. Lee, Toyama Univ., Japan

Tungsten lamellae: ILW-2, ILW-3, ILW-1+3

0

C22, 71

73

C23,

C23, 74

125

C23,

Sample #

C23, 126

C24, 131

C24, 132

Reduced surface roughness for marker lamellae.
 In-some lodations marker layer was fully eroded.

Reduced surface roughness for ILW-1+3

G. Pintsuk, FZJ

Beryllium limiters

Beryllium Inner Wall Guard Limiters: ILW-1 and ILW-2

Other species, contents in 10¹⁶ cm⁻²:

	ILW-1	ILW-2	
Be	226	220	
С	14	14	
Ν	5	11	
0	45	32	
Ni	10	3	
W	traces	at the detecti	on limit.

L. Dittrich, P. Petersson, VR

Beryllium limiters: *SEM/EDX*

IWGL 2XR11 – sample 674

WOPL 4D15 – sample 754

Impurities from *EDX* measurements:

Element	At. %
0	55.34
Cr	3.17
Fe	4.84
Ni	12.73
Си	5.71
W	3.18

Element	At. %
0	68.39
Cr	2.81
Fe	4.57
Ni	11.16
Си	5.16
W	3.72

C. Lungu. C. Porosnicu, IAP, Romania

µXRF in Be limiter castellations and on dust

µXRF on Be limiters

Photon counts

µXRF/XCT on dust

Composition of inclusions in dust particles (D5)

Element	D5-1 (Wt.%)	D5-2 (Wt.%)
Fe	13.8+1.2	15.5+1.3
Cu	70.4+3.1	69.4+3.1
Zn	15.7+1.6	15.1+1.6

I. Tisuanu, IAP, Romania

- No significant changes in crystalline phases observed on all the samples.
- No other peaks corresponding to other elements (impurities) observed.
- C. Lungu. C. Porosnicu, IAP, Romania

Be limiters ILW-1 to ILW-3: Surface Roughness

<u>Messages</u>

- In ILW-3 areas with full or partial erosion of the Be top layer.
- ILW-3: In contrast to ILW-1 and ILW-2 no areas with melting.
- For the dump plate no relevant erosion nor melting of the roof top was found (specimen 462, 2B2C); 2B4C (not part of this investigation) shows heavy melting.
- Metallographic results showed more or less full erosion of the marker layer in all the locations, at least in the cross sectional micrographs no Ni-remains were found as it was the case for ILW-1 and ILW-2.

G. Pintsuk, FZJ

Inner Wall Cladding

Inner Wall Cladding

Inner wall erosion: from ILW-1 to ILW-3

Inner Wall Cladding: ERDA and ³He-NRA

The average composition of the sample to a depth of 6000 * 10¹⁵ atoms/cm²

NRA – whole layer analysis

Sample	Thickness 10 ¹⁸ cm ⁻² (μm)	Impurity %	D _{surface} 10 ¹⁷ cm ⁻²	D content %
Initial	112 (9.4 µm)	4 – 5	0	0
ILW-2 (106)	82-110 (6.7 – 9.3)	7 - 9	0.9 - 1.7	0.13 - 0.20
ILW 1-3 (412)	125 -149 (10.1 – 12.0)	8 - 15	3 - 6	0.20 - 0.44

Messages:

- Low or no layer erosion.
- Probably Be deposition from eroded limiters
- Low fuel retention, both at the surface and in the bulk.
- Total D inventory:
 0.8 5.4 x10²¹ (3 21 mg)
- Microscopy is needed to check topography.

P. Petersson, L. Dittrich, VR

Wall Probes

Rotating Collectors

- 2 cycles of exposure.
- Each up to 3000 shots.

Message:

- Analyses completed, data ready for modelling/correlation with operation modes.
- Contents of metals are very on the 10¹⁵/cm² level.

E. Alves, N. Catarino, IST, Portugal

Louvre clips ILW-1 to ILW-3

K. Mizohata, VTT, Finland

Time of Flight

Message and main question (for modellers)

How do metals (Be, W) travel to such remote areas, to all surfaces of the clips?

K. Mizohata, VTT, Finland

Mirrors

Plasma-assisted cleaning

Plasma-assisted mirror cleaning

SEM before cleaning revealed needle-like structures on JET-ILW mirror exposed in cassette with fins. No needle without fins.

Height Sensor

200.0 nm

220 eV He ions are reducing the amount of Be (393 nm to 37 nm) but not removing the final layer.

XPS shows an enrichment of W oxide that stopped the cleaning.

Adding 3 h in 2019 (in comparison to 23 h for 2017) is not reducing the Be amount as measured by HÍERDA.

Reflectivity not recovered for these steps, Ar gas is required.

- Further cleaning experiments are delayed due to the COVID situation.
- Next experiments will be performed at the beginning of 2021.

L. Marot et al. 🛞

Mechanical properties of bulk W Nanoindentation

Langmuir Probe (No. 5, module 16IN, Tile 3, ILW-2)

Areas of measurements

(a) Zone III

E. Fortuna, M. Spychalski, IPPLM-WUT, Poland

Langmuir Probe: Nano-indentation

	Young modulus, E, GPa			Hardness, H, GPa			
	Average(E)	SD*(E)	Error (E)	Average(H)	SD(H)	Error (H)	
ZONE III	257	42	12	15.37	2.68	0.74	
TIP 261		25	6	5.18	0.72	0.19	

SD – standard deviation

Comparison of force-depth curves for both areas.

> Hysistron Ti-800 triboindenter.

> Force 10 mN.

15 measurements in each area.

- Due to the large development of the surface, the surface was imaged in the SPM (scanning probe microscope) mode before each measurement.
- Large differences in the hardness between the tip and Zone III.

E. Fortuna, M. Spychalski, IPPLM-WUT, Poland

Dust

Dust

Types/Locations	Methods
Vacuum cleaning ILW - all	Optical microscopy
Sticky pads: Tiles 0, 1	SEM
Sticky pads: Tile 5	FIB
Sticky pads: Tile 8	TEM, STEM
Sticky pads: Tiles B, C	EDX, WDX, EPMA
Sticky pads: Be IWGL	μXRF/XCT
Dust monitors: ILW-2 and 3	μ-NRA
Mirrors (FMT)	μ-PIXE
KY-6 Mirror ILW-1 and ILW-2	μ-RBS
Spatial blocks	HIERDA (dust monitors)
QMB crystals	ICP-OES
	TDS: H, D, T
	Full combustion: T
	Radiography: T
	Cameras (in discharges)

Messages:

- Very small quantity of loose matter in the divertor: 1 g/campaign.
- Very strong adhesion of dust to the substrate.
- No tungsten droplets.

Tile 5, bulk W lamellae, IWL-1 + ILW-3

After sampling

E. Fortuna, IPPLM-WUT

Dust: Inner Wall Guard Limiter 2XR11 ILW1-3

<u>Messages:</u>

- Numerous splashes, co-deposits and irregular objects with empty interior.
- Strong adherance of particles to the substrate.

E. Fortuna, IPPLM-WUT

Dust collected by vacuum cleaning after ILW-3: Ion Micro-beam Analysis

S. Fazinic et al. Nucl Fusion 60 (2020) 126031

Main message:

D retention is associated mainly with C:

~ 10–20 times greater than in metal-based particles.

S. Fazinic et al., RBI, Croatia

DUST: Radiography of T in different particles (ILW-1)

- Dust particles are placed on In disk.
- Composition of individual particles is identified with EPMA (WDS).
 - eta^{-} (T) recorded by radiography.
- Superposition of profiles.

Message:

Tritium presence associated with C.

T. Otsuka, Osaka-Kindai U. / IFERC

Note the scale

Dust: Analyses of metals* in dust by ICP-OES

C. Lungu, C. Porosnicu, IAP, Romania

Sample	B2	D1	31	C1	C2	11	26
Be Wt ratio	0.766	0.626	0.592	0.422	0.248	0.399	0.854
Cr Wt ratio	0.032	0.023	0.030	0.048	0.112	0.003	0.000
Cu Wt ratio	0.003	0.024	0.022	0.043	0.058	0.010	0.002
Fe Wt ratio	0.152	0.105	0.110	0.338	0.379	0.304	0.085
Mo Wt ratio	0.004	0.045	0.004	0.008	0.030	0.003	0.015
Ni Wt ratio	0.025	0.127	0.131	0.030	0.059	0.057	0.011
W Wt ratio	0.018	0.051	0.111	0.112	0.113	0.223	0.032

• Carbon and other non-metals cannot be analysed by ICP-OES.

• Be is the major metal constituent of dust.

Impact of moisture on Be dust generation

ITER wants to know: What happens to beryllium-rich deposits when hot water/steam enters the vessel?

Impact of moisture on dust generation: Experiment

Task requested by ITER:

Determine dust generation under off-normal events like water and air leaks.

Experiment:

- "Cook" Be limiter samples with/without deposits for some hours.
- Prevent water evaporation (use of cooler)
- Determine T content in H₂O (tritium transfer).
- Determine surface properties before and after exposure to hot water.
- Investigate a solid residue to check for the released dust.

Current status: One sample with deposit (cut from 2XR10 tile IWGL) "cooked" for ~4 h.

Main messages:

- a. Exposure of Be with deposit doesn't lead to "mechanical" damage to the layer: no cracking or large-scale flaking.
- b. No flakes/dust found in the flask → mechanical stability of the deposit exposed to boiling water.
- c. Agreement (a & b)with data obtained in earlier experiments. (P. Petersson, E. Fortuna, 2019)
- *d. Tritium detected in water:* ~6 x10¹¹ *atoms* (~10 % of total T inventory within the sample)

Y. Zayachuk et al., CCFE, UK

Where are we NOW?

- The original scope of WPJET2 (2014) has been vastly broadened by new projects:
 (i) identified research needs, (ii) own ideas; (iii) ITER needs/requests.
- > The majority of work has already been done or it is a very advanced stage.
- Most results have alredy been published.

Samples to be distributed (delay caused by Covid):

- Be castellation samples from tiles exposed to ILW 1-3
- Sample of filter in JET exhaust ventilation system
- Langmuir probe non-exposed
- Anna with tell more tomorrow.

Extra slides with detailed information

Tungsten lamellae with marker (ILW-2): W-Mo coating thickness

62C

С В Α

Х

X ... inner wall facing marking

G. Pintsuk, FZJ

