OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

1 OpenMP Tutorial
Members of the OpenMP Language Committee



OpenMP

Agenda (in total 5 webinars)

B Webinar 1: OpenMP Introduction
—->Welcome
- OpenMP Overview
—>Parallel Region
—->Worksharing
- Scoping
— Tasking (short introduction)
- Executing OpenMP programs
—-Homework assignments ©

B \Webinar 2: Tasking

B \Webinar 3: Optimization for NUMA and SIMD

B Webinar 4: Introduction to Offloading with OpenMP
B Webinar 5: Advanced Offloading Topics
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History

* De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++

e 2005: OpenMP 2.5 now includes
both programming languages.

 05/2008: OpenMP 3.0
 07/2011: OpenMP 3.1

* 07/2013: OpenMP 4.0
* 11/2015: OpenMP 4.5

« 11/2018: OpenMP 5.0
« 11/2020: OpenMP 5.1

http://www.OpenMP.org
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What is OpenMP?

Parallel Region & Worksharing

Tasking

SIMD / Vectorization

Accelerator Programming

a Snake!
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Get your C/C++ and Fortran Reference Guide!

Covers all of OpenMP 5.0!

OpenMP API 5.0

OpenMP 5.0 API Syntax Reference Guide
en The OpenMP* API is a portable, scalable
model that gives parallel programmers a

simple and flexible interface for developing
OPenMp.Org  ,;rable parallel applications in C/C++ and
Functionality new/changed in Op.

v+ conten Fortran content
|} St oontent onsent [n.n.n] Sections in the 5.0 spec.

[n.nun] Sections in the 4.5 spec

Fortran. OpenMP i suitable for a wide range
of algorithms running on multicore nodes and
chips, NUMA systems, GPUs, and other such  the compltir orclor rintind oysieme
devices attached to a CPU.

auto: The decisior i scheduling is delegated

runtime: The schedule and chunk size are taken from
color, and in Open the run-sched-vor ICV.
o Deprecated n the 5.0 spec i

monotonic: Each thread executes the chunks th

Directives and Constructs

ucceeding structured black. A Structured-block is an OpentP ¢

aMP drectve declare target may not a

variant directives
Metadirectives (23.4)

parallel construct

parallel (26125
team of OpenMP threads tha exscute the

va omp parallel [clause] |, [couse] .|
structured-biock
15omp paralle [ciouse] [, Jclause] .|

o) L
Spragma coup end metadvecthe it ). sttt shre s
1Somp metadirective [clouse] | couse] Copyin (i x
v veducion (reduction e, reducton-dentfier
. i (raser close | spread)
eotor: i)
scalr-xpression)
(intege-expression)
default (shared | none)
W {/ parael : | scafor-logicak-expression)
ams (scolor-integer-expression)

num _te
defatit (shared | firstprivate | private | none)

omp end metadirective
clause:

‘when (context selector-specficotion: directive-vor

default (directive-voriant

declare varlan( (235)

teams construct
teams 2)(z.107

pragma omp declare variant{yariont func-id) clouse
[¥pragma omp declare variant{uriont unc-10) luse]
L e pragma omp teams [clouse | Jlouse]
1Somp dediare variant (& | structured block
[base-proc-name: Jvoiant-proc-name) dause 1Somp teams [douse] [ cluse]
ctured-block
I5omp end teams
dause
et ) frsprvate i) shred
attsa b reduction (/defauit | reduction-dentfier
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w00 Worksharing constructs
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Wpragma omp requies coue [ use.. | Rrceiersiie orktarkig st i ok

wse ([ 1] cause].| excuted by the threadsin a tea

¥pragma omp sections [clouse] ] clouse] .|
[t#tpragma omp section
structured-block

{#pragma omp section
structured-block]

c_default_mem WM!UM | acq_rel | relaxed)
dvr\amx allocators. ©
1)
I1Somp sections [clouse([,] clo
1Somg section/
Structured bock
1Somp section

structured-block

15omp end sections [nowait]
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truct o a block t single entry at

PURE o ELEMENTALpr
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allocate | )
‘order (concurrent)
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i
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#pragma omp dedtare simd (clousef |, clouse
[pragma omp declare simd (¢!
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inbranch
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Directives and Constructs (continued)

distribute loop constructs
dlstnbute (29.43)(2108)
cifies e executed by the thread team

1Somp distribute (clouse [, [clause] .|
do-bops

15omp end distribute/

private (ist)

firstprivate (Jist)

Tastyrivate

collapse ()

dis_shedole 1, churk )

allocate (ol 4

ently using
pragma omp it simd < | douse]

lsompﬂhmhmeﬁmd el Jckouse] ]
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clause: Any of the dauses accepted by distribute or simd

Disrlute Pavallel Worksharing-Loop

29.43)(2:10.10]

These constructs specify 3 loop that can be executed in
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Distribute Parallel Worksharing-Loop SIMD
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OpenMP API 5.0
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scan 95|
fies that scan computations update the fst kems on

loop-ossociated-diective
for-toop-headers

loop ossociated-dvectie

fend-oop-associated-directive |

" inclusive (is1), exclusive (st}
loopectie d
1 for simd, simd directive
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Tasking constructs
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sk fclouse | Jouse] -]

dnpend{‘. end modfier,| dependencetpe

priorityl;
allocate(/alt
affinity ( ]
it & erator
ev de s of type omp_event_handie
defout (shared | nane)
[/ task : scolor-expression)
final [scolar-expression)
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Recent Books About OpenMP OpenMIP

USING OPENMP-
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

OpenMP

Application Programming Interface
Specification Version 5.0

THE OPENMP
COMMON CORE

Making OpenMP Simple Again
Edited by Michael Klemm and Bronis R. de Supinski

d3lS LX3N IHL — dWNIAO0 DNISN A \
|
I

F¥0D NOWWOD dWN3IdO IHL

Ruud van der Pas, Eric Stotzer,
and Christian Terboven

Timothy G. Mattson, Yun (Helen) He,
and Alice E. Koniges

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.0 A book that covers all of the A new book about the OpenMP
specifications, 2019 OpenMP 4.5 features, 2017 Common Core, 2019
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Programming OpenMP

Parallel Region
Christian Terboven L
Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee



OpenMIP

OpenMP‘s machine model

* OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.
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The OpenMP Memory Model

« All threads have access to private
memory

the same, globally shared
memory

« Data in private memory is
only accessible by the thread
owning this memory

accelerator

Shavee:...$ «=
Memory

private

* No other thread sees the private memory

change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory
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OpenMIP

The OpenMP Execution Model

. QpenMP programs start with Master Thread Serial Part
just one thread: The Master.
Parallel
 Worker threads are spawned Region
at Parallel Regions, together Worker

with the Master they form the Threads
Team of threads.

Serial Part

* In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

3

<IIIIIIIIIIIIIIIIIIIII

Parallel
Region

* Concept: Fork-Join.
e Allows for an incremental parallelization!
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OpenMP

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.
C/C++ Fortran

fpragma omp parallel 'Somp parallel
{

... structured block
structured block

!'Somp end parallel

}

e Structured Block Specification of number of threads:
— Exactly one entry point at the top — Environment variable: OMP NUM THREADS=...
— Exactly one exit point at the bottom — Or:Vianum threads clause:
— Branching in or out is not allowed add num tireads (num) to the
— Terminating the program is allowed parallel construct
(abort / exit)
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OpenMIP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program
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Demo OpenMP

Hello OpenMP World
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Worksharing
Christian Terboven L
Michael Klemm OpenMP
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For Worksharing

* If only the parallel construct is used, each thread executes the Structured Block.

* Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

OpenMP

C/C++
int 1i;
fpragma omp for

ali] = b[1]

for (1 = 0, 1 < 100;

it++)

+ c[i];

Fortran

INTEGER ::

!'Somp do

DO i = 0
ali]

END DO

1

;99
= b[1]

+ c[1i]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

* Loops often account for most of a program’s runtime!
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Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0, 99
a(i) = b(i) + c(i) =l
end do
Thread 3
Thread 4

OpenMP Tutorial
Members of the OpenMP Language Committee

doi=0,24
a(i) = b(i) + c(i)
end do

doi= 25,49
a(i) = b(i) + c(i)
end do

doi=50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

OpenMIP

Memory

RN

B(0)
L ]
L. ]

B(99)
L. ]

C(99)



OpenMIP

The Barrier Construct

e OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

#fpragma omp barrier

e All worksharing constructs contain an implicit barrier at the end

4 OpenMP Tutorial
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OpenMP

The Single Construct

C/C++ Fortran
#fpragma omp single [clause] !'Somp single [clause]
structured block ... ... sStructured block
'Somp end single

* The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

— Itis up to the runtime which thread that is.

e Useful for:
— 1/0
— Memory allocation and deallocation, etc. (in general: setup work)
— Implementation of the single-creator parallel-executor pattern as we will see later...

5 OpenMP Tutorial
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The Master Construct

OpenMP

C/C++

fpragma omp master[clause]
structured block

Fortran

!'Somp master[clause]
structured block
'Somp end master

The master construct specifies that the enclosed structured block is executed only by the master thread of

a team.

Note: The master construct is no worksharing construct and does not contain an implicit barrier at the end.
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Demo OpenMP

Vector Addition
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OpenMP

Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule (static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]) :Similar to dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

 Defaultis schedule (static).

OpenMP Tutorial
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Influencing the For Loop Scheduling / 2

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
Cons?

- No dynamic workload balancing

OpenMP Tutorial
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OpenMIP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one
— Default chunk size is 1
* Pros?
— Workload distribution
* Cons?
— Runtime Overhead

— Chunk size essential for performance
— No NUMA optimizations possible
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. | OpenMIP
Synchronization Overview

Can all loops be parallelized with £or-constructs? No!

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.
BUT: This test alone is not sufficient:

C/C++
int i, int s = 0;

#fpragma omp parallel for
for (i = 0; i < 100; i++)
{

s = s + alil;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).
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OpenMIP

Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)
{
structured block

}

* Do you think this solution scales well?

C/C++

int 1, s = 0;

#fpragma omp parallel for
for (i = 0; i < 100; i++)
{

#fpragma omp critical
{ s = s + aflil; }

}

12 OpenMP Tutorial
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Programming OpenMP
Scoping
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Michael Klemm OpenMP
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OpenMP

Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

* Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private [ ]

— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
* firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to Master

— Static variables are shared

p) OpenMP Tutorial
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OpenMP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread
* Before the first parallel region is encountered
* |nstance exists until the program ends
* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword  thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
fpragma omp threadprivate (i) !'Somp threadprivate (i)

3 OpenMP Tutorial
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OpenMIP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
-

— Oneinstance is created for each thread '\Q
* Before the first parallel region is encountered 6?‘
* |nstance exists until the program ends ez
* Does not work (well) with nested Parallel Region "“‘

— Based on thread-local storage (TLS) 0& \

* TIsAlloc (Win32-Threads), pthread _key create (P%ehre%‘@%/\'/vord ___thread (GNU extension)

2 X7\
\
. 6\‘,‘\ “3(
C/C++ 0“ ‘0\,\ Fortran
static int i; \,o S SAVE INTEGER :: i
* ao (1) !'Somp threadprivate (i)

#pragma S‘
[ J

?&z\\

4 OpenMP Tutorial
Members of the OpenMP Language Committee



Back to our example
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OpenMIP

C/C++

int 1, s = 0;

fpragma omp parallel for
for (i = 0; i < 100; i++)
{

#fpragma omp critical
{ s =s + ali]; }

}




It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do
#pragma omp for
for (i = 0; 1 < 99; 1i++) doi =25, 49
{ s=s+ali)
doi=0,99 end do
s=s+al(i) | =P _
s = s + alil; end do doi =50, 74
s=s+ali)
end do
}
doi=75,99
s=s+a(i)
} // end parallel end do

OpenMP Tutorial
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The Reduction Clause

OpenMP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.
— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int i, s = 0;

fpragma omp parallel for reduction(+:s)
for(i = 0; 1 < 99; i++)
{

s = s + ali]l;

}

— Possible reduction operators with initialization value:

+ (0),

(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial

*

(1), - (0), &

maXx

(~0), | (0),
(least number)

& &
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Example OpenMP

o
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Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for (I=0;1<n;it++)
{
fX =fH* ((double)i + 0.5),
fSum += f(fX);
}

return fH * fSum:;

}

OpenMP Tutorial
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Example: Pi (2/2) OpenMP

double f(double x) )

{ 4
return (4.0 / (1.0 + x*x)); T = j

} 1+ x?

0

double CalcPi (int n)

{ 4F - ' ' 4
const doublefH =1.0/(double) n; 3_5/ T lse
double fSum = 0.0; ht
double fX; | h, T
inti; 25} "*-H.‘ J25

2t H".. {2

#pragma omp parallel for private(fX,i) reduction(+:fSum) el \_1 .
for (i=0;i<n;i++) : :
{ 1r 41

fX =fH * ((double)i + 0.5); 05t {05

fSum += f(fX); o ]
} -05 0 0.5 1 15
return fH * fSum;

}
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What is a Task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately

M Tasks are composed of

— code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...
... when reaching a parallel region = implicit tasks are created (per thread)
... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

p) OpenMP Tutorial
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OpenMIP

Tasking Execution Model

B Supports unstructured parallelism B Example (unstructured parallelism)

— unbounded loops #pragma omp parallel

#pragma omp master

while (elem !'= NULL) {
T #pragma omp task

} :
compute (elem) ;

elem = elem->next;

while ( <expr> ) {

- recursive functions

void myfunc( <args> )

{

.; myfunc( <newargs> ); ...;

}

B Several scenarios are possible:

—> single creator, multiple creators, nested tasks (tasks & WS)

B All threads in the team are candidates to execute tasks

3 OpenMP Tutorial
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OpenMP

OpenMP Tasking Idiom

B OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel master

- OpenMP version 5.0 introduced the parallel master construct

- With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[]) 1 int main(int argc, char* argv[])
2 { 2 {
3 [...] 3 [...]
4 #pragma omp parallel 4 #pragma omp parallel
5 { 5 {
6 #pragma omp master 6 #pragma omp single
7 { 7 {
9 start_task parallel execution(); 9 start_task parallel execution();
9 } 9 }
10 } 10 }
11 [...] 11 [ ]
12 } 12 }

OpenMP Tutorial
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OpenMP

Fibonacci Numbers (in a Stupid Way ©)

1 int main(int argc, 14 int fib(int n) {
2 char* argv[]) 15 if (n < 2) return n;
3 { 16 int x, y;
4 [...] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {
6 { 19 x = fib(n - 1);
7 #pragma omp master 20 }
8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [ ] 25 #pragma omp taskwait
13 } 26 return x+y;
27 }

B Only one thread enters fib() from main().
B That thread creates the two initial work tasks and starts the parallel recursion.
B The taskwait constructis required to wait for the result for x and y before the task can sum up.
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T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
Task Queue
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Programming OpenMP

Using OpenMP Compilers
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Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

B [ntel Classic and Next-gen Compilers
B AOCC, AOMP, ROCmCC

H IBM XL

B ... and many more

B See for a list

OpenMP Tutorial
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https://www.openmp.org/resources/openmp-compilers-tools/

OpenMIP

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp

—> clang: -fopenmp
—> Intel: -fopenmp or -qopenmp (classic) or —-fiopenmp (next-gen)
- AOCC, AOCL, ROCmCC: -fopenmp
- IBM XL: -gsmp=omp
B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time 0.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49
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Webinar Exercises

B We have implemented a series of small hands-on examples that you can use and play with.

- Download: git clone https://github.com/cterboven/OpenMP-tutorial-EUROfusion.git
—> Build: make
-~ You can then find the compiled code in the “bin” folder to run it

- We use the GCC compiler mostly, some examples require Intel's Math Kernel Library

B Each hands-on exercise has a folder “solution”

- It shows the OpenMP directive that we have added

—> You can use it to cheat ©, or to check if you came up with the same solution

12 OpenMP Tutorial
Members of the OpenMP Language Committee



	00-openmp-CT-welcome
	Programming OpenMP
	Slide 2 
	Slide 3 

	01-openmp-CT-overview
	Programming OpenMP
	History
	What is OpenMP?
	Slide 4 
	Slide 5 

	02-openmp-CT-parallel_region
	Programming OpenMP
	OpenMP‘s machine model
	The OpenMP Memory Model
	The OpenMP Execution Model
	Parallel Region and Structured Blocks
	Starting OpenMP Programs on Linux
	Slide 7 

	03-openmp-CT-worksharing
	Programming OpenMP
	For Worksharing
	Worksharing illustrated
	The Barrier Construct
	The Single Construct
	The Master Construct
	Slide 7 
	Influencing the For Loop Scheduling / 1
	Slide 9 
	Influencing the For Loop Scheduling / 3
	Synchronization Overview
	Synchronization: Critical Region

	04-openmp-CT-scoping
	Programming OpenMP
	Scoping Rules
	Privatization of Global/Static Variables
	Privatization of Global/Static Variables
	Back to our example
	Slide 6 
	The Reduction Clause
	Slide 8 
	Slide 9 
	Slide 10 

	05-openmp-MK-tasks&compilers
	Programming OpenMP
	Slide 2 
	Slide 3 
	Slide 4 
	Slide 5 
	Slide 6 
	Slide 7 
	Programming OpenMP
	Slide 9 
	Slide 10 
	Programming OpenMP
	Slide 12 


