OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Agenda (in total 5 webinars)

B Webinar 1: OpenMP Introduction
—->Welcome
- OpenMP Overview
—>Parallel Region
—->Worksharing
- Scoping
— Tasking (short introduction)
- Executing OpenMP programs
—-Homework assignments ©

B \Webinar 2: Tasking

B \Webinar 3: Optimization for NUMA and SIMD

B Webinar 4: Introduction to Offloading with OpenMP
B Webinar 5: Advanced Offloading Topics

p) OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Evaluation

OpenMIP

Programming OpenMP

An Overview Of OpenMP

Christian Terboven RWITH

Michael Klemm OpenMP

Members of the OpenMP Language Committee

OpenMIP

History

* De-facto standard for Shared-Memory Parallelization.

e 1997: OpenMP 1.0 for FORTRAN Open M P

 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++

e 2005: OpenMP 2.5 now includes
both programming languages.

 05/2008: OpenMP 3.0
 07/2011: OpenMP 3.1

* 07/2013: OpenMP 4.0
* 11/2015: OpenMP 4.5

« 11/2018: OpenMP 5.0
« 11/2020: OpenMP 5.1

http://www.OpenMP.org

OpenMP Tutorial
Members of the OpenMP Language Committee

What is OpenMP?

Parallel Region & Worksharing

Tasking

SIMD / Vectorization

Accelerator Programming

a Snake!

3 OpenMP Tutorial
Members of the OpenMP Language Committee

Get your C/C++ and Fortran Reference Guide!

Covers all of OpenMP 5.0!

OpenMP API 5.0

OpenMP 5.0 API Syntax Reference Guide
en The OpenMP* API is a portable, scalable
model that gives parallel programmers a

simple and flexible interface for developing
OPenMp.Org ,;rable parallel applications in C/C++ and
Functionality new/changed in Op.

v+ conten Fortran content
|} St oontent onsent [n.n.n] Sections in the 5.0 spec.

[n.nun] Sections in the 4.5 spec

Fortran. OpenMP i suitable for a wide range
of algorithms running on multicore nodes and
chips, NUMA systems, GPUs, and other such the compltir orclor rintind oysieme
devices attached to a CPU.

auto: The decisior i scheduling is delegated

runtime: The schedule and chunk size are taken from
color, and in Open the run-sched-vor ICV.
o Deprecated n the 5.0 spec i

monotonic: Each thread executes the chunks th

Directives and Constructs

ucceeding structured black. A Structured-block is an OpentP ¢

aMP drectve declare target may not a

variant directives
Metadirectives (23.4)

parallel construct

parallel (26125
team of OpenMP threads tha exscute the

va omp parallel [clause] |, [couse] .|
structured-biock
15omp paralle [ciouse] [, Jclause] .|

o) L
Spragma coup end metadvecthe it). sttt shre s
1Somp metadirective [clouse] | couse] Copyin (i x
v veducion (reduction e, reducton-dentfier
. i (raser close | spread)
eotor: i)
scalr-xpression)
(intege-expression)
default (shared | none)
W {/ parael : | scafor-logicak-expression)
ams (scolor-integer-expression)

num _te
defatit (shared | firstprivate | private | none)

omp end metadirective
clause:

‘when (context selector-specficotion: directive-vor

default (directive-voriant

declare varlan((235)

teams construct
teams 2)(z.107

pragma omp declare variant{yariont func-id) clouse
[¥pragma omp declare variant{uriont unc-10) luse]
L e pragma omp teams [clouse | Jlouse]
1Somp dediare variant (& | structured block
[base-proc-name: Jvoiant-proc-name) dause 1Somp teams [douse] [cluse]
ctured-block
I5omp end teams
dause
et) frsprvate i) shred
attsa b reduction (/defauit | reduction-dentfier
)
variant-proc-name s expression)
theasd, Bt (teger-vesson)
default{shared | noe
la-iteger-expression)
integer-expression)

wead_Bmit s
default(shared | nmpnm- | private | none)

‘match (context selector-specifcation)

he name of a funct
anguage dentifer

requires directive
requires s
w00 Worksharing constructs
semansumuu
Wpragma omp requies coue [use.. | Rrceiersiie orktarkig st i ok

wse ([1] cause].| excuted by the threadsin a tea

¥pragma omp sections [clouse]] clouse] .|
[t#tpragma omp section
structured-block

{#pragma omp section
structured-block]

c_default_mem WM!UM | acq_rel | relaxed)
dvr\amx allocators. ©
1)
I1Somp sections [clouse([,] clo
1Somg section/
Structured bock
1Somp section

structured-block

15omp end sections [nowait]

OpenMP Tutorial
Members of the OpenMP Language Committee

truct o a block t single entry at

PURE o ELEMENTALpr

of structured blocks that are to be distributed among and

itis assigned in increasing logical teration order

nonmonotonic: Chunks are assigned to threads
ny order and the behavior of an applicatio

tht depends on exaction order of the
pecified. It

clouse:
pﬂ\ale(“\'l frsprate i) md: lgnored when
lstprivate . lst) aSIMO cor '
reducti on(ductionm reducton-dentifer:st)
allocate {/alloc) wu w:M
nowait

" "
* simd_width

SIMD directives

simd 1293.1) (28

Applied 0.2 [00p to indicate that the oop can be
nsformed nto a SIMD loop.

single 2521273

| tpragma omp singe fclouse/ | jciouse .
| structured-block Woragma omp imd clase | one]]
1Somp single [cousef [clouse]..] for-loogs
structured block = ;

| 50mp end single fend_clousel | Jend_clouse] .]
clouse

ehate) prte ()

alocate |

copyprivate (st

nowat

end_clause:
‘copyprivate (ist), nowait

workshare [253) (2

i uton o colly
order (mr\mvmn(!
it

150mp end workshare fnowait]

wm the loop
Worksharing-loop construct
for / do 1292)27.1

fs that the ier ated oops will e
- VSudenvmdhmm.‘.‘, Iclouse] ..}
Apragma omp for [chuse] | Jcouse] .| do-loops
fordoops 15omp. mddn w"\dmuwm‘
Somp do [cousei |, Jcause] .| ¥oiAny ol th clesbet acceptec brom siexdof o
p end do nowait]
Tou declare simd (2933 252
private (ist), firstprivate (fist) toa @ subroutine to enable the
lastprivate (o501 fist) eation o ons that can process
e) SIMD instructionsfrom single
‘schedt kind|, chunk
mllap!!l) O'erd)]
allocate |)
‘order (concurrent)
reduction (euchon-modifer) reducton-dentfer: st
nowait
i
+ static erations are divided
chunk_size and sssigned to threads
ound-robin fashion in order of thread numbe

#pragma omp dedtare simd (clousef |, clouse
[pragma omp declare simd (¢!

Jfunction definiion or dedoras
15omp declare simd ([oroc aame)] cousef |, Jdouse]

en e
+ dynamic Exch thread executes a chunk of erai o rep))
umlom\l"'r‘ ment. MN
inbranch
notinbranch

+ guided: Each thread executes a chunk of Rerations
hunks remain
ch chunk

ve chunk smaller than the fast.

18 Openiip ARR

Directives and Constructs (continued)

distribute loop constructs
dlstnbute (29.43)(2108)
cifies e executed by the thread team

1Somp distribute (clouse [, [clause] .|
do-bops

15omp end distribute/

private (ist)

firstprivate (Jist)

Tastyrivate

collapse ()

dis_shedole 1, churk)

allocate (ol 4

ently using
pragma omp it simd < | douse]

lsompﬂhmhmeﬁmd el Jckouse]]
do-loops

clause: Any of the dauses accepted by distribute or simd

Disrlute Pavallel Worksharing-Loop

29.43)(2:10.10]

These constructs specify 3 loop that can be executed in
embers of mulipl

borrmaomp detibuteparlel o el e |

'$omo ukmhme paralleldo [dause] [, Jdouse] .]
(150mp end disrbute parall do)

Any ac ire disibute o parals
worksharing-loop directives with identical meanings
and restrictic

Distribute Parallel Worksharing-Loop SIMD
[2944] 2:10.11)

SIMD instructions in parallel by multiple threads that ar

members of multiple teams

Wragre omp dstbute parsleforsimd |
Iclousef |,
fordoops

15omp ditribute paallel do smd ciouse{ |, e

A\Somp(nddlinhlll parallel do simd)
clouse: Any aci the disrbute o pral
w wvm- s o

loop construct

15omploop [clause([, Jlouse]
dotoogs
[1Somp end loop]

bind (Binding)

lastprivate (ist)
reduction (/default
binding.

teams, parallel, thread

OpenMP API 5.0

scan directive

scan 95|
fies that scan computations update the fst kems on

loop-ossociated-diective
for-toop-headers

loop ossociated-dvectie

fend-oop-associated-directive |

" inclusive (is1), exclusive (st}
loopectie d
1 for simd, simd directive

- loop-associated-directive directves:

do simd (end do simd)
simd (end simd)

Tasking constructs

lask (2101) (291
et of the

pragma omp task clausel |, Jclouse]
structured-block

sk fclouse | Jouse] -]

dnpend{‘. end modfier,| dependencetpe

priorityl;
allocate(/alt
affinity (]
it & erator
ev de s of type omp_event_handie
defout (shared | nane)
[/ task : scolor-expression)
final [scolar-expression)
deuutpivat | istphate | shure | nove)
i(pression)
jardogicol mm»m)

tasklonp (2102 [292)

[150mp endasdoop]
shared (ist), private [/st)
Ssprvate i) Lot

)
grainsize (grain-size), num_tasks (num asis)
collpse o), plrky reriy vle)
, mergetle,nogro
shocts (o
i atoop. sorcxpression)
defautt (shared | none)
final (scalar-expr)
if ([taskloop :] scolar-logical-expression)
defautt private | firstprvate | shared | none)
final(scolor-ogical-expr) Comnd)

OMP1118.02-0MPS

OpenMIP

Recent Books About OpenMP OpenMIP

USING OPENMP-
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

OpenMP

Application Programming Interface
Specification Version 5.0

THE OPENMP
COMMON CORE

Making OpenMP Simple Again
Edited by Michael Klemm and Bronis R. de Supinski

d3lS LX3N IHL — dWNIAO0 DNISN A \
|
I

F¥0D NOWWOD dWN3IdO IHL

Ruud van der Pas, Eric Stotzer,
and Christian Terboven

Timothy G. Mattson, Yun (Helen) He,
and Alice E. Koniges

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.0 A book that covers all of the A new book about the OpenMP
specifications, 2019 OpenMP 4.5 features, 2017 Common Core, 2019

5 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Parallel Region
Christian Terboven L
Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

OpenMP‘s machine model

* OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

p) OpenMP Tutorial
Members of the OpenMP Language Committee

The OpenMP Memory Model

« All threads have access to private
memory

the same, globally shared
memory

« Data in private memory is
only accessible by the thread
owning this memory

accelerator

Shavee:...$ «=
Memory

private

* No other thread sees the private memory

change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application memory

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

The OpenMP Execution Model

. QpenMP programs start with Master Thread Serial Part
just one thread: The Master.
Parallel
 Worker threads are spawned Region
at Parallel Regions, together Worker

with the Master they form the Threads
Team of threads.

Serial Part

* In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

3

<IIIIIIIIIIIIIIIIIIIII

Parallel
Region

* Concept: Fork-Join.
e Allows for an incremental parallelization!

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.
C/C++ Fortran

fpragma omp parallel 'Somp parallel
{

... structured block
structured block

!'Somp end parallel

}

e Structured Block Specification of number of threads:
— Exactly one entry point at the top — Environment variable: OMP NUM THREADS=...
— Exactly one exit point at the bottom — Or:Vianum threads clause:
— Branching in or out is not allowed add num tireads (num) to the
— Terminating the program is allowed parallel construct
(abort / exit)

5 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

OpenMP Tutorial
Members of the OpenMP Language Committee

Demo OpenMP

Hello OpenMP World

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP
Programming OpenMP

Worksharing
Christian Terboven L
Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

For Worksharing

* If only the parallel construct is used, each thread executes the Structured Block.

* Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

OpenMP

C/C++
int 1i;
fpragma omp for

ali] = b[1]

for (1 = 0, 1 < 100;

it++)

+ c[i];

Fortran

INTEGER ::

!'Somp do

DO i = 0
ali]

END DO

1

;99
= b[1]

+ c[1i]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

* Loops often account for most of a program’s runtime!

p) OpenMP Tutorial
Members of the OpenMP Language Committee

Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0, 99
a(i) = b(i) + c(i) =l
end do
Thread 3
Thread 4

OpenMP Tutorial
Members of the OpenMP Language Committee

doi=0,24
a(i) = b(i) + c(i)
end do

doi= 25,49
a(i) = b(i) + c(i)
end do

doi=50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

OpenMIP

Memory

RN

B(0)
L]
L.]

B(99)
L.]

C(99)

OpenMIP

The Barrier Construct

e OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

#fpragma omp barrier

e All worksharing constructs contain an implicit barrier at the end

4 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

The Single Construct

C/C++ Fortran
#fpragma omp single [clause] !'Somp single [clause]
structured block sStructured block
'Somp end single

* The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

— Itis up to the runtime which thread that is.

e Useful for:
— 1/0
— Memory allocation and deallocation, etc. (in general: setup work)
— Implementation of the single-creator parallel-executor pattern as we will see later...

5 OpenMP Tutorial
Members of the OpenMP Language Committee

The Master Construct

OpenMP

C/C++

fpragma omp master[clause]
structured block

Fortran

!'Somp master[clause]
structured block
'Somp end master

The master construct specifies that the enclosed structured block is executed only by the master thread of

a team.

Note: The master construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
Members of the OpenMP Language Committee

Demo OpenMP

Vector Addition

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 1

e for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule (static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]) :Similar to dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

 Defaultis schedule (static).

OpenMP Tutorial
Members of the OpenMP Language Committee

Influencing the For Loop Scheduling / 2

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’
distributed in round-robin
fashion

Pros?
- No/low runtime overhead
Cons?

- No dynamic workload balancing

OpenMP Tutorial
Members of the OpenMP Language Committee

1,2

0,8

0,6

04

0,2

0,1 0,2

03

0,4

0,5

0,6

0,7

0,8

0,9

OpenMIP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one
— Default chunk size is 1
* Pros?
— Workload distribution
* Cons?
— Runtime Overhead

— Chunk size essential for performance
— No NUMA optimizations possible

10 OpenMP Tutorial
Members of the OpenMP Language Committee

. | OpenMIP
Synchronization Overview

Can all loops be parallelized with £or-constructs? No!

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.
BUT: This test alone is not sufficient:

C/C++
int i, int s = 0;

#fpragma omp parallel for
for (i = 0; i < 100; i++)
{

s = s + alil;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

11 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

fpragma omp critical (name)
{
structured block

}

* Do you think this solution scales well?

C/C++

int 1, s = 0;

#fpragma omp parallel for
for (i = 0; i < 100; i++)
{

#fpragma omp critical
{ s = s + aflil; }

}

12 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP
Scoping

Christian Terboven RWITH

Michael Klemm OpenMP

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Scoping Rules

* Managing the Data Environment is the challenge of OpenMP.

* Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs
— General default is shared for Parallel Region, firstprivate for Tasks.

— Loop control variables on for-constructs are private []

— Non-static variables local to Parallel Regions are private

— private: A new uninitialized instance is created for the task or each thread executing the construct
* firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to Master

— Static variables are shared

p) OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive

— Oneinstance is created for each thread
* Before the first parallel region is encountered
* |nstance exists until the program ends
* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword thread (GNU extension)

C/C++ Fortran
static int 1i; SAVE INTEGER :: 1
fpragma omp threadprivate (i) !'Somp threadprivate (i)

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
-

— Oneinstance is created for each thread '\Q
* Before the first parallel region is encountered 6?‘
* |nstance exists until the program ends ez
* Does not work (well) with nested Parallel Region "“‘

— Based on thread-local storage (TLS) 0& \

* TIsAlloc (Win32-Threads), pthread _key create (P%ehre%‘@%/\'/vord ___thread (GNU extension)

2 X7\
\
. 6\‘,‘\ “3(
C/C++ 0“ ‘0\,\ Fortran
static int i; \,o S SAVE INTEGER :: i
* ao (1) !'Somp threadprivate (i)

#pragma S‘
[J

?&z\\

4 OpenMP Tutorial
Members of the OpenMP Language Committee

Back to our example

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

C/C++

int 1, s = 0;

fpragma omp parallel for
for (i = 0; i < 100; i++)
{

#fpragma omp critical
{ s =s + ali]; }

}

It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do
#pragma omp for
for (i = 0; 1 < 99; 1i++) doi =25, 49
{ s=s+ali)
doi=0,99 end do
s=s+al(i) | =P _
s = s + alil; end do doi =50, 74
s=s+ali)
end do
}
doi=75,99
s=s+a(i)
} // end parallel end do

OpenMP Tutorial
Members of the OpenMP Language Committee

The Reduction Clause

OpenMP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.
— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int i, s = 0;

fpragma omp parallel for reduction(+:s)
for(i = 0; 1 < 99; i++)
{

s = s + ali]l;

}

— Possible reduction operators with initialization value:

+ (0),

(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial

*

(1), - (0), &

maXx

(~0), | (0),
(least number)

& &

Members of the OpenMP Language Committee

(1),

Example OpenMP

o

OpenMP Tutorial
Members of the OpenMP Language Committee

Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)
{
const doublefH =1.0/(double) n;
double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for (I=0;1<n;it++)
{
fX =fH* ((double)i + 0.5),
fSum += f(fX);
}

return fH * fSum:;

}

OpenMP Tutorial
Members of the OpenMP Language Committee

1
j 1+ x2
0
4F 14
35 / H...‘ 135
.
3t h, 13
h
25| ‘“».H lasg
~
-
al M. 12
15} \'1.5
1t 4
o5l los
0 0
05 05 1 15

Example: Pi (2/2) OpenMP

double f(double x))

{ 4
return (4.0 / (1.0 + x*x)); T = j

} 1+ x?

0

double CalcPi (int n)

{ 4F - ' ' 4
const doublefH =1.0/(double) n; 3_5/ T lse
double fSum = 0.0; ht
double fX; | h, T
inti; 25} "*-H.‘ J25

2t H".. {2

#pragma omp parallel for private(fX,i) reduction(+:fSum) el _1 .
for (i=0;i<n;i++) : :
{ 1r 41

fX =fH * ((double)i + 0.5); 05t {05

fSum += f(fX); o]
} -05 0 0.5 1 15
return fH * fSum;

}

10 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

OpenMP Tasking Introduction

Christian Terboven RWTH

Michael Klemm OpenMP

Members of the OpenMP Language Committee

What is a Task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately

M Tasks are composed of

— code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...
... when reaching a parallel region = implicit tasks are created (per thread)
... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

p) OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Tasking Execution Model

B Supports unstructured parallelism B Example (unstructured parallelism)

— unbounded loops #pragma omp parallel

#pragma omp master

while (elem !'= NULL) {
T #pragma omp task

} :
compute (elem) ;

elem = elem->next;

while (<expr>) {

- recursive functions

void myfunc(<args>)

{

.; myfunc(<newargs>); ...;

}

B Several scenarios are possible:

—> single creator, multiple creators, nested tasks (tasks & WS)

B All threads in the team are candidates to execute tasks

3 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

OpenMP Tasking Idiom

B OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel master

- OpenMP version 5.0 introduced the parallel master construct

- With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[]) 1 int main(int argc, char* argv[])
2 { 2 {
3 [...] 3 [...]
4 #pragma omp parallel 4 #pragma omp parallel
5 { 5 {
6 #pragma omp master 6 #pragma omp single
7 { 7 {
9 start_task parallel execution(); 9 start_task parallel execution();
9 } 9 }
10 } 10 }
11 [...] 11 []
12 } 12 }

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Fibonacci Numbers (in a Stupid Way ©)

1 int main(int argc, 14 int fib(int n) {
2 char* argv[]) 15 if (n < 2) return n;
3 { 16 int x, y;
4 [...] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {
6 { 19 x = fib(n - 1);
7 #pragma omp master 20 }
8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [] 25 #pragma omp taskwait
13 } 26 return x+y;
27 }

B Only one thread enters fib() from main().
B That thread creates the two initial work tasks and starts the parallel recursion.
B The taskwait constructis required to wait for the result for x and y before the task can sum up.

5 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks
Task Queue

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)
T1 and T2 execute tasks

from the queue
T1 and T2 create 4 new @
tasks

T1 - T4 execute tasks

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Using OpenMP Compilers

Christian Terboven RWTH

Michael Klemm OpenMP

Members of the OpenMP Language Committee

OpenMIP

Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

B [ntel Classic and Next-gen Compilers
B AOCC, AOMP, ROCmCC

H IBM XL

B ... and many more

B See for a list

OpenMP Tutorial
Members of the OpenMP Language Committee

https://www.openmp.org/resources/openmp-compilers-tools/

OpenMIP

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp

—> clang: -fopenmp
—> Intel: -fopenmp or -qopenmp (classic) or —-fiopenmp (next-gen)
- AOCC, AOCL, ROCmCC: -fopenmp
- IBM XL: -gsmp=omp
B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time 0.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMIP

Programming OpenMP

Hands-on Exercises

Christian Terboven RWTH

Michael Klemm OpenMP

11 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Webinar Exercises

B We have implemented a series of small hands-on examples that you can use and play with.

- Download: git clone https://github.com/cterboven/OpenMP-tutorial-EUROfusion.git
—> Build: make
-~ You can then find the compiled code in the “bin” folder to run it

- We use the GCC compiler mostly, some examples require Intel's Math Kernel Library

B Each hands-on exercise has a folder “solution”

- It shows the OpenMP directive that we have added

—> You can use it to cheat ©, or to check if you came up with the same solution

12 OpenMP Tutorial
Members of the OpenMP Language Committee

	00-openmp-CT-welcome
	Programming OpenMP
	Slide 2
	Slide 3

	01-openmp-CT-overview
	Programming OpenMP
	History
	What is OpenMP?
	Slide 4
	Slide 5

	02-openmp-CT-parallel_region
	Programming OpenMP
	OpenMP‘s machine model
	The OpenMP Memory Model
	The OpenMP Execution Model
	Parallel Region and Structured Blocks
	Starting OpenMP Programs on Linux
	Slide 7

	03-openmp-CT-worksharing
	Programming OpenMP
	For Worksharing
	Worksharing illustrated
	The Barrier Construct
	The Single Construct
	The Master Construct
	Slide 7
	Influencing the For Loop Scheduling / 1
	Slide 9
	Influencing the For Loop Scheduling / 3
	Synchronization Overview
	Synchronization: Critical Region

	04-openmp-CT-scoping
	Programming OpenMP
	Scoping Rules
	Privatization of Global/Static Variables
	Privatization of Global/Static Variables
	Back to our example
	Slide 6
	The Reduction Clause
	Slide 8
	Slide 9
	Slide 10

	05-openmp-MK-tasks&compilers
	Programming OpenMP
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Programming OpenMP
	Slide 9
	Slide 10
	Programming OpenMP
	Slide 12

