
OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm

OpenMP Tutorial

Members of the OpenMP Language Committee
2

◼Webinar 1: OpenMP Introduction

◼Webinar 2: Tasking

◼Webinar 3: Optimization for NUMA and SIMD
→Review of webinar 2 / homework assignments

→OpenMP and NUMA architectures

→Task Affinity

→SIMD

→User-defined reductions

→Misc. optimizations

→MPI and multi-threading

→Homework assignments ☺

◼Webinar 4: Introduction to Offloading with OpenMP

◼Webinar 5: Advanced Offloading Topics

Agenda (in total 5 webinars)

1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven
Michael Klemm

Review

2
OpenMP Tutorial

Members of the OpenMP Language Committee

Questions?

3
OpenMP Tutorial

Members of the OpenMP Language Committee

Example: Quick Sort

void quicksort(int * array, int first, int last){

int pivotElement;

if((last - first + 1) < 10000) {

serial_quicksort(array, first, last);

} else {

pivotElement = pivot(array,first,last);

#pragma omp task default(shared)

{

quicksort(array,first,pivotElement-1);

}

#pragma omp task default(shared)

{

quicksort(array,pivotElement+1,last);

}

#pragma omp taskwait

}

}

4
OpenMP Tutorial

Members of the OpenMP Language Committee

Example: matmul – taskloop Version

void matmul_tloop(float * C, float * A, float * B,

size_t n) {

#pragma omp parallel firstprivate(n)

#pragma omp single nowait

#pragma omp taskloop

for (size_t i = 0; i < n; ++i) {

for (size_t k = 0; k < n; ++k) {

for (size_t j = 0; j < n; ++j) {

C[i * n + j] += A[i * n + k]

* B[k * n + j];

}

}

}

}

5
OpenMP Tutorial

Members of the OpenMP Language Committee

Example: matmul – task Version

void matmul_task(float * C, float * A, float * B, size_t n) {

#pragma omp parallel firstprivate(n, bf)

#pragma omp master // masked w/ OpenMP API 5.1

{

// work on the blocks of the matrix

for (size_t ib = 0; ib < n; ib += bf)

for (size_t kb = 0; kb < n; kb += bf)

for (size_t jb = 0; jb < n; jb += bf) {

#pragma omp task firstprivate(ib, kb, jb) \

firstprivate(n, bf) \

depend(inout:C[ib * n + jb:bf]) \

depend(in:A[ib * n + kb:bf]) \

depend(in:B[kb * n + jb:bf])

{

// work on a single block

for (size_t i = ib; i < (ib + bf); ++i)

for (size_t k = kb; k < (kb + bf); ++k)

for (size_t j = jb; j < (jb + bf); ++j)

C[i * n + j] += A[i * n + k] * B[k * n + j];

} } } }

1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven

Michael Klemm

NUMA

2
OpenMP Tutorial

Members of the OpenMP Language Committee
2

OpenMP: Memory Access

3
OpenMP Tutorial

Members of the OpenMP Language Committee

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?

4
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

5
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Important aspect on cc-NUMA systems

→If not optimal, longer memory access times and hotspots

◼ Placement comes from the Operating System

→This is therefore Operating System dependent

◼Windows, Linux and Solaris all use the “First Touch” placement policy

by default

→May be possible to override default (check the docs)

About Data Distribution

6
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

7
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA

node that contains the core that executes the

thread that initializes the partition

double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

8
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Stream example on 2 socket sytem with Xeon X5675 processors, 12

OpenMP threads:

Serial vs. Parallel Initialization

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]

9
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Before you design a strategy for thread binding, you should have a basic

understanding of the system topology. Please use one of the following

options on a target machine:

→Intel MPI‘s cpuinfo tool

→ cpuinfo

→Delivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

→hwlocs‘ hwloc-ls tool

→ hwloc-ls

→Displays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

Get Info on the System Topology

10
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Selecting the „right“ binding strategy depends not only on the topology,

but also on application characteristics.

→Putting threads far apart, i.e., on different sockets

→May improve aggregated memory bandwidth available to application

→May improve the combined cache size available to your application

→May decrease performance of synchronization constructs

→Putting threads close together, i.e., on two adjacent cores that possibly share

some caches

→May improve performance of synchronization constructs

→May decrease the available memory bandwidth and cache size

Decide for Binding Strategy

11
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Define OpenMP Places

→set of OpenMP threads running on one or more processors

→can be defined by the user, i.e. OMP_PLACES=cores

◼ Define a set of OpenMP Thread Affinity Policies

→SPREAD: spread OpenMP threads evenly among the places,

partition the place list

→CLOSE: pack OpenMP threads near master thread

→MASTER: collocate OpenMP thread with master thread

◼ Goals

→user has a way to specify where to execute OpenMP threads

→ locality between OpenMP threads / less false sharing / memory bandwidth

Places + Binding Policies (1/2)

12
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Abstract names for OMP_PLACES:

→ threads: Each place corresponds to a single hardware thread on the target machine.

→ cores: Each place corresponds to a single core (having one or more hardware threads) on the target

machine.

→ sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target

machine.

→ ll_caches: Each place corresponds to a set of cores that share the last level cache.

→ numa_domains: Each place corresponds to a set of cores for which their closest memory is: the

same memory; and at a similar distance from the cores.

Places

p0 p1 p2 p3 p4 p5 p6 p7

13
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Example‘s Objective:

→separate cores for outer loop and near cores for inner loop

◼ Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)

→spread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores

#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

◼ Example

→initial

→spread 4

→close 4

Places + Binding Policies (2/2)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

14
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Assume the following machine:

→2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Parallel Region with two threads, one per socket

→OMP_PLACES=sockets

→#pragma omp parallel num_threads(2) proc_bind(spread)

More Examples (1/3)

p0 p1 p2 p3 p4 p5 p6 p7

15
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Assume the following machine:

◼ Parallel Region with four threads, one per core, but only on the first

socket

→OMP_PLACES=cores

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (2/3)

p0 p1 p2 p3 p4 p5 p6 p7

16
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Spread a nested loop first across two sockets, then among the cores

within each socket, only one thread per core

→OMP_PLACES=cores

→#pragma omp parallel num_threads(2) proc_bind(spread)

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (3/3)

17
OpenMP Tutorial

Members of the OpenMP Language Committee
17

Working with OpenMP Places

18
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ 1: Query information about binding and a single place of
all places with ids 0 … omp_get_num_places():

◼ omp_proc_bind_t omp_get_proc_bind(): returns the thread affinity policy

(omp_proc_bind_false, true, master, …)

◼ int omp_get_num_places(): returns the number of places

◼ int omp_get_place_num_procs(int place_num): returns the number of

processors in the given place

◼ void omp_get_place_proc_ids(int place_num, int* ids): returns the

ids of the processors in the given place

Places API (1/2) (just for reference)

19
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ 2: Query information about the place partition:

◼ int omp_get_place_num(): returns the place number of the place to which the

current thread is bound

◼ int omp_get_partition_num_places(): returns the number of places in the

current partition

◼ void omp_get_partition_place_nums(int* pns): returns the list of place

numbers corresponding to the places in the current partition

Places API (2/2) (just for reference)

20
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Simple routine printing the processor ids of the place the calling thread

is bound to:

Places API: Example (just for reference)

void print_binding_info() {

int my_place = omp_get_place_num();

int place_num_procs = omp_get_place_num_procs(my_place);

printf("Place consists of %d processors: ", place_num_procs);

int *place_processors = malloc(sizeof(int) * place_num_procs);

omp_get_place_proc_ids(my_place, place_processors)

for (int i = 0; i < place_num_procs - 1; i++) {

printf("%d ", place_processors[i]);

}

printf("\n");

free(place_processors);

}

21
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Set OMP_DISPLAY_AFFINITY=TRUE

→Instructs the runtime to display formatted affinity information

→Example output for two threads on two physical cores:

→Output can be formatted with OMP_AFFINITY_FORMAT env var or

corresponding routine

→Formatted affinity information can be printed with

omp_display_affinity(const char* format)

OpenMP 5.0 way to do this

nesting_level= 1, thread_num= 0, thread_affinity= 0,1

nesting_level= 1, thread_num= 1, thread_affinity= 2,3

22
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Example:

→Possible output:

Affinity format specification

t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001 0 0-1,16-17 host003

Affinity: 001 1 2-3,18-19 host003

23
OpenMP Tutorial

Members of the OpenMP Language Committee
23

A first summary

24
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Everything under control?

◼ In principle Yes, but only if

→threads can be bound explicitly,

→data can be placed well by first-touch, or can be migrated,

→you focus on a specific platform (= OS + arch) → no portability

◼What if the data access pattern changes over time?

◼What if you use more than one level of parallelism?

A first summary

25
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a

physical location of a memory page during the first page fault, when

the page is first „touched“, and put it close to the CPU causing the

page fault.

◼ Explicit Migration: Selected regions of memory (pages) are moved

from one NUMA node to another via explicit OS syscall.

◼ Automatic Migration: Limited support in current Linux systems.

→Not made for HPC and disabled on most HPC systems.

NUMA Strategies: Overview

26
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Explicit NUMA-aware memory allocation:

→By carefully touching data by the thread which later uses it

→By changing the default memory allocation strategy

→Linux: numactl command

→Windows: VirtualAllocExNuma() (limited functionality)

→By explicit migration of memory pages

→Linux: move_pages()

→Windows: no option

◼ Example: using numactl to distribute pages round-robin:

→ numactl –interleave=all ./a.out

User Control of Memory Affinity

27
OpenMP Tutorial

Members of the OpenMP Language Committee

Managing Memory Spaces

28
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Allocator := an OpenMP object that fulfills requests to allocate and

deallocate storage for program variables

◼OpenMP allocators are of type omp_allocator_handle_t

◼ Default allocator for Host

→via OMP_ALLOCATOR env. var. or corresponding API

◼OpenMP 5.0 supports a set of memory allocators

Memory Management

29
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Selection of a certain kind of memory

OpenMP Allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the
allocation

30
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ New clause on all constructs with data sharing clauses:

→ allocate([allocator:] list)

◼ Allocation:

→ omp_alloc(size_t size, omp_allocator_handle_t allocator)

◼ Deallocation:

→ omp_free(void *ptr, const omp_allocator_handle_t allocator)

→ allocator argument is optional

◼ allocate directive: standalone directive for allocation, or declaration of allocation

stmt.

Using OpenMP Allocators

31
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Allocator traits control the behavior of the allocator

OpenMP Allocator Traits / 1

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false
default: false

partition environment, nearest, blocked, interleaved
default: environment

32
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ fallback: describes the behavior if the allocation cannot be fulfilled

→default_mem_fb: return system’s default memory

→Other options: null, abort, or use different allocator

◼ pinned: request pinned memory, i.e. for GPUs

OpenMP Allocator Traits / 2

33
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ partition: partitioning of allocated memory of physical storage

resources (think of NUMA)

→environment: use system’s default behavior

→nearest: most closest memory

→blocked: partitioning into approx. same size with at most one block per

storage resource

→interleaved: partitioning in a round-robin fashion across the storage

resources

OpenMP Allocator Traits / 3

34
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Construction of allocators with traits via

→omp_allocator_handle_t omp_init_allocator(

omp_memspace_handle_t memspace,

int ntraits, const omp_alloctrait_t traits[]);

→Selection of memory space mandatory

→Empty traits set: use defaults

◼ Allocators have to be destroyed with *_destroy_*

◼ Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

OpenMP Allocator Traits / 4

35
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Storage resources with explicit support in OpenMP:

→Exact selection of memory space is implementation-def.

→Pre-defined allocators available to work with these

OpenMP Memory Spaces

omp_default_mem_space System’s default memory resource

omp_large_cap_mem_space Storage with larg(er) capacity

omp_const_mem_space Storage optimized for variables with constant value

omp_high_bw_mem_space Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency

1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven

Michael Klemm

NUMA

2
OpenMP Tutorial

Members of the OpenMP Language Committee

Improving Tasking Performance:

Task Affinity

3
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Techniques for process binding & thread pinning available

→OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

→OS functionality: taskset -c

OpenMP Tasking:

◼ In general: Tasks may be executed by any thread in the team

→Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:

◼ affinity clause to express affinity to data

Motivation

4
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ New clause: #pragma omp task affinity (list)

→Hint to the runtime to execute task closely to physical data location

→Clear separation between dependencies and affinity

◼ Expectations:

→Improve data locality / reduce remote memory accesses

→Decrease runtime variability

◼ Still expect task stealing

→In particular, if a thread is under-utilized

affinity clause

5
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Excerpt from task-parallel STREAM

→Loops have been blocked manually (see tmp_idx_start/end)

→Assumption: initialization and computation have same blocking and same affinity

Code Example

1 #pragma omp task \
2 shared(a, b, c, scalar) \
3 firstprivate(tmp_idx_start, tmp_idx_end) \
4 affinity(a[tmp_idx_start])
5 {
6 int i;
7 for(i = tmp_idx_start; i <= tmp_idx_end; i++)
8 a[i] = b[i] + scalar * c[i];
9 }

6
OpenMP Tutorial

Members of the OpenMP Language Committee

Selected LLVM implementation details

Encounter task
region …

Task with
data

affinity?

Push to local
queue

Location
for data

reference in
map?

Identify NUMA
domain where
data is stored

Select thread
pinned to

NUMA domain

Save
{reference,

location} in map

Push task into
other threads

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias
S. Müller. Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime.
Proceedings of the 14th International
Workshop on OpenMP, IWOMP 2018.
September 26-28, 2018, Barcelona,

Spain.

7
OpenMP Tutorial

Members of the OpenMP Language Committee

Evaluation
Program runtime
Median of 10 runs

Distribution of single
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedup
of 4.3 X

8
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Requirement for this feature: thread affinity enabled

◼ The affinity clause helps, if

→tasks access data heavily

→single task creator scenario, or task not created with data affinity

→high load imbalance among the tasks

◼ Different from thread binding: task stealing is absolutely allowed

Summary

SIMD

Michael Klemm
1

Programming OpenMP

Christian Terboven

Michael Klemm

SIMD

SIMD

Michael Klemm
2

◼Width of SIMD registers has been growing in the past:

SIMD on x86_64

SSE

AVX

AVX-512

128 bit

256 bit

512 bit

2 x DP

4 x SP

4 x DP

8 x SP

8 x DP

16 x SP

SIMD

Michael Klemm
3

◼ SIMD instructions become more powerful

◼One example are the Intel® Advanced Vector Extensions 512

More Powerful SIMD Units

vaddpd dest, source1, source2

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest

512 bit

SIMD

Michael Klemm
4

◼ SIMD instructions become more powerful

◼One example are the Intel® Advanced Vector Extensions 512

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7
+c7

a6*b6
+c6

a5*b5
+c5

a4 *b4
+c4

a3*b3
+c3

a2*b2
+c2

a1*b1
+c1

a0*b0
+c0

*

=

source1

source2

dest

c7 c6 c5 c4 c3 c2 c1 c0 source3

+

vfmadd213pd source1, source2, source3

SIMD

Michael Klemm
5

◼ SIMD instructions become more powerful

◼One example are the Intel® Advanced Vector Extensions 512

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

1 0 1 0 0 1 0 1 mask

vaddpd dest{k1}, source2, source3

SIMD

Michael Klemm
6

◼ SIMD instructions become more powerful

◼One example are the Intel® Advanced Vector Extensions 512

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

swizzle

move

vmovapd dest, source{dacb}

SIMD

Michael Klemm
7

◼ Compilers offer auto-vectorization as an optimization pass

→Usually part of the general loop optimization passes

→Code analysis detects code properties that inhibit SIMD vectorization

→Heuristics determine if SIMD execution might be beneficial

→If all goes well, the compiler will generate SIMD instructions

◼ Example: clang/LLVM

→-fvectorize

→-mprefer-vector-width=<width>

Auto-vectorization

?

SIMD

Michael Klemm
8

◼ Data dependencies

◼Other potential reasons
→Alignment

→Function calls in loop block

→Complex control flow / conditional branches

→Loop not “countable”
→e.g., upper bound not a runtime constant

→Mixed data types

→Non-unit stride between elements

→Loop body too complex (register pressure)

→Vectorization seems inefficient

◼Many more … but less likely to occur

Why Auto-vectorizers Fail

SIMD

Michael Klemm
9

◼ Suppose two statements S1 and S2

◼ S2 depends on S1, iff S1 must execute before S2

→Control-flow dependence

→Data dependence

→Dependencies can be carried over between loop iterations

◼ Important flavors of data dependencies
FLOW ANTI

s1: a = 40 b = 40

b = 21 s1:a = b + 1

s2: c = a + 2 s2:b = 21

Data Dependencies

SIMD

Michael Klemm
10

◼ Dependencies may occur across loop iterations

→Loop-carried dependency

◼ The following code contains such a dependency:

◼ Some iterations of the loop have to

complete before the next iteration can run

→Simple trick: Can you reverse the loop w/o getting wrong results?

Loop-Carried Dependencies

void lcd_ex(float* a, float* b, size_t n, float c1, float c2)

{

size_t i;

for (i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];

}

}
Loop-carried dependency for a[i] and

a[i+17]; distance is 17.

SIMD

Michael Klemm
11

◼ Can we parallelize or vectorize the loop?

→Parallelization: no

(except for very specific loop schedules)

→Vectorization: yes

(iff vector length is shorter than any distance of any dependency)

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
for (int i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];
} }

Thread 1 Thread 2

SIMD

Michael Klemm
12

◼ “Loop not Countable” plus “Assumed Dependencies”

Example: Loop not Countable

typedef struct {

float* data;

size_t size;

} vec_t;

void vec_eltwise_product(vec_t* a, vec_t* b, vec_t* c) {

size_t i;

for (i = 0; i < a->size; i++) {

c->data[i] = a->data[i] * b->data[i];

}

}

SIMD

Michael Klemm
13

◼ Support required vendor-specific extensions

→Programming models (e.g., Intel® Cilk Plus)

→Compiler pragmas (e.g., #pragma vector)

→Low-level constructs (e.g., _mm_add_pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;

}

In a Time Before OpenMP 4.0

You need to trust
your compiler to do

the “right” thing.

SIMD

Michael Klemm
14

◼ Vectorize a loop nest

→Cut loop into chunks that fit a SIMD vector register

→No parallelization of the loop body

◼ Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…]

for-loops

◼ Syntax (Fortran)
!$omp simd [clause[[,] clause],…]

do-loops

[!$omp end simd]

SIMD Loop Construct

SIMD

Michael Klemm
15

Example

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

SIMD

Michael Klemm
16

◼ private(var-list):

Uninitialized vectors for variables in var-list

◼ firstprivate(var-list):

Initialized vectors for variables in var-list

◼ reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the end of the construct

Data Sharing Clauses

42x: ? ? ? ?

42x: 42 42 42 42

42x:12 5 8 17

SIMD

Michael Klemm
17

◼ safelen (length)

→Maximum number of iterations that can run concurrently without breaking a

dependence

→In practice, maximum vector length

◼ linear (list[:linear-step])

→The variable’s value is in relationship with the iteration number

→xi = xorig + i * linear-step

◼ aligned (list[:alignment])

→Specifies that the list items have a given alignment

→Default is alignment for the architecture

◼ collapse (n)

SIMD Loop Clauses

SIMD

Michael Klemm
18

◼ Parallelize and vectorize a loop nest

→Distribute a loop’s iteration space across a thread team

→Subdivide loop chunks to fit a SIMD vector register

◼ Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…]

for-loops

◼ Syntax (Fortran)
!$omp do simd [clause[[,] clause],…]

do-loops

[!$omp end do simd [nowait]]

SIMD Worksharing Construct

SIMD

Michael Klemm
19

Example

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

Remainder Loop Peel Loop

SIMD

Michael Klemm
20

◼ You should choose chunk sizes that are multiples of the SIMD length

→ Remainder loops are not triggered

→ Likely better performance

◼ In the above example …

→ and AVX2, the code will only execute the remainder loop!

→ and SSE, the code will have one iteration in the SIMD loop plus one in the remainder loop!

Be Careful What You Wish For…

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \

schedule(static, 5)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

SIMD

Michael Klemm
21

◼ Chooses chunk sizes that are multiples of the SIMD length

→First and last chunk may be slightly different to fix alignment and to handle

loops that are not exact multiples of SIMD width

→Remainder loops are not triggered

→Likely better performance

OpenMP 4.5 Simplifies SIMD Chunks

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \

schedule(simd: static, 5)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

SIMD

Michael Klemm
22

SIMD Function Vectorization

float min(float a, float b) {

return a < b ? a : b;

}

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD

Michael Klemm
23

◼ Declare one or more functions to be compiled for calls from a SIMD-

parallel loop

◼ Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definition-or-declaration

◼ Syntax (Fortran):

!$omp declare simd (proc-name-list)

SIMD Function Vectorization

SIMD

Michael Klemm
24

#pragma omp declare simd

float min(float a, float b) {

return a < b ? a : b;

}

#pragma omp declare simd

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD Function Vectorization

_ZGVZN16vv_min(%zmm0, %zmm1):

vminps %zmm1, %zmm0, %zmm0

ret

_ZGVZN16vv_distsq(%zmm0, %zmm1):

vsubps %zmm0, %zmm1, %zmm2

vmulps %zmm2, %zmm2, %zmm0

ret

vmovups (%r14,%r12,4), %zmm0

vmovups (%r13,%r12,4), %zmm1

call _ZGVZN16vv_distsq

vmovups (%rbx,%r12,4), %zmm1

call _ZGVZN16vv_min

SIMD

Michael Klemm
25

◼ simdlen (length)

→ generate function to support a given vector length

◼ uniform (argument-list)

→ argument has a constant value between the iterations of a given loop

◼ inbranch

→ function always called from inside an if statement

◼ notinbranch

→ function never called from inside an if statement

◼ linear (argument-list[:linear-step])

◼ aligned (argument-list[:alignment])

SIMD Function Vectorization

SIMD

Michael Klemm
26

inbranch & notinbranch

#pragma omp declare simd inbranch

float do_stuff(float x) {

/* do something */

return x * 2.0;

}

void example() {

#pragma omp simd

for (int i = 0; i < N; i++)

if (a[i] < 0.0)

b[i] = do_stuff(a[i]);

}

vec8 do_stuff_v(vec8 x, mask m) {

/* do something */

vmulpd x{m}, 2.0, tmp

return tmp;

}

for (int i = 0; i < N; i+=8) {

vcmp_lt &a[i], 0.0, mask

b[i] = do_stuff_v(&a[i], mask);

}

SIMD

Michael Klemm
27

M.Klemm, A.Duran, X.Tian, H.Saito, D.Caballero, and X.Martorell. Extending OpenMP with Vector Constructs for Modern

Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

SIMD Constructs & Performance

3.66x

2.04x
2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume Rendering BlackScholes Fast Walsh Perlin Noise SGpp

re
la

ti
ve

 s
p

e
e

d
-u

p
(h

ig
h

e
r

is
 b

e
tt

e
r)

ICC auto-vec

ICC SIMD directive

1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven
Michael Klemm

OpenMP and MPI

2
OpenMP Tutorial

Members of the OpenMP Language Committee

Motivation

3
OpenMP Tutorial

Members of the OpenMP Language Committee

◼ Increasing number of cores per node

Motivation for hybrid programming

4
OpenMP Tutorial

Members of the OpenMP Language Committee

• (Hierarchical) mixing of different programming paradigms

Hybrid programming

MPI

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

CUDA / OpenMP

GPGPU

OpenMP

0

5 6 7 8 9

1 2 3 4

Shared memory

CUDA / OpenMP

GPGPU

5
OpenMP Tutorial

Members of the OpenMP Language Committee

MPI and OpenMP

6
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI needs special initialization in a threaded environment

• Use MPI_Init_thread to communicate thread support level

• Four levels of threading support

• MPI_THREAD_MULTIPLE may incur significant overhead inside an MPI implementation

MPI – threads interaction

Level identifier Description

MPI_THREAD_SINGLE Only one thread may execute

MPI_THREAD_FUNNELED Only the main thread may make

MPI calls

MPI_THREAD_SERIALIZED Any one thread may make MPI

calls at a time

MPI_THREAD_MULTIPLE Multiple threads may call MPI

concurrently with no restrictions

H
ig

h
e
r

le
v
e
ls

7
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_SINGLE

• Only one thread per MPI rank

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

8
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_FUNNELED

• Only one thread communicates

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

MPI_Init

MPI_Recv

MPI_Send

MPI_Finalize

MPI_Barrier

9
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_SERIALIZED

• Only one thread communicates at a time

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send

MPI_Recv

MPI_Finalize

MPI_Barrier

MPI_Init

MPI_Recv

MPI_Send

MPI_Finalize

MPI_Barrier

10
OpenMP Tutorial

Members of the OpenMP Language Committee

• MPI_THREAD_MULTIPLE

• All threads communicate concurrently without synchronization

MPI – Threading support levels

MPI Communication

Thread Synchronization

MPI_Init

MPI_Send
MPI_Recv

MPI_Finalize

MPI_Send
MPI_RecvMPI_Send

MPI_Recv
MPI_Send

MPI_RecvMPI_Send
MPI_Recv

MPI_Send
MPI_Recv

MPI_Init

MPI_Recv
MPI_Send

MPI_Finalize

MPI_Recv
MPI_SendMPI_Recv

MPI_Send
MPI_Recv

MPI_SendMPI_Recv
MPI_Send

MPI_Recv
MPI_Send

	00-openmp-CT-welcome
	Slide 1
	Slide 2

	01-openmp-MK-review
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	02-openmp-CT-numa
	Programming OpenMP
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

	03-openmp-CT-task-affinity
	Programming OpenMP
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	04-openmp-MK-simd
	Programming OpenMP
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

	05-openmp-CT-hybrid
	Slide 1
	Slide 2
	Slide 3
	Hybrid programming
	Slide 5
	MPI – threads interaction
	MPI – Threading support levels
	MPI – Threading support levels
	MPI – Threading support levels
	MPI – Threading support levels

