
1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven
Michael Klemm

Introduction to GPU Offloading

2
OpenMP Tutorial

Members of the OpenMP Language Committee

Introduction to
OpenMP Offload Features

Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
// left out initialization
double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp parallel for firstprivate(a)
for (int i = 0; i < SZ; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

Timing code (not needed, just to have
a bit more code to show ☺)

Timing code (not needed, just to have
a bit more code to show ☺)

This is the code we want to execute on a
target device (i.e., GPU)

Don’t do this at home!
Use a BLAS library for this!

2

Device Model

◼As of version 4.0 the OpenMP API supports accelerators/coprocessors

◼Device model:
▪ One host for “traditional” multi-threading

▪ Multiple accelerators/coprocessors of the same kind for offloading

Accelerators
Host

3

!$omp target &
!$omp map(alloc:A) &
!$omp map(to:A) &
!$omp map(from:A) &

call compute(A)
!$omp end target

OpenMP Execution Model for Devices

▪ Offload region and its data environment are bound to the lexical scope of the construct
▪ Data environment is created at the opening curly brace

▪ Data environment is automatically destroyed at the closing curly brace

▪ Data transfers (if needed) are done at the curly braces, too:
▪ Upload data from the host to the target device at the opening curly brace.

▪ Download data from the target device at the closing curly brace.

Host memory Device mem.

A:

A:

0xabcd

0xef12

OpenMP for Devices - Constructs

◼ Transfer control and data from the host to the device

◼ Syntax (C/C++)
#pragma omp target [clause[[,] clause],…]
structured-block

◼ Syntax (Fortran)
!$omp target [clause[[,] clause],…]
structured-block
!$omp end target

◼ Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] list)
if(scalar-expr)

5

Example: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp target
for (int i = 0; i < SZ; i++) {

y[i] = a * x[i] + y[i];
}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}
h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:SZ]
y[0:SZ]

x[0:SZ]
y[0:SZ]

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

All accessed arrays are copied from
host to device and back

Copying x back is not necessary: it
was not changed.

The compiler identifies variables that are
used in the target region.

“map(tofrom:y[0:SZ])”

Presence check: only transfer
if not yet allocated on the

device.

6

Example: saxpy

subroutine saxpy(a, x, y, n)
use iso_fortran_env
integer :: n, i
real(kind=real32) :: a
real(kind=real32), dimension(n) :: x
real(kind=real32), dimension(n) :: y

!$omp target
do i=1,n

y(i) = a * x(i) + y(i)
end do

!$omp end target
end subroutine

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x(1:n)
y(1:n)

x(1:n)
y(1:n)

All accessed arrays are copied from
host to device and back

Copying x back is not necessary: it
was not changed.

The compiler identifies variables that are
used in the target region.

“map(tofrom:y(1:n))”
Presence check: only transfer

if not yet allocated on the
device.

flang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
7

Example: saxpy

void saxpy() {
double a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp target map(to:x[0:SZ]) \
map(tofrom:y[0:SZ])

for (int i = 0; i < SZ; i++) {
y[i] = a * x[i] + y[i];

}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:SZ]
y[0:SZ]

y[0:SZ]

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
8

Example: saxpy

void saxpy(float a, float* x, float* y,
int sz) {

double t = 0.0;
double tb, te;
tb = omp_get_wtime();

#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[0:sz])

for (int i = 0; i < sz; i++) {
y[i] = a * x[i] + y[i];

}
te = omp_get_wtime();
t = te - tb;
printf("Time of kernel: %lf\n", t);

}

h
o
s
t

ta
rg
e
t

h
o
s
t

a
x[0:sz]
y[0:sz]

y[0:sz]

The compiler cannot determine the size
of memory behind the pointer.

Programmers have to help the compiler
with the size of the data transfer needed.

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
9

Creating Parallelism on the Target Device

◼The target construct transfers the control flow to the target device
▪ Transfer of control is sequential and synchronous

▪ This is intentional!

◼OpenMP separates offload and parallelism
▪ Programmers need to explicitly create parallel regions on the target device

▪ In theory, this can be combined with any OpenMP construct

▪ In practice, there is only a useful subset of OpenMP features for a target device such
as a GPU, e.g., no I/O, limited use of base language features.

10

Example: saxpy

void saxpy(float a, float* x, float* y,
int sz) {

#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[0:sz])

#pragma omp parallel for simd
for (int i = 0; i < sz; i++) {

y[i] = a * x[i] + y[i];
}

}

h
o
s
t

ta
rg
e
t

h
o
s
t

Create a team of threads to execute the loop in
parallel using SIMD instructions.

GPUs are multi-level devices:
SIMD, threads, thread blocks

clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908
11

1
OpenMP Tutorial

Members of the OpenMP Language Committee

Programming OpenMP

Christian Terboven
Michael Klemm

GPU: expressing parallelism

2
OpenMP Tutorial

Members of the OpenMP Language Committee

teams and distribute constructs

Many slides are taken from the lecture High-Performance Computing at RWTH Aachen University

Authors include: Sandra Wienke, Julian Miller

3
OpenMP Tutorial

Members of the OpenMP Language Committee

• League:
the set of threads teams created by a teams construct

• Contention group:
threads of a team in a league and their descendant threads

Terminology

device

Team Team

...

4
OpenMP Tutorial

Members of the OpenMP Language Committee

The teams construct creates a league of thread teams

• The master thread of each team executes the teams region

• The number of teams is specified by the num_teams clause

• Each team executes with thread_limit threads

• Threads in different teams cannot synchronize with each other

teams Construct

target device

Team Team

...

host device

Team Team

...

5.0

Only special OpenMP constructs or routines can be strictly nested inside a teams
construct:

• distribute [simd], distribute [parallel] worksharing-loop [SIMD]

• parallel regions (parallel for/do, parallel sections)

• omp_get_num_teams() and omp_get_team_num()

5
OpenMP Tutorial

Members of the OpenMP Language Committee

• work sharing among the teams regions

• Distribute the iterations of the associated loops across the master threads of each team executing the
region

• Strictly nested inside a teams region

• No implicit barrier at the end of the construct

• dist_schedule(kind[, chunk_size])

• The scheduling kind must be static

• Chunks are distributed in round-robin fashion of chunks with size chunk_size

• If no chunk size specified, chunks are of (almost) equal size; each team receives at most one chunk

distribute Construct

6
OpenMP Tutorial

Members of the OpenMP Language Committee

Example DAXPY: How to Port to GPU?

CPU GPU

5000 cores

How to port

DAXPY to a GPU?

void daxpy(int n, double a, double *x, double *y) {

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {

static int n = 100000000; static double a = 2.0;

double *x = (double *) malloc(n * sizeof(double));

double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y

for(int i = 0; i < n; ++i){

x[i] = 1.0;

y[i] = 2.0;

}

daxpy(n, a, x, y); // Invoke daxpy kernel

// Check if all values are 4.0

free(x); free(y);

return 0;

}

20 cores

7
OpenMP Tutorial

Members of the OpenMP Language Committee

• Offload kernel code
• target: offload work

• teams, parallel: create in parallely running threads

• distribute, do, for, simd: worksharing across parallel units

• Worksharing
• for: offload work

• collapse: collapse two or more nested loops to increase parallelism

Kernel Directives

8
OpenMP Tutorial

Members of the OpenMP Language Committee

clang -fopenmp -Xopenmp-target -fopenmp-targets=nvptx64-nvidia-cuda -march=sm_70

--cuda-path=$CUDA_TOOLKIT_ROOT_DIR daxpy.c

• clang A recent clang compiler with OpenMP target support

• -fopenmp Enables general OpenMP support

• -Xopenmp-target Enables OpenMP target support

• -fopenmp-targets=nvptx64-nvidia-cuda Specifies the target architecture → here: NVIDIA
GPUs

• -march=sm_70 Optional. Specifies the target compute architecture

• --cuda-path=$CUDA_TOOLKIT_ROOT_DIR Optional. Specifies the CUDA path

Compilation

9
OpenMP Tutorial

Members of the OpenMP Language Committee

void daxpy(int n, double a, double *x, double *y) {

#pragma omp target

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {

static int n = 100000000; static double a = 2.0;

double *x = (double *) malloc(n * sizeof(double));

double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y

for(int i = 0; i < n; ++i){

x[i] = 1.0;

y[i] = 2.0;

}

daxpy(n, a, x, y); // Invoke daxpy kernel

// Check if all values are 4.0

free(x); free(y);

return 0;

}

Example: DAXPY

Output:

$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c

$ a.out

Libomptarget fatal error 1: failure of target

construct while offloading is mandatory

10
OpenMP Tutorial

Members of the OpenMP Language Committee

• No compiler error but cryptic runtime error

• NVIDIA Profiler

• Cuda-memcheck

Example DAXPY: Debugging

$ cuda-memcheck daxpy.exe

========= CUDA-MEMCHECK

========= Invalid __global__ read of size 8

========= at 0x00000d10 in __omp_offloading_4b_f850d140_daxpy_l3

========= by thread (32,0,0) in block (0,0,0)

========= Address 0x00000000 is out of bounds

$ nvprof daxpy.exe

==40419== NVPROF is profiling process 40419, command: daxpy.exe

==40419== Profiling application: daxpy.exe

==40419== Profiling result:

No kernels were profiled.

==40419== API calls:

No API activities were profiled.

11
OpenMP Tutorial

Members of the OpenMP Language Committee

Example DAXPY: Data Management

void daxpy(int n, double a, double *x, double *y) {

#pragma omp target map(tofrom:y[0:n]) map(to:a,x[0:n])

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {

static int n = 100000000; static double a = 2.0;

double *x = (double *) malloc(n * sizeof(double));

double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y

for(int i = 0; i < n; ++i){

x[i] = 1.0;

y[i] = 2.0;

}

daxpy(n, a, x, y); // Invoke daxpy kernel

// Check if all values are 4.0

free(x); free(y);

return 0;

}

For comparison:

~0.12s on a

single CPU core

Output:

$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c

$ a.out

Max error: 0.00000

Total runtime: 102.50s

12
OpenMP Tutorial

Members of the OpenMP Language Committee

Mapping to Hardware

• Each thread is executed

by a core

Thread

Core

13
OpenMP Tutorial

Members of the OpenMP Language Committee

Example DAXPY: Thread Parallelism

void daxpy(int n, double a, double *x, double *y) {

#pragma omp target parallel for map(tofrom:y[0:n]) map(to:a,x[0:n])

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {

static int n = 100000000; static double a = 2.0;

double *x = (double *) malloc(n * sizeof(double));

double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y

for(int i = 0; i < n; ++i){

x[i] = 1.0;

y[i] = 2.0;

}

daxpy(n, a, x, y); // Invoke daxpy kernel

// Check if all values are 4.0

free(x); free(y);

return 0;

}

Output:

$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c

$ a.out

Max error: 0.00000

Total runtime: 9.65s

14
OpenMP Tutorial

Members of the OpenMP Language Committee

Mapping to Hardware

• Each thread is executed

by a core

• Each block is executed on

a SM

• Several concurrent blocks

can reside on a SM

depending on shared

resources

Block

Thread

Multiprocessor (SM)

Core

registers

instruction cache

hardware/ software cache

15
OpenMP Tutorial

Members of the OpenMP Language Committee

Example DAXPY: Thread Parallelism

void daxpy(int n, double a, double *x, double *y) {

#pragma omp target teams distribute parallel for map(tofrom:y[0:n]) map(to:a,x[0:n])

for (int i = 0; i < n; ++i)

y[i] = a * x[i] + y[i];

}

int main(int argc, const char* argv[]) {

static int n = 100000000; static double a = 2.0;

double *x = (double *) malloc(n * sizeof(double));

double *y = (double *) malloc(n * sizeof(double));

// Initialize x, y

for(int i = 0; i < n; ++i){

x[i] = 1.0;

y[i] = 2.0;

}

daxpy(n, a, x, y); // Invoke daxpy kernel

// Check if all values are 4.0

free(x); free(y);

return 0;

}

Output:

$ $CC $FLAGS_OFFLOAD_OPENMP daxpy.c

$ a.out

Max error: 0.00000

Total runtime: 0.80s

16
OpenMP Tutorial

Members of the OpenMP Language Committee

Mapping to Hardware

• Each thread is executed

by a core

• Each block is executed on

a SM

• Several concurrent blocks

can reside on a SM

depending on shared

resources

• Each kernel is executed

on a device

Grid (Kernel)

Block

Thread

Multiprocessor (SM)

Device

Core

registers

instruction cache

hardware/ software cache

17
OpenMP Tutorial

Members of the OpenMP Language Committee

• Syntax (C/C++):
#pragma omp teams [clause[[,] clause]…]

structured-block

• Syntax (Fortran):
!$omp teams [clause[[,] clause]…]

structured-block

• Clauses
num_teams(integer-expression)
thread_limit(integer-expression)
default(shared | none) OR
default(shared|private|firstprivate|none)
private(list)
firstprivate(list)
shared(list)
reduction([default,]reduction-identifier : list)
allocate([allocator:]list)

teams Construct

5.0

18
OpenMP Tutorial

Members of the OpenMP Language Committee

• Syntax (C/C++):

#pragma omp distribute [clause[[,] clause]…]

for-loops

• Syntax (Fortran):

!$omp distribute [clause[[,] clause]…]

do-loops

• Clauses

private(list)

firstprivate(list)

lastprivate(list)

collapse(n)

dist_schedule(kind[, chunk_size])

allocate([allocator:]list)

distribute Construct

5.0

1
OpenMP Tutorial

Members of the OpenMP Language Committee

loop constructs

2
OpenMP Tutorial

Members of the OpenMP Language Committee

• Sometimes, it might be reasonable to shift some burden to the compiler + runtime

− Discussion: prescriptive vs. descriptive OpenMP

− OpenACC decided to go the other way

• But: OpenMP has to maintain backwards compatibility

• Loop construct: (IMHO) the first step to introduce descriptivity in OpenMP
• loop: specifies that the iterations may be executed concurrently

⚫ Enables (= permits) the compiler to generated threaded / accelerated code

Motivation

3
OpenMP Tutorial

Members of the OpenMP Language Committee

• Syntax (C/C++):

#pragma omp loop [clause[[,] clause]…]

for-loops

• Syntax (Fortran):

!$omp teams [clause[[,] clause]…]

do-loops

• Clauses

bind: either teams, parallel or thread: determines parallel execution entity
collapse(n): explained above
ordered(concurrent): (for future extensions: concurrent is currently def.)
private(list): explained above
firstprivate(list): explained above
reduction([default,]reduction-identifier:list): explained above

loop construct

OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven
Michael Klemm

Hands-on Exercises: Stream and Jacobi

OpenMP Tutorial

Members of the OpenMP Language Committee
2

The first hands-on is to port the infamous STREAM benchmark to GPU.

The code already contains function that have “GPU” in their name. Add the proper target directives

and data-mapping clauses.

Note: the reported bandwidth will be horrendously low. This is intended and will lead to the next

webinar’s topic.

STREAM…

OpenMP Tutorial

Members of the OpenMP Language Committee
3

During the following exercises, you will port a Jacobi solver to OpenMP. This Jacobi example solves a

finite difference discretization (5-point-stencil) of the Laplace equation (2D):

using the Jacobi iterative method. To this end, the Jacobi method starts with an approximation of the

objective function f(x,y) and reuses formerly-computed matrix elements to solve the current one. It

iterates only about the inner elements of the 2D-grid so that the boundary elements are only used

within the stencil. The solving process is aborted if either a certain number of iterations is achieved
(see iter_max) or the computed approximation is probably close to the solution. In this code, the

latter is evaluated by checking whether the biggest change on any matrix element (see array err and

variable err) is smaller than a given tolerance value, in the current iteration.

Jacobi on GPU / 1

𝛻2𝐴 𝑥, 𝑦
= 0

OpenMP Tutorial

Members of the OpenMP Language Committee
4

⚫ Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...

⚫ Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop

⚫ Task 2: Improve the data management and the amount of parallelism on the GPU

⚫ Task 3: Optimize that scheduling of iterations for the GPU

⚫ Future tasks: use multiple GPUs, use the host and a GPU, …

Jacobi on GPU / 2

	01_openmp-introduction_recap
	Slide 1
	Slide 2

	02_openmp-MK-gpu-intro
	Introduction to OpenMP Offload Features
	Running Example for this Presentation: saxpy
	Device Model
	OpenMP Execution Model for Devices
	OpenMP for Devices - Constructs
	Example: saxpy
	Example: saxpy
	Example: saxpy
	Example: saxpy
	Creating Parallelism on the Target Device
	Example: saxpy

	03-openmp-CT-teams_distribute
	Slide 1
	Slide 2
	Terminology
	teams Construct
	distribute Construct
	Example DAXPY: How to Port to GPU?
	Kernel Directives
	Compilation
	Example: DAXPY
	Example DAXPY: Debugging
	Example DAXPY: Data Management
	Mapping to Hardware
	Example DAXPY: Thread Parallelism
	Mapping to Hardware
	Example DAXPY: Thread Parallelism
	Mapping to Hardware
	teams Construct
	distribute Construct

	04-openmp-CT-loop
	Slide 1
	Slide 2
	Slide 3

	05-openmp-CT-homework
	Slide 1
	Slide 2
	Slide 3
	Slide 4

