

Edge modelling of C-Wall JT-60SA with SOLEDGE2D-EIRENE

Luca Balbinot, Paolo Innocente (Consorzio RFX-Italy)

Università degli Studi di Padova

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

• Introduction to the modelling activity

 Description of the recent modelling activity on scenario 2

• Future perspectives

Modelling activity overview

Previous activities:

- H. Kawashima et al. "Evaluation of heat and particle controllability on the JT-60SA divertor" J. Nucl. Mater. 415 (2011)
- R. Zagorski et al. "Numerical analyses of baseline JT-60SA design concepts with the COREDIV code" Nucl. Fus. 57 (2017)
- M. Romanelli et al. "Investigation of sustainable high- scenarios in the JT-60SA C-wall" Nucl. Fus. 57 (2017)

Recent Activities:

- 2019: Transport parameter evaluation on JET
- 2019-2020: JT-60SA Scenario 2 modelling

Foreseen activities:

- Modelling of *Initial research phase scenario* with SOLEDGE2D-EIRENE
- Modelling with SOLEDGE3X

Modelling activity conceptualization

JT-60SA input

parameters

- Transport profile in the divertor region?
- Is C production and recycling well estimated?

- 1. Predict particle and power load to and temperature at the divertor target
- 2. Which is the minimum radiated power to obtain sustainable power flux to divertor?
- 3. Which is the impurity level required to radiate such power
- 4. Do the scenario need to be modified to obtain sustainable power flux

Modelling activity overview

	Initial research phase I	Scenario 2	JET #69890	Diff
Toroidal field B_{T} [T]	2.25	2.25	2.18	3%
Plasma Current I _P [MA]	5.5	5.5	2.0	64%
Elongation Kx		1.87	1.6	14%
β _N		3.1	2.3	26%
Core dens. n _c [10 ¹⁹ m ⁻³]	4.5/6.3	6	7	17%
Sep. dens. n _s [10 ¹⁹ m ⁻³]	~1/2	1/2	3	200/50%
G. dens. Frac		0.5	0.6	20%
Heating Power P _{in} [MW]	26.5	41	21	49%
Magn. Conf.	High elong. SN	High elong. SN	High elong. SN	-
Mode	Н	Н	Н	-
Strike point pos.	2 vertical	2 vertical	1 vert., 1 horiz.	
Wall composition	С	С	С	-
Seeding	No	Ne/Ar	No	
Pumping speed [m ³ /s]	Up to 100	Up to 100	-	

Chosen input parameters

- $D_{sep} = 0.16 \text{ m}^2/\text{s}$
- $X_{e/i,sep} = 0.27 \text{ m}^2/\text{s}$ (Ac. To Eich scaling)
- D/Chi increase in the SOL
- D/Chi increase below X-point
- 1/Bt factor
- Using no drifts

Previous modelling with SONIC was performed using uniform D=0.3 Chi=1.0m²/2 Impurity as a fraction of n_D

Experimental data Cwall JET:

LIDAR

8

6

4

2

- Bolometry
- Spectroscopy (Dα, CII, CIII emmission lines)
- Langmuir probes

L.Balbinot, 3rd IAEA Tech. Meet. On Divertor Concept

JT-60SA simulation with SOLEDGE2D

Pure deuterium simulations

- Used as setup for impurity introduction
- Maximum input power (P_{in,MAX}) to have partial detachment is about **9 MW**.

Deuterium and Carbon simulations

- C impurity radiate up to 8MW with standard simulation setup
- P_{in,MAX} 16MW with n_{e,sep}=2.0x10¹⁹m⁻³ and power flux to the targets below the maximum allowed
- Significant **asymmetry** inner/outer divertor power load
- Future topic for the *Initial research phase I* modelling

Ar puffing $\Gamma_{Ar}=1\times10^{20}s^{-1}$ $Z_{eff,sep}\approx3.0$ $P_{in}=P_{aux}-P_{elm}-P_{rad,core}=30MW$ Ne puffing $\Gamma_{Ne}=2x10^{20}s^{-1}$ $\Gamma_{D2}=1x10^{22}s^{-1}$ Albedo Minimum density n_{e.sep}=2x10¹⁹m⁻³

Neon and Argon cooling performances

What if plasma purity is reduced?

- When detachment is achieved, T_{e,sep} and pumping is increased. Ar influx is 4 times bigger, total argon content is 2 times bigger but T_{e,sep} drops from 240eV to 150eV
- Higher separatrix density is not possible due to Greenwald limit

Conclusions: main outcomes

- A good set of input parameters was found simulating compatible JET pulses
- Carbon, carbon+neon and carbon+argon were compared and P_{in,max} was obtained for all scenarios
- Minimum $n_{e,sep} = 2x10^{19} m^{-3}$
- Sustainable power loads can be obtained with P_{in,max}=20/23 MW.
 Correspondent P_{aux}=30/34MW
- It is possible to achieve sustainable condition with maximum input power decreasing plasma purity of 10%

Foreseen activities:

- Modelling of *Initial research phase* scenario with SOLEDGE2D-EIRENE (G. Falchetto)
- Possible modelling activity with SOLEDGE3X
- Development of synthetic diagnostics (ex. VUV)
- Development of tool for experimental data analysis for edge modelling
- Study of possible interesting scenarios for the initial research phase

Future area of interests (2022+):

- Studying the effects of drifts on plasma radiation and divertor power load distribution
- Modelling of double-null configuration (towards extended research phase – W wall)

Thank you for your attention