

ASCOT for JT-60SA

Taina Kurki-Suonio & Antti Snicker Aalto University

ASCOT4: part of the IMAS/JINTRAC workflows

ASCOT5: tailored for fast ion physics studies

(J. Varje et al., Submitted to CPC)

Designed for modern CPUs, e.g., inbuilt vectorization (originally Xeon Phi)

Better implementation of the modularity

With Python integration for pre- and post-processing

GPU-version in 2021?

ASCOT for JT-60SA: -2020

What has been done so far:

- **★** Simulations of fast-ion distribution function (for various purposes)
- ★ Synthetic FILD studies
 - Moving detector head radially, estimating the sensitivity of losses (and velocity space coverage)
 - 'Worst-case –scenario' simulations to estimate maximal (NBI) power loads to probe head
- ★ Work to account for 3D perturbations due to external coils (in progress)

Including MARS-F fields in ASCOT simulations

- ★ For low-fidelity simulations
 - Generate full field using MARS-F, interpolate it in rectilinear (R, phi, z) grid
 - No need for TF ripple, no need for additional superimposition
 - Has been used for AUG
- ★ High fidelity simulations with several 3D components
 - Create a vacuum 3D field using existing tools (BIOSAW etc.)
 - Communicate the full field with MARS-F, compute plasma response for n1, n2, n3...
 - FFT the original 3D field, replace n1+n2+n3... (but leave all the rest!)
 - Back transform the 3D field including plasma response
 - Improved quality together with more realistic description of the total field
 - The process has been successfully used for ITER

ASCOT for JT-60SA: 2021->

What would be the best ways to complement the work carried out by our Japanese colleagues:

- Effect of non-axisymmetric magnetic field and/or various MHD modes on fast ion dynamics
- ★ Evaluation of NBCD and/or rotational drive?
- **★** Power load simulations including identification of possible hot spots?
- ★ Evaluation of neutron fluxes?
- **★** Synthetic diagnostics (IR, FILD, neutron & gamma diagnostics)?
- **★** Estimation of shine-through losses with high energy NBI?

Disclaimer: the extent of VTT activities in 2021 will be in part limited by national funding decisions.

Synthetic IR studies with ASCOT (in W7-X)

ASCOT'S view of W7-X intestines

InfraRed (IR) camera frame of the same place

ASCOT's synthetic IR camera frame

ASCOT/BBNBI for shine-through losses

"Required R&D in existing fusion facilities to support the ITER Research Plan (XAKZLK ITER IDM)"

★ Ref B11.2:

- "Validation of shine-through loads with high energy NBI"
- "Perform experiments with high energy NBI (E~500 keV) to validate models for evaluation of shine-through loads in ITER"
- "Required to accurately determine the Hydrogen H-mode operational space which is limited (in the low density side) by ST loads"
- "New activity, only JT60-SA"
- * ASCOT/BBNBI to predict shine-through/design experiments (see below for ITER He PFPO-2)?

ASCOT5 inside out

- ★ Magnetic background:
 - External field from experimental data bases, 2D or 3D (newest new: *4D* for ELMs)
 - interpolation using 3D splines (4D also implemented for ELMs)
 - numerical model for δB (and δE) due to various MHD modes (NTM, TAE)
- ★ Plasma background:
 - Kinetic profiles imported from experimental data bases, mainly 1D
 - Neutral backgrounds 1D to 2D to 3D. Work on-going
- ★ Orbit-following in cylindrical coordinates: $(R, \varphi, z) \rightarrow all$ the way to wall
 - GC: 4-5th order Runge-Kutta using Cash-Karp
 - GO: modified Boris method
 - hybrid

Boundary conditions and physics models

★ First wall and divertor:

- Imported from experimental data bases, 2D contour or full 3D
- Formed of a large number of triangles
 - AUG: ~160k, W7-X: ~10M, ITER: ~300k, DEMO: ~80k, only one sector
- ★ Particle sources:
 - Beam ions: BBNBI [O. Asunta et al., CPC 188 (2015) 33]
 - Fusion alphas and neutrons: AFSI [P. Siren et al., NF 58.1 (2017) 016023]
 - ICRH-generated ions: RFOF (T. Johnson, KTH)
- ★ Interaction with background plasma:
 - Coulomb scattering: advanced model, w/ adaptive GC time-stepping
 - CX model for neutralization/re-ionization of fast ions
- ★ Additional physics: MHD models as external actuators

Validating ASCOT in 3D geometry (W7-X) Thank you, Simppa Äkäslompolo!

Fragile (sapphire) vacuum windows

ASCOT predicted excessive NBI power loads → Protective collar installed before starting the beams

Wendelstein 7-X á l'ASCOT

power loads in excess of 1.5MW/m² measured

International ASCOT community

- ASDEX Upgrade, IPP-Garching
- CCFE (JET & MAST/-U)
- Chalmers Technical University, Göteborg, Sweden
- DIII-D, General Atomics, California
- Ioffe Institute, St. Petersburg, Russia
- TJ-II, CIEMAT, Madrid, Spain
- TCV-EPFL, Lausanne, Switzerland
- IPP-CAS, Praha, Czech Republic
- MIT (SPARC), USA

- National Center for Scientific Research "Demokritos", Athens, Greece
- Tokamak Energy, Ltd, UK
- University of California: Irvine and Los Angeles
- University Milano-Bicocca, Italy
- University of Padova, Italy
- University of Sevilla, Spain
- Wendelstein 7-X, IPP-Greifswald

