

Tangential phase-contrast imaging diagnostic

S. Coda, A. lantchenko (EPFL-SPC), K. Tanaka (NIFS)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

EPFL Phase-contrast imaging on JT-60SA

- First real opportunity to study turbulence and turbulent transport, and validate models, in a reactor-grade device
- PCI is a powerful technique that can measure $\delta n/n^{10^{-5}}$ in the range 0.06<kp_i<12 (and potentially beyond: ITG/TEM/ETG) in all regimes and in the whole plasma, with high spatial resolution in the center and at the edge
- Direct spatial imaging means complex spatial structures such as zonal flows, avalanches and streamers can be resolved
- Gyrokinetic modelling support proposed in parallel, with comparisons mediated by a synthetic diagnostic
- JT-60SA offers a very favorable configuration, the technique is well understood ⇒ the project is feasible and carries low risk

Outline

- Motivation
- Principles of (tangential) PCI
- Design criteria
- Proposed layout and implementation
- Status of project
- Summary and outlook

Motivation

- ITG/TEM (plus resistive MHD, plus possibly ETG) turbulence deemed responsible for anomalous transport, regulated by zonal flows - all still not fully understood
- We must validate the models.

Unique opportunity to advance the understanding of microturbulence and anomalous transport in truly reactorgrade conditions, in a variety of regimes, with strong theory support

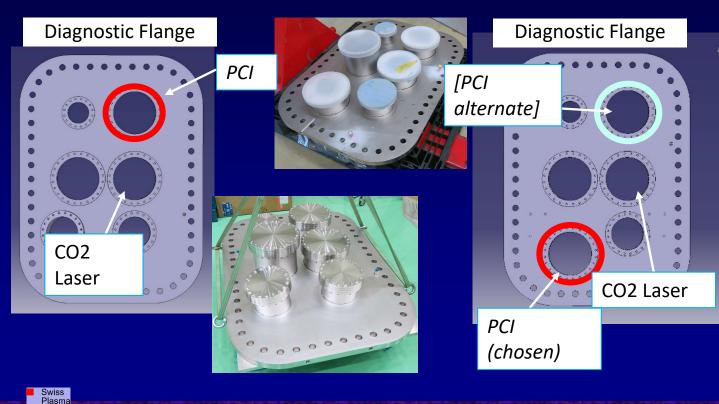
Principles of PCI

- PCI is an internal-reference interferometer: measures lineintegrated density but only by manipulating and recombining beam components
- It is more sensitive than an interferometer
 (∫δn dl~10¹⁴ m⁻²) but cannot measure *absolute* phase shift
 (long wavelength cutoff ≈ size of beam)
- An image is created across the beam, and spatial resolution is limited only by the number of detector elements

Principles of <u>T</u>PCI

At each location, signal contribution comes from one wave-vector direction: k ∝ Bxk₀.
 Selecting k direction (by optical manipulation) imposes spatial selection rule, which is effectively restrictive only in the case of tangential propagation

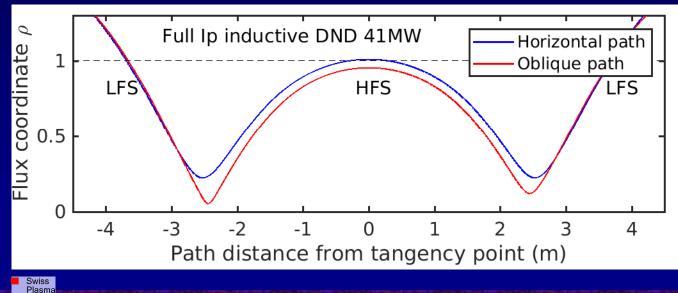
• In JT-60SA, best spatial localization is achieved near the magnetic axis and in the pedestal (on the HFS)


EPFL Design criteria: beam geometry

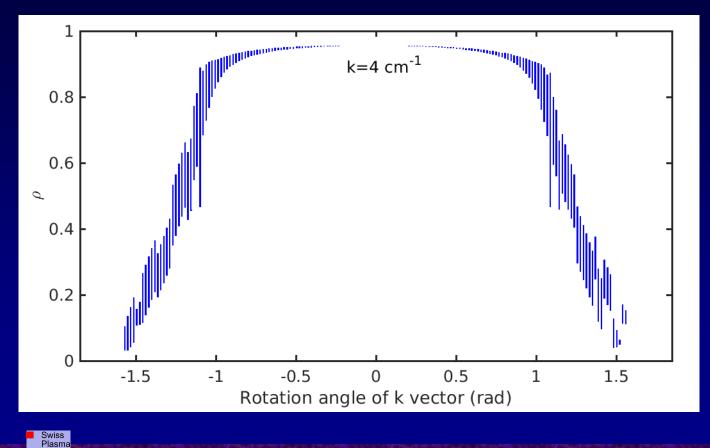

Center

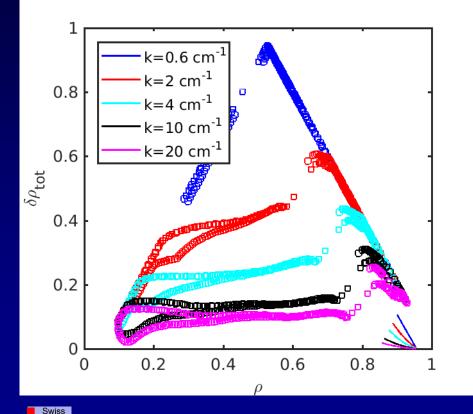
P1 (exit)

EPFL Design criteria: beam geometry



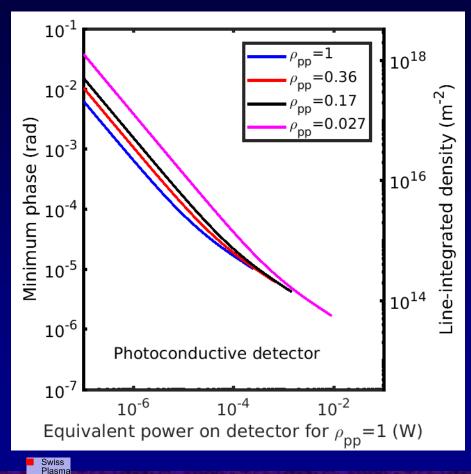
EPFL Dedicated oblique path is best


- Largest possible beam size desired (access longer wavelengths)
- Proposed ports are compatible with 18-cm beam
- Oblique path is better: covers HFS edge and gets closer to axis (both with high resolution)


Good localization

Localization improves with increasing k

k direction: predominantly k_{ρ} in center, k_{ρ} and k_{θ} in two separate edge measurements


S. Coda, A. Iantchenko, K. Tanaka, and S. Brunner, Proc. 46th EPS Conf. On Plasma Physics, Milan, Italy, Europhys. Conf. Abstr. 43C (2019) (P2.1013)

Plasma

Sensitivity is crucial

Tangential Phase Contrast Imaging

Depending on integration length, densities as low as 10¹⁵ m⁻³ can be measured

12

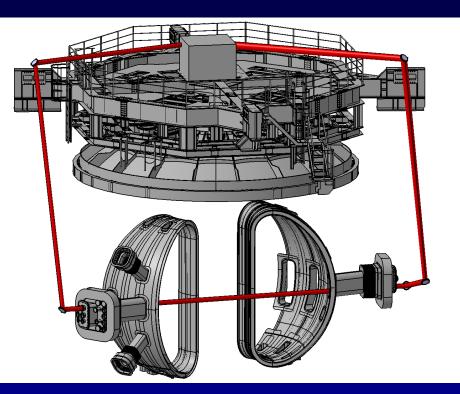
EPFL Gyrokinetic modelling (GENE)

 Indications from GENE runs, aided by synthetic diagnostic, are that TPCI is well placed to detect the relevant modes
 see presentation by A. lantchenko (next)

> A. Iantchenko, G. Merlo, S. Coda, and S. Brunner, Proc. 46th EPS Conf. On Plasma Physics, Milan, Italy, Europhys. Conf. Abstr. 43C (2019) (P2.1098)

Hardware layout

- Beam generation


 CO₂ laser of ~100 W power
 Beam expansion by telescopic arrangement
 Relay mirrors all off-vessel (max 32-cm diameter)
- Vacuum interfaces
 - ZnSe windows
- Beam collection
 - Relay mirrors all off-vessel (max 45-cm diameter)
 Reflective-refractive focusing and imaging system

Hardware layout

• Only 5 relay mirrors are necessary

Swiss Plasma

Status: completed design

- Optical and mechanical layout finalized
- Neutron + gamma shielding, fire-safety beam shielding planned
- Lasers, detector (with automated LN_2 cooling), electronics and acquisition included in design

EPFL

EPFL Planned activities for 2021 and beyond

- 2021 is a "keep-in-touch" year with focus on the compilation of complete engineering specifications and purchasing indications
- Pending funding, procurements and construction can proceed from 2022
- Hiring of dedicated staff will be required
 - a postdoc and a graduate student are envisioned with first data possible from 2024
 - construction can be accelerated if needed

EPFL Summary and outlook

- Tangential PCI system ready to be built for JT-60SA, would likely provide first deep insight into turbulence in reactor environment and usher in the next level of model validation
- Measures full profile in all plasma conditions
- 1 MHz bandwidth, 0.33<k<20 cm⁻¹, $\int \delta n \, dl > 10^{14} \, m^{-2}$
- Δρ<0.1 (axis + edge), 0.4-0.1 at mid-radius (k=2-10 cm⁻¹)
- Can be operational on the 2024 horizon