

Neutron and gamma-ray diagnostics at JT-60SA: proposed scoping study

M. Nocente^{1,2} on behalf of the Milano team

¹Department of Physics, University of Milano-Bicocca, Milan, Italy ²Institute for Plasma Science and Technology, National Research Council, Milano, Italy

M. Nocente, WPSA meeting (online), 17th March 2021

Milano Team

M. Nocente, M. Cavedon, G. Croci, A. Dal Molin, D. Di Martino, A. Mariani, G. Gorini + PhD students

Department of Physics, University of Milano-Bicocca, Milan, Italy

M. Tardocchi, L. Giacomelli, A. Muraro, E. Perelli Cippo, M. Rebai, D. Rigamonti

Institute for Plasma Science and Technology, CNR, Milan, Italy

- Gamma-ray spectroscopy: why and how
- Possibilities for JT-60SA
- Neutron spectroscopy: why and how
- Possibilities for JT-60SA
- Proposed activities

γ-rays are produced by nuclear reactions between fast ions and impurities

 They can be produced in fusion reactions (I step reaction) or result from the de-excitation of a nucleus (II step reaction)

i) $d + p \rightarrow {}^{3}He + \gamma$ (5.5 MeV) (fusion reaction)

ii) α + ⁹Be \rightarrow ¹²C^{*} + n, ¹²C^{*} \rightarrow ¹²C + γ (4.44 MeV) (two step reaction)

... but also fast electrons

 Measurements of the bremsstrahlung radiation spectrum in the MeV range (γ-rays) are the natural way to gain information on the RE distribution function

Runaway electron distribution function can be retrieved by deconvolution of the data

A. Shevelev et al. Nucl. Fusion (2013) 123004 A. Dal Molin, PhD Thesis, University of Milano-Bicocca, 2021

ISTP Common instrumentation for both applications

Compact detectors to measure the fast ion/runaway electron spatial distribution

D. Rigamonti et al. Rev Sci Instrum 89 10/116 (2018)

Developed for the JET Gamma-ray Camera Upgrade project

- Fast (≈ 200 ns FWHM)
 - Compact (1"x1")
- Insensitive to magnetic fields
- Can be placed in an already existing neutron camera

Dedicated high resolution γ -ray spectrometers

M. Nocente et al. Rev. Sci. Instrum. 81 (2010) 10D321

- Improved energy resolution
- Improved detection efficiency
 - Required for advanced analysis (eg. Doppler shape)
 - Dedicated line of sight

Studies of fast ions by gamma-ray spectroscopy at JT-60SA

Courtesy

V. Kiptily 2018

Reactions suitable for proton studies (eg. 500 keV NBI)

Reaction	Resonance, keV	E _γ , MeV	σ(E _R), mb
⁷ Li(p,γ) ⁸ Be	441	17.64	3.5
¹¹ Β(<mark>p</mark> ,γ) ¹² C	162	11.67 & 4.44	0.152
¹² C(p,γ) ¹³ N	457	2.365	0.124

+ runaway electrons

Possible by Li – LiH/LiD pellet injection

Reactions suitable for deuterium studies (eg. 500 keV NBI)

Reaction	Q, MeV	E _γ , MeV	σ(500 keV), mb
⁶ Li(<mark>d</mark> ,nγ) ⁷ Be	3.381	0.429	~75
⁶ Li(d,pγ) ⁷ Li	5.026	0.478	~40
¹⁰ B(d,nγ) ¹¹ C	6.465	2.00, 4.319 & 4.804	~20
¹⁰ B(d,pγ) ¹¹ B	9.230	2.125, 4.444 & 5.021 2.125	~1.5, 7 & 1
¹¹ B(d,pγ) ¹² B	1.145	0.953	~10

Example of runaway studies at ASDEX Upgrade

- Time trace of <E_{RE}> or E_{RE}* can be provided from HXR spectroscopy data
 - Time resolution: few ms or less
- Can a similar measurements be performed at JT-60SA?

Possible locations

Courtesy V. Kiptily 2018

Sector P4, upper:

- NPA, neutron and γ-ray profile monitors
- An efficient γ-ray spectrometer (MeV gammas) could be installed behind of NPA, as in ITER
- Sector P8, horizontal:
 - NPA
 - An efficient γ-ray spectrometer (MeV gammas) could be installed behind of NPA, as in ITER

Sector P10, horizontal:

- neutron and γ-ray profile monitors
- In the neutron profile monitor the γ-ray detectors could be setup (1) with independent collimators (a favourable option); (2) on slider in front of neutron detectors as on JET (a restricted use of the diagnostics)
- Sehind NPA a large volume (high efficiency) γ-ray detectors could be useful
- On JET, we use LaBr₃ and CeBr₃ fast scintillators that provide high energy/time resolution at several MHz count rate

(Existed diagnostics, Table D-6 on pp.148-150, are in blue; proposed – in red)

Neutron spectroscopy

In a plasma in thermal equilibrium, the particles are distributed according to a Maxwellian distribution Neutron spectrum is well approximated as a Gaussian centered at 2.45 MeV (or 14.0 MeV) and with FWHM (W)

Ion Temperature T_i

 $W = 82.5 \cdot \sqrt{T}$ for DD emission $W = 177 \cdot \sqrt{T}$ for DT emission

Fast fuel ions can be well diagnosed with NES due the enhanced reactivity

Requirements for the ideal spectrometer

Energy resolution ($\Delta E_n/E_n < 5\%$) **Time resolution** (count rate capability, >100 kHz)

Development of dedicated instrumentation

- Main application of neutron spectrometry at JT-60SA: studies of the deuterium population (eg. beam current drive, fast ion driven MHD)
- Best instrument: time of flight neutron spectrometer (eg. TOFOR at JET or TOFED at EAST)
- Cons: a time of flight instrument requires important efforts in terms of interfaces with the machine, availability of space, cost etc.
- Valuable information may also come from relatively inexpensive compact spectrometers. Cons: a TOF will likely do better.

P Compact neutron spectrometer possibilities

Synthetic diamond detectors

VNS matrix at JET

Standalone oblique diamond detector at JET

A. Muraro et al. Rev. Sci. Instrum. 87 11D833 (2016)

Development of a matrix of synthetic diamond detectors at JET (VNS project) as well as standalone detectors

Main application at JT60-SA: integration in the *neutron camera*

Inorganic scintillators with neutron spectroscopy capabilities (e.g. CLYC-7)

Most recent technology. Neutron/gammaray discrimination capabilities. Counting rate capability up to a few 100 kHz. Tested at EAST. Under development for ASDEX Upgrade (COSMONAUT project).

2021/22 scoping study: from list of ideas down to hard numbers

- Identify available positions where neutron/gamma-ray diagnostics could go
- Calculate *neutron spectra and fluxes* for relevant fast ion scenarios at the available positions
- Calculate gamma-ray spectra and fluxes for relevant fast ion scenarios at the available positions. Are gamma-ray measurements for fast ion studies feasible at all?
- Evaluate *HXR emission* from runaway electrons
- Evaluate pros and cons of each *technology solution* (e.g. TOF/CLYC/diamond?) depending on the results of the calculations above. Estimate *costs* and *interface* requirements.
- Determine what is *most promising* for *further detailed design* and, eventually, installation. I.e. provide input for an *informed decision on the next steps*.