#### V Kiptily and Z Ghani

#### JT-60SA: gamma-ray diagnostic enhancement proposal

a

25

25

65

30

(10)

10

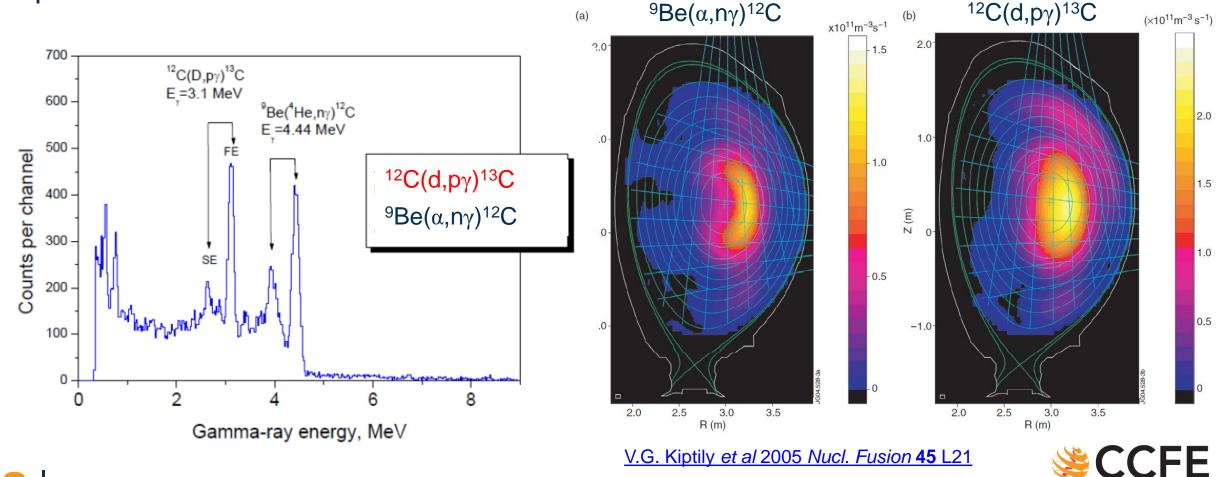
0

1

100

WPSA Project Planning Meeting Remote, 15 – 17 March 2021





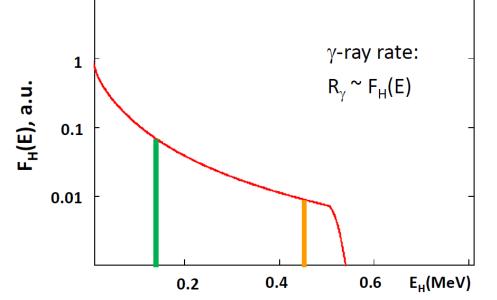



Contract for the Operation of the JET Facilities Co-Funded by Euratom This work was funded by the RCUK Energy Programme [Grant number EP/P012450/1]

## **Gamma-rays in JET**

This diagnostics became a routine instrument for fast-ion studies on JET in XXI century: energy distribution function, imaging of fast-ions and effects of spatial redistribution




XX

#### H/He plasmas in JT-60SA: H-beams

#### Nuclear reactions, which could be suitable for fast-ion studies with hydrogen N-NBI

| Reaction                             | Resonance, keV | E <sub>γ</sub> , MeV | σ(E <sub>R</sub> ), mb |
|--------------------------------------|----------------|----------------------|------------------------|
| <sup>7</sup> Li(p,γ) <sup>8</sup> Be | 441            | 17.64                | 3.5                    |
| <sup>11</sup> B(p,γ) <sup>12</sup> C | 162            | 11.67 & 4.44         | 0.152                  |
| <sup>12</sup> C(p,γ) <sup>13</sup> N | 457            | 2.365                | 0.124                  |

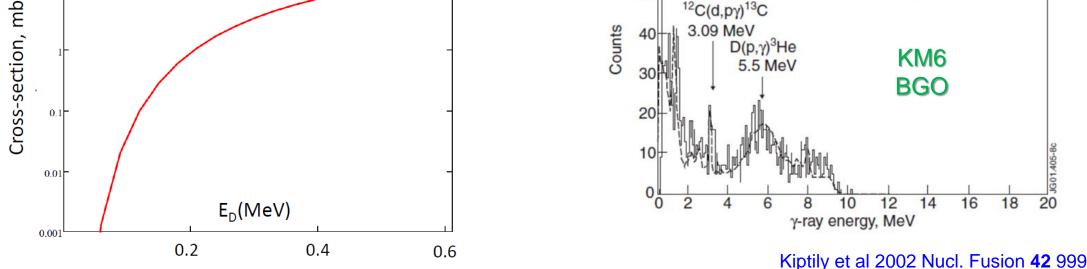
Li or LiH/LiD pellet injection; <sup>6</sup>Li (7.42%) and <sup>7</sup>Li (92.58%) isotopes are available



H-ion slowing down

□ Transport studies




×

#### H/He plasmas in JT-60SA: D-beams

| Reaction                                                 | Q, MeV | E <sub>γ</sub> , MeV       | σ(500 keV), mb |  |
|----------------------------------------------------------|--------|----------------------------|----------------|--|
| <sup>6</sup> Li(d,nγ) <sup>7</sup> Be                    | 3.381  | 0.429                      | ~75            |  |
| <sup>6</sup> Li( <mark>d</mark> ,pγ) <sup>7</sup> Li     | 5.026  | 0.478                      | ~40            |  |
| <sup>10</sup> B( <mark>d</mark> ,nγ) <sup>11</sup> C     | 6.465  | 2.00, 4.319 & 4.804        | ~20            |  |
| <sup>10</sup> B(d,pγ) <sup>11</sup> B                    | 9.230  | 2.125, 4.444 & 5.021 2.125 | ~1.5, 7 & 1    |  |
| <sup>11</sup> B(d,pγ) <sup>12</sup> B                    | 1.145  | 0.953                      | ~10            |  |
| $ \begin{array}{c}                                     $ |        |                            |                |  |



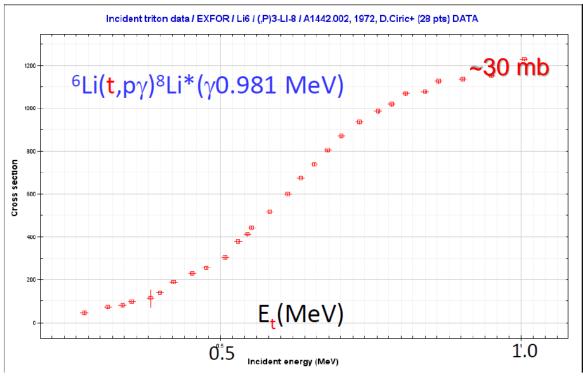
# Horizon H(D, $\gamma$ )<sup>3</sup>He reaction will be useful with deuterium N-NB $\int_{q}^{10} \int_{10}^{10} \int_{10}^{10$



Gamma-ray line analysis could provide information on D-beam ion distribution

Peak energy:  $E_{\gamma} = Q + E_{G}$  and broadening :  $\Delta E_{fwhm} \approx 2\sqrt{4E_{G}\frac{\langle T_{Dp} \rangle}{3} + 2\ln 2\frac{Q^{2}}{M_{3_{He}}c^{2}}\langle T_{Dp} \rangle}$  (MeV) where  $E_{G} = 0.74 < T_{Dp} > ^{2/3}$ ; Q = 5.5 MeV V Kiptily and Z Ghani, JT60SA gamma-diagnostics, WPSA Project Planning Meeting, 17/03/2021






2.13, 4.44, 5.0

4.44, 3.21

3.09

 $D + D \rightarrow {}^{3}\text{He} (0.82 \text{ MeV}) + n (2.45 \text{ MeV})$ 



A unique possibility to study p & t transport with <sup>6</sup>Li-pellet injection

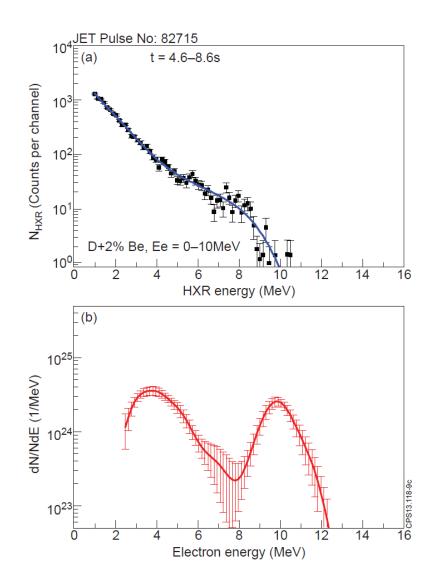


| Neaction      | $L_{\gamma}$ , where |  |
|---------------|----------------------|--|
| oli(n n'v)6li | 3 56                 |  |

| ͽϲ៲(ϼ,ϼ·γ)ͽϲι                                            | 3.56                |  |
|----------------------------------------------------------|---------------------|--|
| <sup>10</sup> B( <b>p</b> , <b>p'</b> γ) <sup>10</sup> B | 0.718, 1.022, 2.868 |  |
| <sup>11</sup> B( <b>p</b> , <b>p'</b> γ) <sup>11</sup> B | 2.125               |  |
| <sup>11</sup> B( <b>p</b> ,γ) <sup>12</sup> C            | 11.67               |  |

Fusion products studies: p& t

<sup>10</sup>B(**d**,pγ)<sup>11</sup>B


 $^{11}B(d,n\gamma)^{12}C$ 

<sup>12</sup>C(d,pγ)<sup>13</sup>C

Ponction

## D plasmas in JT-60SA: D-beams

#### **Runaways in JT-60SA: HXR spectra**



- a) HXR spectrum, recorded with NaI(TI) during
   4.6-8.6 s in shot #82715 (black dots) and
   spectrum obtained after convolution of
   reconstructed electron spectrum with detector
   response function (blue line); ;
- Reconstructed energy distribution of fast electrons generated during start-up in a hybrid scenario discharge

Conclusion:

- Runaways are more energetic (up to ~12 MeV) than measured  $E_{\nu}^{\rm MAX}\,$  <10 MeV
- There are at least 2 components of electrons



## **Proposal for** $\gamma$ **-diagnostics allocations**

#### Sector P4

- Upper:
  - neutron and γ-ray profile monitors
  - NPA +  $\gamma$ -ray spectrometer (it could be installed behind of NPA, as in ITER)
- Lower Oblique:
  - $D_{\alpha}$  emission monitor + oblique  $\gamma$ -ray spectrometer (it could be installed behind of  $D_{\alpha}$ -monitor)

#### Sector P8

- Horizontal:
  - NPA + γ-ray spectrometer (it could be installed behind of NPA)

#### Sector P10

- Horizontal:
  - neutron and γ-ray profile monitors
- ✓  $\gamma$ -ray profile monitor could be setup
  - a) with independent collimators in neutron profile monitors
  - b) on slider in front of neutron detectors as on JET (a restricted use of the diagnostics)
- ✓ LaBr<sub>3</sub> and CeBr<sub>3</sub> fast scintillators are used on JET (high energy/time resolution at several MHz count-rate)

Existed diagnostics: Table D-6 Vacuum Vessel Port and Allocation, page 177 (version 4.0, 2018) – in blue Proposed diagnostics – in red



### A preliminary work plan

- Introduction to the developed diagnostics
  - o neutron profile monitors
  - o NPAs
  - $\circ$   $D_{\alpha}$  emission monitor
- Preparation of proposals for
  - $\circ \gamma$ -ray profile monitors
  - $\circ$  vertical, horizontal and oblique  $\gamma$ -ray spectrometers
- \* Conceptual design for  $\gamma$ -ray diagnostics
- Also, as per our extensive experience of running the JET N&G suite of diagnostics, we can provide support with a wide range of neutron diagnostics:
  - their optimisation, modelling, calibration, cross-calibration and absolute neutron yield monitoring



UK Atomic Energy Authority

## Thank you for your attention



V Kiptily and Z Ghani, JT60SA gamma-diagnostics, WPSA Project Planning Meeting, 17/03/2021