

Neutron diagnostics for JT60-SA Scoping studies – Kick-off Meeting

M. Cecconello¹, S. Conroy¹, A. Hjalmarsson¹, G. Ericsson¹ J. Eriksson¹, E. Anderson-Sundén¹

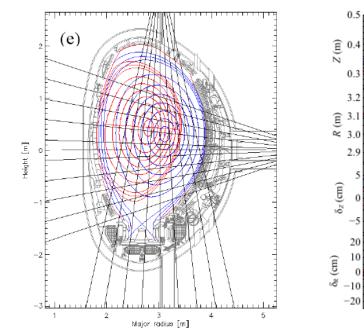
¹Department of Physics and Astronomy, Uppsala University, Sweden

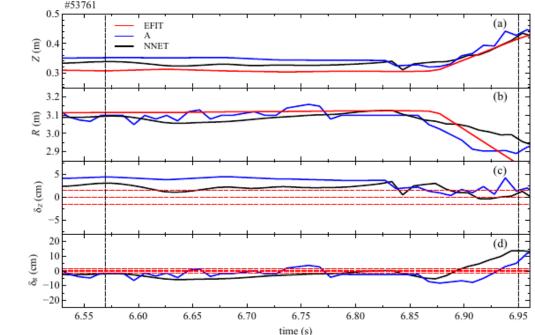
UPPSALA UNIVERSITET

This work has been samled out within the framework of the EUROfusion Consortium and has received funding from the Eurotom research and training programme 2014-2018 under gram agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Overview of JT60-SA scenarios

N-NBI (500 keV) P-NBI (85 keV)



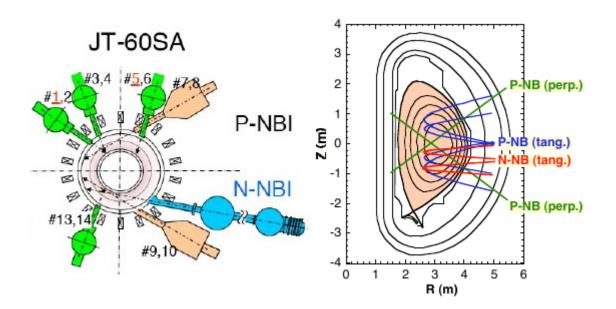

	#1	#2	#3	#4-1	#4-2	#5-1	#5-2	#6 ⁽¹⁾
	Full	Full	Full					
	Current	Current	Current	ITER-	Advanced	High β_N	High β_N	High β_N
	Inductive	Inductive	Inductive	like	Inductive	Full-CD	High f _{GW}	300s
	DN,	SN,	High	Inductive	(hybrid)	Tun-CD	Full-CD	5003
	41MW	41MW	density					
Plasma Current (MA)	5.5	5.5	5.5	4.6	3.5	2.3	2.1	2.0
Toroidal field BT (T)	2.25	2.25	2.25	2.28	2.28	1.72	1.62	1.41
q 95	~3	~3	~3	~3	~4.4	~5.8	6.0	~4
R/a (m/m)	2.96/1.18	2.96/1.18	2.96/1.18	2.93/1.14	2.93/1.14	2.97/1.11	2.96/1.12	2.97/1.11
Aspect ratio A	2.5	2.5	2.5	2.6	2.6	2.7	2.6	2.7
Elongation κ_x	1.95	1.87	1.86	1.81	1.80	1.90	1.91	1.91
Triangularity δ_x	0.53	0.50	0.50	0.41	0.41	0.47	0.45	0.51
Shape factor S	6.7	6.3	6.2	5.7	5.9	7.0	7.0	6.4
Volume (m ³)	132	131	131	122	122	124	124	124
Cross-section (m ²)	7.4	7.3	7.3	6.9	6.9	6.9	6.9	6.9
Normalised beta β_N	3.1	3.1	2.6	2.8	3.0	4.3	4.3	3.0
Electron density (10 ¹⁹ m ⁻³) Line- average/volume- average	6.3/5.6	6.3/5.6	10./9	9.1/8.1	6.9/6.2	5.0/4.2	5.3/4.3	2.0/
Padd (MW)	41	41	30	34	37	37	30	13.2
$P_{\text{NNB}}/P_{\text{PNB}}/P_{\text{EC}}$ (MW)	10/24/7	10/24/7	10/20/-	10/24/-	10/20/7	10/20/7	6/17/7	3.2/6/4
Neutron production rate, S_n (n/s)	1.3×10 ¹⁷	1.3×10 ¹⁷	7.0×10 ¹⁶	6.7×10 ¹⁶	5.4×10 ¹⁶	4.5×10 ¹⁶	2.9×10 ¹⁶	1.2×10 ¹⁶

JT-60SA bulk plasma physics

- Long pulse operation at high- β with Real-time plasma position control based on collimated neutron flux monitors
- Off-axis NBCD efficacy and optimization via neutron emission profiles: the behaviour of fast-ions during their slowing-down processes is also a key issue to understand the physics of off-axis NBCD since the current drive is dominated by these fast-ions.
- Scenario development via fuel ion density and temperature profiles
- Triton-burn up contribution (not insignificant)

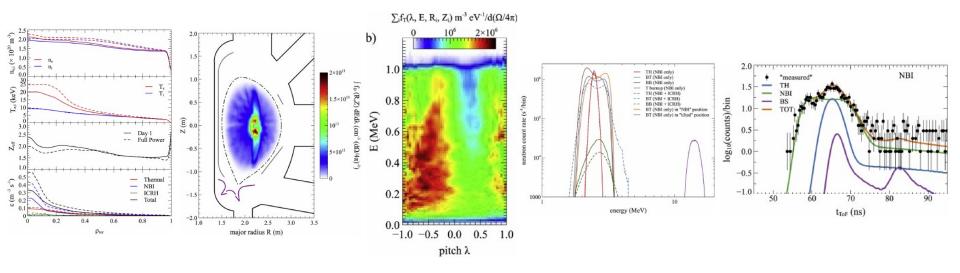
JT-60SA fast particle physics

- Positive and negative NBIs @ 85 and 500 keV resulting in two different fast ions populations with different energy and pitch-angle parameters, driving different EPs (FBs) and TAEs, GAEs and CAEs;
- Super-Alfvénic velocity of the N-NBI driven fast ion population driving TAEs, , GAEs and CAEs; impact on current drive efficency.
- Orbits of MeV D ions (from NNB) comparable to α-s orbits at ITER and DEMO;

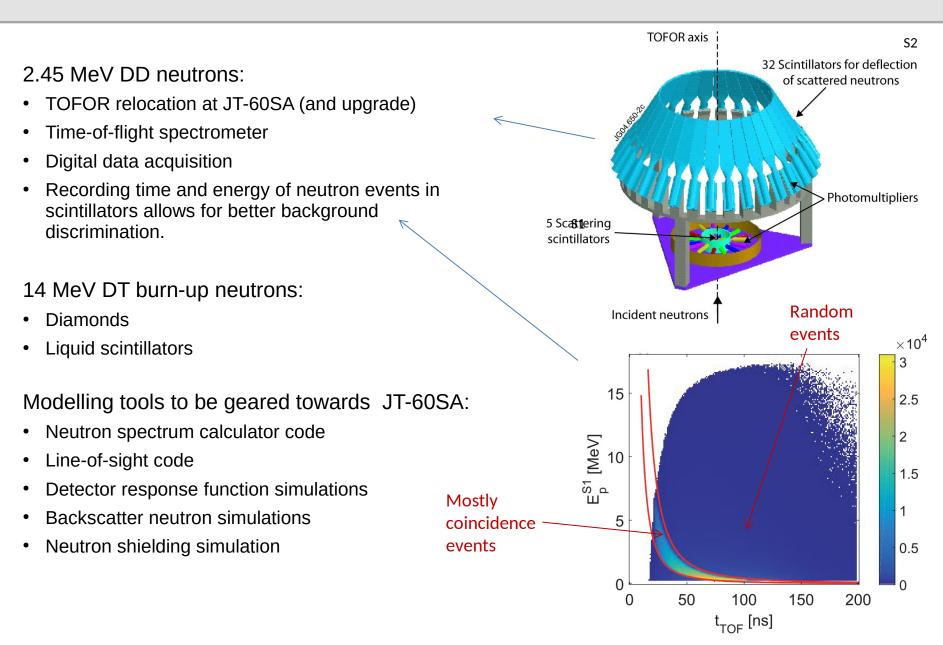

Tokamak	TFTR	JET	JET	JT-60U	ITER	Slim CS	JT-60SA Scen#1-#5-1
Fast ion	Alpha	Alpha	Alpha	Deuterium	Alpha	Alpha	Deuterium
Source	Fusion	Fusion	ICRF tail	Co NBI	Fusion	Fusion	Co NBI
$\tau_{s}[s]$	0.5	1.0	0.4	0.085	0.8	~2	0.5 - 1.6
$\frac{n_{\text{f}} \max / n_{\text{e}}(0)}{[\%]^{\text{\tiny{(i)}}}}$	0.3	0.44	1.5	2	0.85		0.35 - 2.2
βmax [%]∞	0.26	0.7	3	0.6	1.2		0.54 - 2.3
$<\beta>$ [%)	0.03	0.12	0.3	0.15	0.3	~1.2	0.2 - 0.9
$\beta_{i} \max / <\beta_{i}>$	8.7	5.8	10	4	4		2.5 - 3.2
$\max R \nabla \beta $ [%]	2.0	3.5	5	6	3.8		5.2 - 65
v_{r} max / v_{A}	1.6	1.6	1.3	1.9	1.9	~2	1.0 - 1.26

- Coupling of anomalous transport of fast ions to micro turbulence controlled by E_{NNBI}/T_e: neutron emissivity profiles to assess diffusion coefficients.
- Verification & validation (V&V) activities of theory-based transport codes for energetic ions through neutron experimental measurements
- Triton burn-up as a proxy for (DT neutrons) to study the transport of 1 MeV tritons which have a Larmor radius similar to that of 3.5 MeV α -s.
- ELMs and RMPs impact on fast ions confinement (neutron emissivity profiles).

NBI system at JT60-SA


Positive Ion S	D ⁰ Beam ource NB : for heating (ion he	No. of unit ating do	Energy (keV) minant), torqu	Power /unit (MW) e input control, some cu	Total Power (MW) urrent drive	duration (s)
Perpendicular – upper (#2,4,6,14)		4			6.8 -> 8	
Perpendic	cular – lower (#1,3,5,13)	4		1.7 -> 2	6.8 -> 8	
CO-tangential – upper (#10)		1	1 1 1 1	(initial & integrated research phases: 1.7MW/unit, extended research phase: 2MW/unit)	1.7 -> 2	100
CO-tangential - lower (#9)		1			1.7 -> 2	
CTR-tangential-upper (#8)		1			1.7 -> 2	
CTR-tangential-lower (#7)		1			1.7 -> 2	
Negative Ion	Source NB: for heating (electr	on heatir	ng dominant),	current drive, small tore	que & particle in	nput
CO-tangential - upper (NNB-U)		1	500	5	5	100
CO-tangential - lower (NNB-L)		1	500	5	5	100
Total	(*) Initial & Integrated Research Extended Research	30.4 ->34	100 (*)			

JT-60SA Scenario: neutron emission



- Scenario developed but spatial neutron emissivity and neutron energy spectra not simulated (including T burnup contributions).
- These are required for a proper assessment of the possible performances of already envisaged neutron diagnostics (such as the collimated neutron flux monitor) and of possible new ones (dedicated spectrometers).
- Optimization of neutron diagnostics require detailed description of the neutron source both in terms of its spatial and energy distribution.
- UU group experienced in generation of fast ion distributions coupled to neutron synthetic diagnostics for such assessments: from JINTRAC via TRANSP/NUBEAM to DRESS.

JT-60SA neutron emission spectrometers

Plasma Diagnostics Systems

Measurement	Diagnostic	Range or Coverage	Time resolution	Spatial resolution or Wave No.	Accuracy	Target
Current profile	Motional Stark effect polarimeter	pich angle~0-15 degree 0 <r a<1<="" td=""><td>~ 10 ms</td><td>~87 mm or dr/a~0.07</td><td>~0.2 degree in pich angle</td><td>j, control <1/100 τ_R</td></r>	~ 10 ms	~87 mm or dr/a~0.07	~0.2 degree in pich angle	j, control <1/100 τ _R
Line-averaged electron density	CO2 laser interferometer / polarimeter	tangential & vertica	~ ms	Integral		<1/100 τ _s
Electron density profile	YAG laser Thomson scattering system	ne=0.1-30E+19 m ⁻³ 0 <r a<1<="" td=""><td>~ ms - 20 ms</td><td>20-30 mm or dr/a~0.05-0.1</td><td>~5%</td><td><1/10 τ_{local} <1/10 L_{ne}</td></r>	~ ms - 20 ms	20-30 mm or dr/a~0.05-0.1	~5%	<1/10 τ _{local} <1/10 L _{ne}
Electron temperature profile	YAG laser Thomson scattering system	Te=0.1-30 keV 0 <r a<1<="" td=""><td>~ ms - 20 ms</td><td>20-30 mm or dr/a~0.05-0.1</td><td>~5%</td><td><1/10 τ_{tocal} <1/10 L_{Te}</td></r>	~ ms - 20 ms	20-30 mm or dr/a~0.05-0.1	~5%	<1/10 τ _{tocal} <1/10 L _{Te}
Electron temperature profile (fast)	Electron cyclotron emission diagnostics	Te=0.1-20 keV 0 <r a<1<="" td=""><td>~0.001-0.01 ms</td><td>~10-20 mm or dr/a<0.02</td><td>~5%</td><td><1/10 L_{Te}</td></r>	~0.001-0.01 ms	~10-20 mm or dr/a<0.02	~5%	<1/10 L _{Te}
Ion temperature profile	recombination spectroscopy	0.1-50 keV 0 <r a<1<="" td=""><td>~1 ms</td><td>~10-20 mm or dr/a<~0.05</td><td>~5%</td><td><1/10 τ_{local} <1/10 L_{Ti} ITB behavio</td></r>	~1 ms	~10-20 mm or dr/a<~0.05	~5%	<1/10 τ _{local} <1/10 L _{Ti} ITB behavio
Toroidal rotation profile	Charge exchange recombination spectroscopy	-500 - +500 km/s 0 <r a<1<="" td=""><td>~1 ms</td><td>~10-20 mm or dr/a<~0.05</td><td>~5 km/s</td><td><1/10 τ_{tocal} <1/10 L_{vi} ITB behavio</td></r>	~1 ms	~10-20 mm or dr/a<~0.05	~5 km/s	<1/10 τ _{tocal} <1/10 L _{vi} ITB behavio
Poloidal rotation profile	Charge exchange recombination spectroscopy	-500 - +500 km/s 0 <r a<1<="" td=""><td>~1 ms</td><td>~10-20 mm or dr/a<~0.05</td><td></td><td></td></r>	~1 ms	~10-20 mm or dr/a<~0.05		
Radiation profile (main)	(main)		~ 1 ms	~50-100 mm	~10%	<1/100 τ _s <1/10 L _{ne} at ITB
Z _{eff} profile	Z _{eff} monitor (visible bremsstrahlung emission)	0 <r a<1<="" td=""><td>0.1 ms</td><td>50-100 mm or dr/a~0.2</td><td>10%</td><td><1/100 τ_s <1/10 L_{ac} at ITB</td></r>	0.1 ms	50-100 mm or dr/a~0.2	10%	<1/100 τ _s <1/10 L _{ac} at ITB
Impurity density profile Iom temperature profile (core)	Crystal spectrometer (core)	0 <r a<1<="" td=""><td>~2-3 mm</td><td>~10-20 mm</td><td></td><td><1/100 τ_s <1/10 L_{ae} <1/10 L_{Ti} at ITB</td></r>	~2-3 mm	~10-20 mm		<1/100 τ _s <1/10 L _{ae} <1/10 L _{Ti} at ITB
Impurity species monitoring	VUV spectrometer (core)		~100 ms	Integral	10%	
pellet monitor	Fast Visible TV		0.02 ms	~100 mm		
Energy spectrum of fast neutron	Neutral particle analyzer (Diamond detector)	0- ~ MeV dE~15-20 keV	~ 1ms	1 line for vertical, 1 line for horisontal		
Fast ion Da light			< ~ ms	dr/a~0,1		

Table D-2: Core measurements in JT-60SA

JT-60SA Port Allocation

Sec.	Port	Use	Port User
	Upper	Cooling water	In-vessel
	Upper Oblique	ECRF	ECRF
P1	Horizontal	CO2 Laser interferometer/polarimeter (tangential), YAG laser Thomson scattering, Zeff monitor, Neutral gas pressure gauge	Diagnostics
	Lower Oblique	YAG laser Thomson scattering (edge)	Diagnostics
	Lower	Cooling water, Liquid He for cryopanel	In-vessel
	Upper	Glow electrode (TBD), Gas fueling	Vacuum Vessel
Horizontal P2		YAG laser Thomson scattering (central), Charge exchange recombination spectroscopy (toroidal, BG), In-vessel coil feeder	Diagnostics In-vessel
	Lower	Divertor Thomson scattering (TBD)	Diagnostics
	Lower	Gas fueling to divertor	Vacuum Vessel
		Cooling water	In-vessel
	Upper	Cooling water	In-vessel
P3	Horizontal	N-NBI	NBI
	Lower	Cooling water, Liquid He for cryopanel	In-vessel
	Upper	Neutron emission profile monitor, Neutral particle analyser	Diagnostics
	Upper Oblique	ECRF	ECRF
P4	Horizontal	T-NBI(#9,10)	NBI
14	Lower Oblique	D_{α} emission monitor	Diagnostics
	Lower	Boron gas introduction	Vacuum Vessel
	Lower	Cooling water	In-vessel
	Upper	Cooling water	In-vessel
P5	Horizontal	Charge exchange recombination spectroscopy (toroidal), YAG laser Thomson scattering (high field side) Glow electrode, In-vessel coil feeder	
	Lower	Cooling water, Liquid He for cryopanel	In-vessel
	Upper	Visible spectrometer for divertor	Diagnostics
Р6	Horizontal	Remote Handling Neutron monitor, Infrared TV camera (main), Infrared TV camera (divertor) (TBD), Charge exchange recombination spectroscopy (poloidal, BG), Visible TV camera Glow electrode	Remote Handling Diagnostics
	Lower	Visible spectrometer for divertor Gas fueling to divertor Cooling water	Diagnostics Vacuum Vessel In-vessel

	Upper	Cooling water	In-vessel
	Upper Oblique	P-NBI(#14)	NBI
P7	Horizontal	Charge exchange recombination spectroscopy (poloidal)	Diagnostics
		Pellet	Vacuum Vessel
	Lower Oblique	P-NBI(#13)	NBI
	Lower	Cooling water, Liquid He for cryopanel	In-vessel
	Upper	CO2 Laser interferometer/polarimeter (vertical), Neutral gas pressure gauge	Diagnostics
	Upper Oblique	ECRF	ECRF
Р8	Horizontal	CO2 Laser interferometer/polarimeter (tangential), YAG laser Thomson scattering, Zeff monitor, Neutral particle analyser	Diagnostics
	Lower Oblique	In-vessel coil feeder	In-Vessel
L	Lower	CO2 Laser interferometer/polarimeter (vertical), Neutral gas pressure gauge	Diagnostics
		Cooling water	In-vessel
	Upper	Cooling water	In-vessel
	Horizontal	Remote Handling	Remote Handling
P9		VV inspection	Vacuum Vessel
F9		Electron cyclotron emission diagnostics, Fast visible TV for pellet	Diagnostics
	Lower	Cooling water, Liquid He for cryopanel	In-vessel
	Upper	Gas fueling	Vacuum Vessel
\Rightarrow	Horizontal	Neutron monitor, VUV Spectrometer, Neutron emission profile monitor, Crystal spectrometer	Diagnostics
P10	Lower	Boron gas introduction	Vacuum Vessel
		Reciprocating material probes (TBD)	Diagnostics
		Gas fueling,	Vacuum Vessel
		Cooling water	In-vessel

Discussion points

Status of neutron diagnostics on JT-60SA

- Which neutron diagnostics are actively being developed?
- Which neutron diagnostics are at the conceptual level?
- Collaboration with neutronic experts at JT-60SA
- Interfacing issues
- ...

Activity

- Scoping study for 2.45 and 14 MeV neutrons
- Fast ion population generations for synthetic neutron diagnostics development
- Identification of interfacing issues
- ...