

EC Stray Detection system Planning 2021/2022

A. Moro, L. Figini (ISTP - CNR) C. Piccinni (IPP - Garching)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- Return of experience from previous analysis
- Choice for ECH sensor (the ITER option)
- Estimated load on the vessel with EC configuration for first plasma
- Proposed planning for 2021/2022 activities

Return of experience from previous analysis

In WPSA the EC stray radiation issue for JT-60SA has been studied:

- 1. EC Stray radiation modelling in JT-60SA during operations (A. Moro et al., Deliverable 2016)
- 2. ECR stray Radiation Loads on the Cryopumps of JT-60SA (M. Wanner, <u>Tech. Note 2019</u>)
- 3. Evaluation of the ECRF stray radiation power (C. Sozzi et al., Deliverable 2019)
- Qualitative and quantitative evaluation of P_{den} due to residual non-absorbed EC power fraction considering low absorption scenarios, specific in vessel locations, and including launching angles, EC modes and plasma temperature dependences.
- General outcome: **reference values** and **guidelines** as starting point for safety purposes.

 WPSA 8th Project Planning Meeting – EC Stray System
 A. MORO | 18.03.2021

PAGE 3

Return of experience from previous analysis

Gaussian beam propagation, coupled resonators model, beam tracing and PO codes

EC injection in a condition of zero (pre-ionization and ECWC experiments) or very low fraction of absorbed power ~0.1 (assisted burn-through experiments) results in $P \ge 0.9 P_0$ hitting the inner wall at the first pass, with **several MW/m²** per injected beam.

Return of experience from previous analysis

Distribution of the nonabsorbed EC power fraction after 1 and 2 passes was calculated considering:

- a small fraction (5%) of (wrong) OM2 polarization
- main XM2 component, with higher absorption, in low T_e conditions

Residual cross polarized fraction (5%) at 5 keV plasma temperature									
(kW/m ² per 1MW injected beam)	peak incident power density (scen 2)		estimated peak absorbed power density on CFC (scen 2)		peak incident power density (scen 4)		estimated peak absorbed power density on CFC (scen 4)		duration
poloidal angle	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	
0	508.50	18.68	45.26	1.66	1017.00	99.60	90.51	8.86	
-20	375.00	10.75	33.38	0.96	70.50	6.06	6.27	0.54	pulse length
-35.5	334.50	41.40	29.77	3.68	61.33	13.41	5.46	1.19	
Low absorption scenario at low plasma temperature (50 eV)									
(kW/m ² per 1MW injected beam)	peak incident por (scen 2	wer density 2) estimated peak absorbed power density on CFC (scer		ted peak ed power CFC (scen 2)	peak incident power density (scen 4)		estimated peak absorbed power density on CFC (scen 4)		duration
poloidal angle	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	1st bounce	2nd bounce	
0	6780.00	16.60	603.42	1.48	16950.00	1660.00	1508.55	147.74	
-20	3000.00	8.60	267.00	0.77	9000.00	180.60	801.00	16.07	1-1000 ms

0.02

3345.00

276.00

P_{stray} =150 kW*, water baffle uncoated; α = 0.04

669.00

-35.5

Power flux	kW/m²	Absorbed power	W
- Volume 1	5.783	Water baffle	168
- Volume 2	0.400	Cryopump 80 K baffle	3114
- Volume 3	0.115	Cryopump panel	41

0.28

59.54

P_{stray} =150 kW,* water baffle coated; α = 0.7

Power flux		kW/m²	Absorbed power	W
-	Volume 1	5.774	Water baffle	2809
-	Volume 2	0.125	Cryopump 80 K baffle	972
-	Volume 3	0.036	Cryopump panel	13

*Assuming:

297.71

XM2 injection, 95%
 absorption

24.56

- residual 5% OM2 (coupled resonator approach),
- isotropic stray distribution
- The radiation fluxes may reach significant levels (even larger with tungsten),
- Baffles overloaded, coating recommended (Al₂O₃ and TiO₂)

Choice for ECH sensor (the ITER option)

The principle of differential thermocouple configuration allows to **separate the microwave and neutrons loads**, measuring P_{den} as low as 0.5 kW/m² up to 1.25 MW/m² in steady state and transients up to 3 MW/m² for 5.5 s

Extensive design studies, prototyping and tests

- N. Masseen et al., "Microwave Detector design for ITER", <u>ITER_D_JR2KH6</u>
- A. Sirinelli, "System Design Description (DDD) 55.GB In-vessel ECH Detectors", ITER_D_V2GEA7 v1.0
- A. Sirinelli, "55.GB Return of experience Report", <u>ITER_D_UYRF93</u>

WPSA 8th Project Planning Meeting – EC Stray System A. MORO | 18.03.2021

PAGE 6

Choice for ECH sensor (the ITER option)

Detector response to ECH pulses at DIII-D (2018).

A. Sirinelli "55.GB – Return of experience Report", <u>ITER D UYRF93</u>

The principle of differential thermocouple arrangement works

Additional possibility is to develop a system combining the differential thermocouples bolometer with

- pyrodetectors: proved to be fast and sensitive as safety system (not ok for mm-wave diagnostic, large n flux, long pulse signal drift are open issues)
- sniffer probes (oversized waveguides), see W-7X (S. Marsen et al., <u>https://doi.org/10.1088/1741-4326/aa6ab2</u>)
- graphene bolometers?

 $\begin{array}{l} \mbox{Response time } 10^2 \mbox{--}10^3 \ \mbox{\mu s} \\ \mbox{Aperture } \sim 5 \ \mbox{mm}^2 \ , \mbox{FOV } > 75^\circ \\ \mbox{Thermal time constant } \tau \sim 150 \ \mbox{ms} \end{array}$

A. Moro et al https://doi.org/10.1016/j.fusengdes.2017.03.028

Estimated EC load on the vessel (1st plasma)

Antenna parameters for 1 st plasma					
Beam waist radius w ₀ [mm]	19.42				
Launching point coordinates (R,Z) [mm]	(5214.0, 1722.0)				
Poloidal injection angle a [deg]	-35.5				

Incident power density (MW/m² per 1 MW injected beam) 2nd bounce 1st bounce Frequency (@ R=1.708 m, Z= -0.733 m, (@ R=3.661 m, Z=-2.123 m, [GHz] θ =8.86 deg) θ =35.5 deg) $P_{dens}(0,z)$ $P_{av}(z)$ $P_{dens}(0,z)$ $P_{av}(z)$ 82 7.702 0.963 3.852 0.482 110 13.8 6.92 0.865 1.725 1.358 138 21.59 2.699 10.86

Incident power density at first bounce (MW/m ² per 1 MW injected beam)					
Frequency [GHz]	n [10 ¹⁹ m ⁻³]	T [keV]	P _{dens} (0,z)	$P_{av}(z)$	
	0.01	0.1	7.69	0.96	
82	0.1	0.3	7.32	0.91	
	1.0	1.0	2.37	0.30	
	0.01	0.1	13.74	1.72	
110	0.1	0.3	11.72	1.46	
	1.0	1.0	0.07	0.01	
	0.01	0.1	21.49	2.69	
138	0.1	0.3	18.48	2.31	
	1.0	1.0	0.14	0.02	

- Divergent gaussian beam
- Lower loads on 'empty' vessel wrt final antenna configuration

Circular plasma, R_{ax} = 3.1 m, z_{ax}=0 m, a=1.2 m (compatible with EC-assisted BKD studies assumptions)

٠

Proposed plan for 2021/2022 activities

Resources proposed for conceptual design study: 0.5 ppy

- EC Beam tracing analysis (GRAY)
 - i. Conclude the analysis of the expected power density at specific vessel locations, taking into account the layout and materials therein
- In vessel ECH sensor study (ANSYS)
 - i. ITER bolometer features and alternatives (pyrodetectors, sniffer probes graphene)
 - ii. adaptation to JT-60SA (system requirements, materials, thermal & EM simulations, compatibility with operational temperatures, temporal response...)
- Engineering integration study (CATIA)
 - i. Identification of possible in vessel sensor locations
 - ii. Requirements for system arrangement and installation
 - iii. Instrumentation and control
- Prototyping, basic sensor testing, calibration and commissioning plan
- Report/Deliverables

