TSVV Task 10 Kick-Off Meeting, April 28, 2021

ence

ENEA contribution to TSVV Task 10: Physics of Burning Plasmas - Part II

Sergio Briguglio¹, Gregorio Vlad¹ and Fulvio Zonca^{1,2}

¹Center for Nonlinear Plasma Science and ENEA C.R. Frascati, 00044 Frascati, Italy

²IFTS and Dept. Physics, Zhejiang University, Hangzhou, 310027 P.R. China

Background

Center for Nonlinear Plasma Science

- Established in February 2020 at ENEA C.R. Frascati
- "Virtual Center" based on two hubs (ENEA, Frascati; USTC, Hefei) to promote joint research collaboration
- Topics of interest cover nonlinear plasma science in a broad sense
- Magnetic fusion activities are collocated under the umbrella of the CFETR-DTT collaboration agreement
- Strong interconnection with ENEA TSM and EUROfusion (earlier ENR project(s) MET: <u>https://www.afs.enea.it/zonca/</u> <u>METproject/</u>)
- Framework for extending research activities beyond MF
- Information at <u>https://www.afs.enea.it/zonca/CNPS/</u>
 - Mission, Activities, Projects, Publications

SMART/Deliverable 2

SMART (Specific Measurable Assignable Realistic Timerelated) deliverables

- Deliverable 2. Simulations of global modes and fast-particle interaction
 - (S) Study the role of phase-space structures in ITER plasmas.
 - (M) Perform HMGC and HYMAGYC simulations of ITER plasmas employing Hamiltonian diagnostics and using theoretical information on the phase-space structure evolution.
 - (A) This work will be done by G. Vlad, S. Briguglio, F. Zonca, and T. Hayward-Schneider.
 - (R) This deliverable is not very risky but it requires careful and tedious work.
 - (T) The results of this work involving theory, simulations, and experiment will be reported in December 2025.

SMART/Deliverable 5

SMART (Specific Measurable Assignable Realistic Timerelated) deliverables

- Deliverable 5. Burn control and energy deposition optimization strategies
 - (S) ITER burning-plasma ETS simulations using reduced fast-ion models.
 - (M) Perform extensive burning-plasma scenario studies using ETS and the most efficient fast-ion transport models coupled through an IMAS interface.
 - (A) This work will be done by F. Zonca, P. Lauber, R. Dumont, and J. Ferreira.
 - (R) This deliverable relies on success of the previous stage (model coupling to ETS).
 - (T) This deliverable will be reported in December 2025.

SMART/Deliverable 6

SMART (Specific Measurable Assignable Realistic Timerelated) deliverables

- Deliverable 6. Reduced models for AE/EPM stability and nonlinear dynamics
 - (S) Implementation of phase-space resolved fluxes into the transport solver (ETS), as given by the kick model or more advanced nonlinear computations or models.
 - (M) Compare the performance (accuracy vs. speed) of time dependent transport simulations with phase-space resolved EP transport models to the CG model.
 - (A) This work will be done by Ph. Lauber, F. Zonca, R. Dumont, and J. Ferreira.
 - (R) Optimal strategies for time dependence of the couplings between the EP transport model and the transport code have to be developed.
 - (T) This deliverable will be reported in December 2025.

Frascati, April 28th 2021

The Dyson Schrödinger Model

The Dyson Schrödinger Model (DSM) (FZ etal, JPCS 2021)

Significant advance with respect to existing reduced gyrokinetic transport models

- Among fundamental contribution of earlier ENR project(s) MET: <u>https://www.afs.enea.it/zonca/METproject/</u>
- Based on NL GK description (full-F and delta-F)
 - Phase space (GK) response divided into

 - Fluctuations (delta-F Symmetry breaking)
 - Intensity evolution equation (NLSE) assuming linear parallel mode structure
- Can recover all known reduced models in the proper limit
- Extension ready for Stellarators (ENR ATEP) no overlap!
 - TSVV 10: focus on numerical implementation/IMAS
 - ENR ATEP: focus on fundamental and theoretical aspects

Frascati, April 28th 2021

Institute for Fusion Theory and Simulation, Zhejiang University

From DSM to...

Frascati, April 28th 2021

National Agency for New Technologie

Institute for Fusion Theory and Simulation, Zhejiang University

The Dyson Schrödinger Model

SMART foresee relaxed time scale for DSM application

- December 2025 for Deliverables 2,5,6
 - Focus on numerical implementation/IMAS framework
- Consistent with the timeline of ENR ATEP (2021-23)
 - Focus on fundamental and theoretical aspects
- TSVV 10 activities have started on April 1st, as agreed

The Dyson Schrödinger Model

 $\hfill\square$ Nonlinear envelope equation can be written in NLSE-like form

$$\frac{\partial}{\partial t} \left(\frac{\partial D_{Rn}^{0}}{\partial \omega_{n}} A_{n}^{2} \right) - \frac{\partial}{\partial r} \left(\frac{\partial D_{Rn}^{0}}{\partial k_{nr}} A_{n}^{2} \right) + 2D_{An}^{1} A_{n}^{2} - 2iD_{Rn}^{1} A_{n}^{2} + iA_{n} \left(\frac{\partial^{2} D_{Rn}^{0}}{\partial k_{nr}^{2}} + 2\frac{\partial \hat{e}_{n}^{+}}{\partial k_{nr}} \cdot D_{Rn}^{0} \cdot \frac{\partial \hat{e}_{n}}{\partial k_{nr}} \right) \frac{\partial^{2} A_{n}}{\partial r^{2}} = -2ie^{-iS_{n}} A_{n} \hat{e}_{n}^{+} \cdot \mathbf{F} - \left(\hat{e}_{n}^{+} \cdot \frac{d}{dt} \hat{e}_{n} - \frac{d}{dt} \hat{e}_{n}^{+} \cdot \hat{e}_{n} \right) \frac{\partial D_{Rn}^{0}}{\partial \omega_{n}} A_{n}^{2} + \left(\frac{\partial \hat{e}_{n}^{+}}{\partial \omega_{n}} \cdot D_{Rn}^{0} \cdot \frac{\partial \hat{e}_{n}}{\partial t} - \frac{\partial \hat{e}_{n}^{+}}{\partial t} \cdot D_{Rn}^{0} \cdot \frac{\partial \hat{e}_{n}}{\partial \omega_{n}} \right) A_{n}^{2} - \left(\frac{\partial \hat{e}_{n}^{+}}{\partial k_{nr}} \cdot D_{Rn}^{0} \cdot \frac{\partial \hat{e}_{n}}{\partial r} - \frac{\partial \hat{e}_{n}^{+}}{\partial r} \cdot D_{Rn}^{0} \cdot \frac{\partial \hat{e}_{n}}{\partial k_{nr}} \right) A_{n}^{2} .$$

□ The NLSE-like structure is of crucial importance for proper analysis of structure formation in strongly magnetized toroidal plasmas, where wave packets can be focused/defocused and back scattered by both nonlinearities as well as by radial nonuniformities [C&Z RMP16].

Structure of turbulent fluxes

 \odot Since PSZS are undamped by (fast) collisionless dissipation mechanisms, they are naturally expressed as functions of invariants of motion (nearly integrable Hamiltonian system). Separating fast $([...]_F)$ from slow variations,

$$F_{z} \equiv \bar{F}_{0} + e^{-iQ_{z}} \left(\left. \overline{e^{iQ_{z}} \delta F_{z}} \right|_{F} + \delta \tilde{F}_{Bz} \right)$$

macro- \oplus meso-scale (CGL)

micro-scale collisionless damped

,

CNPS

where $\overline{[...]} = \oint d\ell / v_{\parallel} [...] / \oint d\ell / v_{\parallel}$, [...] = 0, F_z is the n = 0 gyrocenter particle distribution function. $e^{-iQ_z} \Rightarrow \text{nonlocal}$ (integral) particle response

$$\partial_{t}\overline{e^{iQ_{z}}\bar{F}_{0}} = -\overline{e^{iQ_{z}}\frac{F(\psi)}{B_{0}}\partial_{t}}\langle\delta A_{\parallel g}\rangle_{z}\frac{\partial}{\partial\bar{\psi}}\bar{F}_{0}\Big|_{S} - \frac{1}{\tau_{b}}\frac{\partial}{\partial\psi}\left[\tau_{b}\overline{e^{iQ_{z}}}\delta\dot{\psi}_{z}\delta F_{z}\right]_{S} - \frac{1}{\tau_{b}}\frac{\partial}{\partial\psi}\left[\tau_{b}\overline{e^{iQ_{z}}}\delta\dot{\psi}\delta F\right]_{zS} - \frac{1}{\tau_{b}}\frac{\partial}{\partial\mathcal{E}}\left[\tau_{b}\overline{e^{iQ_{z}}}\delta\dot{\mathcal{E}}\delta F\right]_{zS} - \frac{1}{\tau_{b}}\frac{\partial}{\partial\psi}\left[\tau_{b}\overline{e^{iQ_{z}}}\delta\dot{\psi}\delta F\right]_{zS} - \frac{1}{\tau_{b}}\frac{\partial}{\partial\mathcal{E}}\left[\tau_{b}\overline{e^{iQ_{z}}}\delta\dot{\mathcal{E}}\delta F\right]_{zS} + \overline{e^{iQ_{z}}\left[C_{g}+\mathcal{S}\right]}\Big|_{zS}.$$
[M.V. Falessi I-14 Varenna 2020]

浙江大學豪愛理論與模擬中心 Institute for Fusion Theory and Simulation, Zhejiang University

Your questions are welcome

Concluding remarks:

- CNPS as virtual center
 - articulated naturally in an international framework of selected collaborations, can be an added value to TSVV 10
- Theoretical activities within TSVV 10
 - focus on numerical implementation/IMAS
 - no overlaps/conflicts with ENR ATEP, which addresses fundamental and more theoretical aspects
- Activities started on April 1st as expected
 - work in progress to be soon submitted to journal

